Instructions for Contributors

Zygote is an international journal dedicated to the rapid publication of original research in early embryology. It covers interdisciplinary studies on gametogenesis through fertilization to gastrulation in animals and humans. The scope has been expanded to include clinical papers, molecular and developmental genetics. While the editors will favour work describing fundamental processes in the cellular and molecular mechanisms of animal development, and, in particular, the identification of unifying principles in biology, new technologies, review articles, debates and letters will become a prominent feature.

Subjects covered include gametogenesis, sperm-oocyte interaction, gamete and embryo physiology, cell polarity, cell-cell interactions, nuclear transfer, haploidization, molecular and developmental genetics, in-vitro fertilization, stem cell and cryoconservation technologies.

All manuscripts must be submitted online at: http://mc.manuscriptcentral.com/zygote

Submission of a paper will be taken to imply that it is unpublished and it is not being considered for publication elsewhere. Authors of articles published in the journal assign copyright to Cambridge University Press (with certain rights reserved) and you will receive a copyright assignment form for signature on acceptance of your paper.

There is no formal restriction on length; however, original articles and reviews of less than 15000 words are likely to appear sooner than longer ones. Short communications should not exceed 1500 words and News and Views Commentaries 500 words.

Preparation of manuscripts

Manuscripts should be organised as follows: Title page (with full names and addresses of all authors, a running headline of up to 35 characters, and a contact address with telephone number and email address), an Abstract of not more than 250 words followed by 5 Keywords, Introduction, Materials and Methods, Results, Discussion (combined Results and Discussionmay be used for short papers), Acknowledgements, References, Endnotes, Tables and Figure Legends.

Manuscripts should be prepared using SI units

CAMBRIDGE UNIVERSITY PRESS

UPH, Cambridge CB2 8BS, United Kingdom 32 Avenue of the Americas, New York, NY 10013–2473, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia C/Orense, 4, planta 13, 28020 Madrid, Spain

Lower Ground Floor, Nautica Building, The Water Club, Beach Road, Granger Bay, 8005 Cape Town, South Africa

Figures

Figures should be numbered consecutively as they appear in the text. Any indication of features of special interest should also be included. Figures must be supplied electronically. They must be saved at final publication size and ideally supplied in the following file formats: halftone figures (black & white, and colour) as TIF files at 300 dpi; black & white line figures as TIF or EPS files at 1000 – 1200 dpi. PDF format is also accepted. When relevant, photographs should be submitted with proposed reduction or magnification indicated by a scale line on or beside, the illustration.

The places for insertion into the text should be indicated in the text as 'Fig. 1' etc. Legends for all illustrations should be typed together, separately from the main text.

More detailed information is available at: http://journals.cambridge.org/artworkguide

Tables

Tables with concise headings should be placed at the end of the paper. Each table must have a text reference, in the form 'Table 1' etc.

References

References should be cited in the text as Conklin (1905) showed or as shown (Conklin, 1905). For papers with three or more authors use et al. A full list of references in alphabetical order should be given at the end of the text: surname of author and initials; year of publication (in parentheses); title of paper; journal or book name (the former being abbreviated in accordance with the World List of Scientific Periodicals); volume number; first and last page of the reference. For books and conference proceedings, place of publication and publisher (and editor(s) if appropriate) should be included.

Proofs

Proofs will be sent to the author for checking. Typographical or factual errors only may be changed at proof stage. The publisher reserves the right to charge authors for correction of non-typographical errors.

Offprints

A PDF offprint of each article will be supplied free to each first named author.

ZYGOTE The Biology of Gametes and Early Embryos

CONTENTS

ORIGINAL ARTICLES		A double-blinded comparison of in situ TUNEL and aniline blue versus flow cytometry acridine orange for the determination of sperm DNA fragmentation and nucleus decondensation state index	
In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems			
Silva, G. M., Rossetto, R., Chaves, R. N., Duarte, A. B. G., Araújo, V. R. Feltrin, C., Bernuci, M. P., Anselmo-Franc J. A., Xu, M., Woodruff, T. K., Campello, C.C.	ci,	Hamidi, J., Frainais, C., Amar, E., Bailly, E., Clément, P. & Ménézo, Y.	556
& Figueiredo, J. R.	475	Insulin influences developmental competence of bovine	
Phosphorylated H2AX in parthenogenetically activated, in vitro fertilized and cloned bovine embryos		oocytes cultured in α-MEM plus follicle-simulating hormone Mota, G. B., Oliveira e Silva, I., Kaiser de Souza, D., Tuany, F.	
Pereira, A. F., Melo, L. M., Freitas, V. J. F. & Salamone, D. F.	485	Pereira, M. M., Sergio de Almeida Camargo, L. & Rosa e Silva, A. A. M.	563
Production of somatic cell nuclear transfer embryos using <i>in vitro</i> -grown and <i>in vitro</i> -matured oocytes in rabbits Sugimoto, H., Kida, Y., Oh, N., Kitada, K., Matsumoto, K., Saeki, K., Taniguchi, T. & Hosoi, Y.	494	Effects of heat shock during the early stage of oocyte maturation on the meiotic progression, subsequent embryonic development and gene expression in ovine	
In mouse oocytes the mitochondrion-originated germinal	10 1	Gharibzadeh, Z., Riasi, A., Ostadhosseini, S., Hosseini, S. M., Hajian, M. & Nasr-Esfahani, M. H.	573
body-like structures accumulate mouse Vasa homologue (MVH) protein		Ultrastructural characterization of in vivo-produced ovine	
Reunov, A. A. & Reunova, Y. A.	501	morulae and blastocysts	
Effect of different superovulation stimulation protocols on adenosine triphosphate concentration		Bettencourt, E. M. V., Bettencourt, C. M. V., Chagas e Silva, J. Ferreira, P., Oliveira, E., Romão, R., Rocha, A. & Sousa, M.	N., 583
in rabbit oocytes Cortell, C., Salvetti, P., Joly, T. & Viudes-de-Castro, M. P.	507	Comparison of vitrification and conventional freezing for cryopreservation of caprine embryos	
IGF-I slightly improves nuclear maturation and cleavage rate of bovine oocytes exposed to acute heat shock <i>in vitro</i>		Araújo-Lemos, P. F. B., Neto, L. M. F., Moura, M. T., Melo, J. V. Lima, P. F. & Oliveira, M. A. L.	., 594
Meiyu, Q., Liu, D. & Roth, Z.	514	Role of arachidonic acid cascade in Rhinella arenarum oocyte	
Melatonin enhances the <i>in vitro</i> maturation and developmental potential of bovine oocytes denuded		maturation	
of the cumulus oophorus		Ortiz, M. E., Arias-Torres, A. J. & Zelarayán, L. I.	603
Zhao, XM., Min, JT., Du, WH., Hao, HS., Liu, Y., Qin, T., Wang, D. & Zhu, HB.	525	First polar body morphology affects potential development o porcine parthenogenetic embryo in vitro	f
Effects of jacalin and follicle-stimulating hormone on <i>in vitro</i> goat primordial follicle activation, survival		Hu, J., Jin, C., Zheng, H., Liu, Q., Zhu, W., Zeng, Z., Wu, J., Wang, Y., Li, J., Zhang, X., Liu X. & Zhao, J.	615
and gene expression Ribeiro, R. P., Portela, A. M. L. R., Silva, A. W. B., Costa, J. J. N., Passos, J. R. S., Cunha, E. V., Souza, G. B., Saraiva, M. V. A., Donato, M. A. M., Peixoto, C. A., van den Hurk, R.		Osteopontin is expressed in the oviduct and promotes fertilization and preimplantation embryo development of mou	
& Silvam, J. R. V.	537	Liu, Q., Xie, Qz., Zhou, Y. & Yang, J.	622
Effects of maternal ageing on ICSI outcomes		SHORT COMMUNICATION	
and embryo development in relation to oocytes morphological characteristics of birefringent structures		Comparison of the effects of thermal stress and CO ₂ -driven acidified seawater on fertilization in coral <i>Acropora digitifera</i>	
Korkmaz, C., Tekin, Y. B., Sakinci, M. & Ercan, C. M.	550	Iguchi, A., Suzuki, A., Sakai, K. & Nojiri, Y.	631

