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1. Introduction

Let V be a real vector space of dimension n, endowed with the structure of a simple
Euclidean Jordan algebra. We consider an irreducible symmetric cone Ω inside V and
denote by TΩ = V + iΩ the corresponding tube domain in the complexification of V .
Here, V is endowed with an inner product (· | ·) for which the cone Ω is self-dual. We
refer the reader to [7] for a complete discussion about symmetric cones. Identifying V

with R
n, we have as an example of a symmetric cone the forward light cone given for

n � 3 by
Γn = {y ∈ R

n : y2
1 − y2

2 − · · · − y2
n > 0, y1 > 0}.

Following the notation in [7], we write r for the rank of Ω and ∆(x) for the associated
determinant function. Light cones have rank 2 and a determinant function given by the
Lorentz form

∆(y) = y2
1 − y2

2 − · · · − y2
n for y = (y1, y2, . . . , yn).

We recall that, given 1 � p, q < ∞ and ν ∈ R, the mixed norm Lebesgue space
Lp,q

ν (TΩ) is defined by the integrability condition

‖f‖Lp,q
ν

:=
[ ∫

Ω

( ∫
Rn

|f(x + iy)|p dx

)q/p

∆ν−(n/r)(y) dy

]1/q

< ∞. (1.1)
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The mixed norm weighted Bergman space Ap,q
ν (TΩ) is then the closed subspace of

Lp,q
ν (TΩ) consisting of holomorphic functions on the tube TΩ . These spaces are non-

null only when ν > (n/r)−1 (see [6]). When p = q we shall simply write Ap,p
ν = Ap

ν . The
usual Bergman space Ap then corresponds to the case when ν = n/r.

The weighted Bergman projection Pν is the orthogonal projection from the Hilbert
space L2

ν(TΩ) onto its closed subspace A2
ν(TΩ) and it is given by the integral formula

Pνf(z) =
∫

TΩ

Bν(z, w)f(w)∆ν−(n/r)(Im w) dV (w),

where

Bν(z, w) = dν∆−ν−(n/r)
(

z − w̄

i

)
(1.2)

is the weighted Bergman kernel and dV is the Lebesgue measure on C
n (see [6]). Note

that the Bergman kernel is a reproducing kernel on A2
ν(TΩ), that is, for any f ∈ A2

ν(TΩ),

f(z) =
∫

TΩ

Bν(z, w)f(w)∆ν−(n/r)(Im w) dV (w).

The Lp,q
ν -boundedness of the Bergman projection Pν is still an open problem and has

attracted a lot of attention in recent years (see [1,2,4,5]). To date, it is only known that
this projection extends as a bounded operator on Lp,q

ν for general symmetric cones for
the range 1 � p < ∞ and q′

ν,p < q < qν,p, with

qν,p = min{p, p′}qν , qν = 1 +
ν

(n/r) − 1
and

1
p

+
1
p′ = 1

(see, for example, [5]) with slight improvements over this range in the case of light cones
(see [9]).

The importance of the boundedness of the Bergman projection can be expressed in
terms of its consequences, among which the following one is well known: if Pν extends
to a bounded operator on Lp,q

ν , then the topological dual space (Ap,q
ν )∗ of the Bergman

space Ap,q
ν identifies with Ap′,q′

ν under the integral pairing

〈f, g〉ν =
∫

TΩ

f(z)g(z)∆ν−n/r(Im z) dV (z),

for f ∈ Ap,q
ν and g ∈ Ap′,q′

ν (see [6]). So, since the range of boundedness of Pν on Lp,q
ν

is far from being completely known, a natural question is whether there is any way of
characterizing the dual space of Ap,q

ν for values of the parameters p, q, ν for which Pν is
not necessarily bounded. To answer this type of question, it seems natural to consider the
problem of Lp,q

ν -boundedness of a family of operators generalizing the Bergman projec-
tion. This family is given by the integral operators T = Tα,β,γ and T+ = T+

α,β,γ defined
for C∞

c (TΩ) by the formulae

Tf(z) = ∆α(Im z)
∫

TΩ

Bγ(z, w)f(w)∆β(Im w) dV (w)
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and

T+f(z) = ∆α(Im z)
∫

TΩ

|Bγ(z, w)|f(w)∆β(Im w) dV (w).

Note that the boundedness of T+ on Lp,q
ν (TΩ) implies the boundedness of T , although

the boundedness of T is typically expected in a larger range than T+.
The boundedness of this family of operators on Lp,q

ν (TΩ) has been considered in [4] for
the case when Pµ = T0,µ−(n/r),µ and in [2] for T0,µ−(n/r),µ+m. Both works deal with the
case of the light cone. Here, we consider the problem of the boundedness of the operator
T+ for general symmetric cones and obtain optimal results for this operator. For this, we
systematically make use of the methods of [2,4], which seem to be appropriate here and,
since we are considering general symmetric cones, the general power function defined in
the text is also useful in this case. Note that the case p = q for general symmetric cones
was implicit in [3]. Our results can be stated in the following way.

Theorem 1.1. Suppose that ν ∈ R and 1 � p, q < ∞. Then the following conditions
are equivalent:

(a) the operator T+
α,β,γ is bounded on Lp,q

ν (TΩ);

(b) the parameters satisfy γ = α + β + (n/r), α + β > −1 and

max
{

− qα +
(

n

r

)
− 1, q

(
− α +

(
n

r

)
− 1

)
−

(
n

r

)
+ 1

}

< ν < min
{

q(β + 1) +
(

n

r

)
− 1, q

(
β +

(
n

r

))
−

(
n

r

)
+ 1

}
.

Theorem 1.2. The operator T+
α,β,γ is bounded on L∞(TΩ) if and only if α > (n/r)−1,

β > −1 and γ = α + β + (n/r).

The condition

max
{

− qα +
(

n

r

)
− 1, q

(
− α +

(
n

r

)
− 1

)
−

(
n

r

)
+ 1

}

< ν < min
{

q(β + 1) +
(

n

r

)
− 1, q

(
β +

(
n

r

))
−

(
n

r

)
+ 1

}

in Theorem 1.1 is equivalent to
(

β+
(

n

r

))
q−ν > max{1, q−1}

((
n

r

)
−1

)
and αq+ν > max{1, q−1}

((
n

r

)
−1

)
.

As an application, we characterize the dual space of Bergman spaces in some cases where
the Bergman projection is not necessarily bounded, partially answering the question
above.
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2. Integral operators on the cone

The aim of this section is to give Lq
ν-continuity properties of a family of operators on the

cone Ω which are closely related to the operators Tα,β,γ . Considering V = R
n as a Jordan

algebra, we denote its identity element by e (this corresponds to the point (1, 0, . . . , 0)
in the forward light cone). We recall that a generalized power in the symmetric cone Ω

of rank r is defined by

∆s(x) = ∆s1−s2
1 (x)∆s2−s3

2 (x) · · ·∆sr
r (x), s = (s1, s2, . . . , sr) ∈ C

r,

where x ∈ Ω and ∆k(x) are the principal minors of x (see [7, p. 122]). The generalized
Gamma function of the cone Ω is given by

ΓΩ(s) =
∫

Ω

e−(ξ|e
¯
)∆s(ξ)

dξ

∆n/r(ξ)

for s ∈ C
r.

Lemma 2.1. The above integral is absolutely convergent if and only if Re sj >
1
2 (j − 1)d for j ∈ {1, . . . , r} and in this case

ΓΩ(s) = (2π)(n−r)/2
r∏

j=1

Γ (sj − 1
2 (j − 1)d),

where Γ is the usual Euler function on R
+, Re sj is the real part of sj and 1

2 (r − 1)d =
(n/r) − 1.

Proof. See [7, p. 123]. �

We now recall the integrability properties of powers of ∆ and Schur’s lemma. For this
we use the following notation:

g0 = (. . . , 1
2d(j − 1), . . . ) for j = 1, . . . , r,

and
t∗ = (tr, . . . , t1), where t = (t1, . . . , tr).

For t ∈ R
r and k ∈ R

r, t < k is equivalent to tj < kj for j = 1, . . . , r. The following
result, which can be deduced from the previous lemma, is due to Gindikin [10].

Lemma 2.2. Let s ∈ C
r with Re sj > (j − 1) 1

2d, α ∈ C
r and t ∈ Ω. Then the integral

Is,α(t) =
∫

Ω

∆α(y + t)∆s(y)
dy

∆n/r(y)

is absolutely convergent if and only if Re(s + α) < −g∗
0 , and in this case

Is,α(t) = Cs,α∆s+α(t).
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Lemma 2.3 (Schur’s lemma). Let µ be a positive measure on a measure space X,
let H(x, y) be a positive measurable function on X×X, and let q > 1, with 1/q+1/q′ = 1.

If there exist a positive measurable function h(x) on X and a positive constant C such
that ∫

X

H(x, y)hq(x) dµ(x) � Chq(y)

and ∫
X

H(x, y)hq′
(y) dµ(y) � Chq′

(x)

for all x and y in X, then the integral operator

Hf(x) =
∫

X

H(x, y)f(y) dµ(y)

is bounded on Lq(X, µ) with ‖H‖ � C.

Proof. See [11, Theorem 3.2.2]. �

For the real parameters α, β and γ, we now consider the integral operators S = Sα,β,γ

which are defined on the cone Ω by

Sg(y) =
∫

Ω

∆α(y)∆−γ(y + v)g(v)∆β(v) dv.

The following lemmas give continuity properties of the operators Sα,β,γ on Lq
ν(Ω) =

Lq(Ω, ∆ν−(n/r)(y) dy), ν ∈ R.

Lemma 2.4. Let ν ∈ R, 1 < q < ∞, γ = α + β + (n/r) and

max
{

− qα +
(

n

r

)
− 1, q

(
− α +

(
n

r

)
− 1

)
−

(
n

r

)
+ 1

}

< ν < min
{

q(β + 1) +
(

n

r

)
− 1, q

(
β +

(
n

r

))
−

(
n

r

)
+ 1

}
.

Then the operator S = Sα,β,γ is bounded on Lq(Ω, ∆ν−(n/r)(y) dy).

Proof. We can write the integral S as

Sg(y) =
∫

Ω

H(y, v)g(v)∆ν−(n/r)(v) dv,

where H(y, v) = ∆α(y)∆−γ(y + v)∆β−ν+(n/r)(v) is a positive kernel with respect to the
measure ∆ν−(n/r)(v) dv. By Schur’s lemma, it is sufficient to find a positive function h

on Ω such that ∫
Ω

H(x, y)hq′
(y) dµ(y) � Chq′

(x)
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and ∫
Ω

H(x, y)hq(x) dµ(x) � Chq(y)

for q > 1, and dµ(y) = ∆ν−(n/r)(y) dy. We take h(y) = ∆s(y), where s = (s1, . . . , sr)
and sj , j = 1, . . . , r, are real numbers to be determined.

Straightforward computations with the use of the given choice of h and Lemma 2.2
yield

−α − ν + 1
2d(j − 1)

q′ < sj <
−α − ν + γ − (n/r) + 1 + 1

2d(j − 1)
q′

and

−β − (n/r) + 1
2d(j − 1)

q
< sj <

−β + γ + 1
2d(j − 1) − 2(n/r) + 1

q
.

Thus, each sj must belong to an intersection of two intervals. This intersection is not
empty, by hypothesis, since the condition

max
{

− qα +
(

n

r

)
− 1, q

(
− α +

(
n

r

)
− 1

)
−

(
n

r

)
+ 1

}

< ν < min
{

q(β + 1) +
(

n

r

)
− 1, q

(
β +

(
n

r

))
−

(
n

r

)
+ 1

}

is equivalent to

max
1�j�r

{
q

(
− α +

(
n

r

)
− 1 − 1

2d(j − 1)
)

+ (j − 1)d −
(

n

r

)
+ 1

}

< ν < min
1�j�r

{
q

(
β +

(
n

r

)
− 1

2d(j − 1)
)

−
(

n

r

)
+ 1 + (j − 1) d

}
.

It follows that S is bounded on Lq
ν(Ω) for every q > 1 and the proof is complete. �

Lemma 2.5. Suppose that 1 < q < ∞, ν ∈ R and that S = Sα,β,γ is bounded on
Lq(Ω, ∆ν−(n/r)(y) dy). Then

max
{

− qα +
(

n

r

)
− 1, q

(
β − γ + 2

(
n

r

)
− 1

)
−

(
n

r

)
+ 1

}

< ν < min
{

q(γ − α) −
(

n

r

)
+ 1, q(β + 1) +

(
n

r

)
− 1

}
.

Proof. Let us take the characteristic function of the Euclidean ball b1(e¯
) of radius 1

centred at e
¯

as a test function g. By continuity, ∆(v) is almost constant on the support
of g. Let us estimate ∆(v + y) on the support of g(v) for fixed y ∈ Ω. For this, note that,
for all y and t in the cone Ω and λ > (n/r) − 1, we can write

∆−λ(y + v) = c

∫
Ω

e−(y+v|ξ)∆λ−(n/r)(ξ) dξ (2.1)
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(see [7, Chapter VII]). By [6, Theorem 2.45] there exists a constant C = C(Ω) � 1 such
that, for all ξ ∈ Ω,

1
C

� (v | ξ)
(e
¯

| ξ)
� C, whenever v ∈ b1(e¯

). (2.2)

Note that, for C > 1,

1
C

(y + v | ξ) � 1
C

(v | ξ) + (y | ξ) � (y + v | ξ) � C(v | ξ) + (y | ξ) � C(y + v | ξ).

Thus, using the estimates (2.2), formula (2.1) and the fact that the determinant function
is homogeneous of degree r (see [7]) we obtain that, for v in the support of g and y ∈ Ω,
the following hold:

(
1
C

)r

∆(e
¯

+ y) = ∆
(

1
C

(e
¯

+ y)
)

� ∆
(

1
C

e
¯

+ y

)

� ∆(v + y) � ∆(Ce
¯

+ y) � ∆(C(e
¯

+ y))

= Cr∆(e
¯

+ y).

We conclude that there exists a constant C = C(Ω) � 1 such that, for all y ∈ Ω,

1
C

∆(e
¯

+ y) � ∆(v + y) � C∆(e
¯

+ y), whenever v ∈ b1(e¯
).

It follows that
Sg(y) = Sχb1(e¯

)(y) ≈ C∆α(y)∆−γ(y + e
¯
).

So, if S is bounded on Lq(Ω, ∆ν−(n/r)(y) dy), then the function ∆α(y)∆−γ(y + e
¯
) is in

Lq(Ω, ∆ν−(n/r)(y) dy), which means that∫
Ω

∆qα+ν−(n/r)(y)∆−qγ(y + e
¯
) dy < ∞.

By Lemma 2.2 we necessarily have qα + ν − (n/r) > −1 and −qγ + qα + ν − (n/r) <

−2(n/r) + 1, which is equivalent to ν > −qα + (n/r) − 1 and ν < q(γ − α) − (n/r) + 1
with 1 � q < ∞. This gives half of the conditions.

By duality, the boundedness of S on Lq(Ω, ∆ν−(n/r)(y) dy) implies the boundedness
of its adjoint S∗ on Lq′

(Ω, ∆ν−(n/r)(y) dy), where 1/q + 1/q′ = 1. It is easy to see that

S∗g(y) =
∫

Ω

∆β−ν+(n/r)(y)∆−γ(y + v)g(v)∆α+ν−(n/r)(v) dv.

Using the same reasoning as before we obtain that the function ∆β−ν+(n/r)(y)∆−γ(y+e
¯
)

must belong to Lq′
(Ω, ∆ν−(n/r)(y) dy). Again by Lemma 2.2, we must have (β − ν +

(n/r))q′ +ν − (n/r) > −1 and −q′γ +(β −ν +(n/r))q′ +ν − (n/r) < −2(n/r)+1, which
is equivalent to ν < q(β + 1) + (n/r) − 1 and ν > q(β − γ + 2(n/r) − 1) − (n/r) + 1. This
completes the proof of the lemma. �

Lemma 2.6. For ν ∈ R, the operator S = Sα,β,γ is bounded on L1(Ω, ∆ν−(n/r)(y) dy)
if and only if γ = α + β + (n/r) and −α + (n/r) − 1 < ν < β + 1.
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Proof. We first show the sufficient condition. For any function g in L1
ν(Ω), using

Fubini’s theorem we have that
∫

Ω

|Sg(y)|∆ν−(n/r)(y) dy �
∫

Ω

( ∫
Ω

∆α(y)∆−γ(y + v)|g(v)|∆β(v) dv

)
∆ν−(n/r)(y) dy

=
∫

Ω

|g(v)|
( ∫

Ω

∆−γ(y + v)∆α+ν−(n/r)(y) dy

)
∆β(v) dv

= C

∫
Ω

|g(v)|∆ν−(n/r)(v) dv,

where the last equality follows from Lemma 2.2, since γ = α+β+(n/r) and −α+(n/r)−
1 < ν < β + 1.

To prove the necessary condition, we proceed as in the proof of Lemma 2.5. This means
that the operator

S∗g(y) =
∫

Ω

∆β−ν+(n/r)(y)∆−γ(y + v)g(v)∆α+ν−(n/r)(v) dv

must be bounded on L∞(Ω). As a test function, we take g(v) = 1. Then

|S∗g(y)| =
∫

Ω

∆β−ν+(n/r)(y)∆−γ(y + v)∆α+ν−(n/r)(v) dv.

It follows from Lemma 2.2 that we must necessarily have α + ν − (n/r) > −1 and
−γ + α + ν − (n/r) < −2(n/r) + 1. In this case, |S∗g(y)| = C∆β−γ+α+(n/r)(y), which
belongs to L∞(Ω) if and only if β − γ + α + (n/r) = 0. This completes the proof of the
lemma. �

3. Positive integral operators on the tube TΩ

In this section, we give some boundedness conditions for the family of integral operators
Tα,β,γ defined on the tube TΩ . We begin by recalling some results.

Lemma 3.1 (Békollé et al . [6, Lemma 4.11]). There are constants Cν > 0 and
δ > 0 such that, for all z = x + iy ∈ TΩ , v ∈ Ω with |x| � 1

2 , |v|, |y| < δ,
∫

|u|�1
|Bν(z, u + iv)| du � Cν∆−ν(y + v).

Lemma 3.2. Let α be real. Then we have the following.

(i) The integral

Jα(y) =
∫

Rn

∣∣∣∣∆−α

(
x + iy

i

)∣∣∣∣ dx

converges if and only if α > 2(n/r) − 1. In this case, Jα(y) = Cα∆−α+(n/r)(y),
where Cα is a constant that depends only on α.
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(ii) The function

f(z) = ∆−α

(
z + it

i

)
,

with t ∈ Ω, belongs to Ap,q
ν if and only if

ν >

(
n

r

)
− 1 and α > max

(
2(n/r) − 1

p
,

n

rp
+

ν + (n/r) − 1
q

)
.

In this case,
‖f‖q

Ap,q
ν

= Cα,p,q∆−qα+(nq/rp)+ν(t).

Proof. See [6, Lemma 3.20]. �

Theorem 3.3. Suppose that ν ∈ R and 1 � p, q < ∞. Then the following conditions
are equivalent:

(a) the operator T+ is bounded on Lp,q
ν (TΩ);

(b) the parameters satisfy γ = α + β + (n/r), α + β > −1 and

max
{

− qα +
(

n

r

)
− 1, q

(
− α +

(
n

r

)
− 1

)
−

(
n

r

)
+ 1

}

< ν < min
{

q(β + 1) +
(

n

r

)
− 1, q

(
β +

(
n

r

))
−

(
n

r

)
+ 1

}
.

Proof. The ideas of the proof are the same as those in [2,6]. Let us first prove the
sufficient condition. For f : TΩ → C, we write fy(x) = f(x + iy). Then

T+f(x + iy) = (T+f)y(x)

= dγ∆α(y)
( ∫

Ω

∫
Rn

|∆−(γ+(n/r))
y+v (x − u)|fv(u) du

)
∆β(v) dv

= dγ∆α(y)
∫

Ω

(|∆−(γ+(n/r))
y+v | ∗ fv)(x)∆β(v) dv.

Without loss of generality, we may assume that f is non-negative. By the Minkowski
inequality, the Young inequality and Lemma 3.2 (i) we obtain

‖(T+f)y‖Lp(Rn) =
( ∫

Rn

|(T+f)y(x)|p dx

)1/p

= dγ∆α(y)
( ∫

Rn

( ∫
Ω

(|∆−(γ+(n/r))
y+v | ∗ fv)(x)∆β(v) dv

)p

dx

)1/p

� dγ∆α(y)
∫

Ω

‖ |∆−(γ+(n/r))
y+v | ∗ fv‖p∆β(v) dv

� dγ∆α(y)
∫

Ω

‖∆−(γ+(n/r))
y+v ‖1‖fv‖p∆β(v) dv

= Cα

∫
Ω

∆α(y)∆−γ(y + v)‖fv‖p∆β(v) dv

= CαS(‖fv‖p)(y),
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where ‖∆−(γ+(n/r))
y+v ‖1 is given by part of Lemma 3.2 (i). The sufficient condition then

follows from Lemmas 2.4 and 2.6.
We now prove the necessary condition. We first show that if the operator T+ is bounded

on Lp,q
ν (TΩ), then the equality γ = α + β + (n/r) necessarily holds. We recall that the

determinant function is homogeneous of degree r (see [7]). For f ∈ Lp,q
ν (TΩ), we define

fR, R > 0, by fR(z) = f(Rz) for any z ∈ TΩ . The function fR belongs to Lp,q
ν (TΩ).

Using the homogeneity of the determinant function we obtain

‖fR‖q
Lp,q

ν
= R−r(ν−(n/r))−n(q/p)−n‖f‖q

Lp,q
ν

and

‖T+(fR)‖q
Lp,q

ν
= Rr(γ+(n/r))q−rαq−r(ν−(n/r))−n(q/p)−n−q(rβ+2n)‖Tf‖q

Lp,q
ν

.

It follows from the hypotheses that there exists a positive constant C such that
‖T+(fR)‖Lp,q

ν
� C‖fR‖Lp,q

ν
. This is equivalent to Rr(γ−α−β)−n‖T+f‖Lp,q

ν
� C‖f‖Lp,q

ν
for

all R > 0, which necessarily implies that γ = α+β +(n/r). The condition α+β > −1 is
naturally necessary, since otherwise the range of ν would be empty. To obtain the other
necessary conditions, we test T+ on the functions f(x + iy) = χ|x|<1(x)g(y), with g a
positive function compactly supported in the intersection of the cone with the Euclidean
ball of radius δ centred at 0. Using Lemma 3.1, it follows that, for x and y with |x| < 1

4 ,
|y| < δ, the following inequality holds:

T+f(x + iy) � C∆α(y)
∫

Ω

∆−γ(y + v)g(v)∆β(v) dv.

Then, by assumption, there exists a constant C independent of g such that

∫
y∈Ω,|y|<δ

(
∆α(y)

∫
Ω

∆−γ(y + v)g(v)∆β(v) dv

)q

∆ν−(n/r)(y) dy

� C

∫
Ω

gq(v)∆ν−(n/r)(v) dv.

By homogeneity of the kernel, we can replace the constant δ by an arbitrary positive
constant K. It follows that, for every positive function g on Ω, we have the inequality

∫
y∈Ω,|y|<K

(
∆α(y)

∫
Ω

∆−γ(y + v)g(v)∆β(v) dv

)q

∆ν−(n/r)(y) dy

� C

∫
v∈Ω,|v|<K

gq(v)∆ν−(n/r)(v) dv.

Then, by density of compactly supported functions, we have the same inequality without
any bound on the integrals. The other necessary condition of the theorem is then a
consequence of the necessary conditions in Lemmas 2.5 and 2.6 and the relation γ =
α + β + (n/r), obtained previously. This completes the proof of the theorem. �
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Corollary 3.4. Let 1 � p, q < ∞ and ν ∈ R. If γ = α + β + (n/r), α + β > −1 and

max
{

− qα +
(

n

r

)
− 1, q

(
− α +

(
n

r

)
− 1

)
−

(
n

r

)
+ 1

}

< ν < min
{

q(β + 1) +
(

n

r

)
− 1, q

(
β +

(
n

r

))
−

(
n

r

)
+ 1

}
,

then the operator Tα,β,γ is bounded on Lp,q
ν (TΩ).

We define the Berezin transform on TΩ as the operator defined on L1(TΩ) by the
pairing

〈fB̃z, B̃z〉, z ∈ TΩ ,

where B̃z = ∆n/r(Im z)B(n/r)(· , z) is the normalized reproducing kernel of A2(TΩ) (see,
for example, [11] for more on the Berezin transform).

Corollary 3.5. Let 1 � p, q < ∞. Then the Berezin transform defined on TΩ by

B(f)(z) = ∆2(n/r)(Im z)
∫

TΩ

|B3(n/r)(z, w)|f(w) dV (w), z ∈ TΩ ,

is bounded on Lp,q(TΩ , dV (z)), if and only if q > 2 − (r/n).

Note that the above corollary was proved in [8] in the setting of the light cones and
for p = q.

Corollary 3.6. Let 1 � p, q < ∞. If ν and m are real numbers such that ν + m >

(n/r) − 1, then the positive operator Q+ defined by

Q+f(z) =
∫

TΩ

|Bν+m(z, w)|f(w)∆ν−(n/r)(Im w) dV (w)

is bounded from Lp,q
ν (TΩ) to Lp,q

ν+mq(TΩ) if and only if the following conditions are sat-
isfied:

max
{

− mq +
(

n

r

)
− 1, q

(
− m +

(
n

r

)
− 1

)
−

(
n

r

)
+ 1

}

< ν < min
{

q

(
ν −

(
n

r

)
+ 1

)
+

(
n

r

)
− 1, qν −

(
n

r

)
+ 1

}
.

Proof. The operator K defined by K(f)(z) = ∆−m(Im z)f(z) is an isometric isomor-
phism of Lp,q

ν (TΩ) to Lp,q
ν+mq(TΩ). Since, for every f in Lp,q

ν (TΩ),

Q+f(z) =
∫

TΩ

|Bν+m(z, w)|∆−m(Im w)f(w)∆ν+m−(n/r)(Im w) dV (w)

= T+
0,ν+m−(n/r),ν+m(Kf)(z),

the corollary follows from Theorem 1.1. �
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Note that the above corollary in the case when r = 2 is [2, Proposition 3.5]. We recall
that P+

µ = T+
0,µ−(n/r),µ. The boundedness of P+

µ has been obtained in [4] for the case of
the light cone. The following corollary is its generalization.

Corollary 3.7. Let µ, ν ∈ R and 1 � p, q < ∞. Then P+
µ is bounded in Lp,q

ν (TΩ) if
and only if µ, ν > (n/r) − 1 and

max
{

ν − ((n/r) − 1)
µ − ((n/r) − 1)

,
ν + (n/r) − 1

µ

}
< q <

ν + (n/r) − 1
(n/r) − 1

.

Recall that the Bergman projection Pµ is defined for f ∈ L2
µ(TΩ) by

Pµf(z) =
∫

TΩ

Bµ(z, w)f(w)∆µ−n/r(Im w) dV (w),

where the Bergman kernel Bµ is given by (1.2). Pµf(z) defines a holomorphic function
in TΩ whenever the above integral is absolutely convergent. This is also the case if we
consider Pµf(z) with f ∈ Lp,q

ν (TΩ). Using the notation

q̃ν,p =
ν + (n/r) − 1
((n/rp′) − 1)+

with q̃ν,p = ∞ if n/r � p′, we have the following proposition (see also [5, Lemma 4.23]
for the case µ = ν).

Proposition 3.8. Let µ, ν ∈ R, and 1 � p, q < ∞. If Pµ extends as a bounded
operator on Lp,q

ν (TΩ), then Bµ(z, ie
¯
) ∈ Lp,q

ν and ∆µ−ν(Im z)Bµ(z, ie
¯
) ∈ Lp′,q′

ν . The latter
is equivalent to the following conditions: ν > (n/r)−1 and p((n/r)−1−µ) < 2(n/r)−1 <

p((n/r) + µ),

max
{

ν − (n/r) + 1
(µ − (n/r) + 1)+

,
ν + (n/r) − 1
(µ + (n/rp′))+

}
< q < q̃ν,p.

Proof. Let P ∗
µ be the adjoint operator of Pµ with respect to the pairing 〈· , ·〉ν . We

have

P ∗
µf(z) = ∆µ−ν(Im z)

∫
TΩ

Bµ(z, w)f(w)∆ν−n/r(Im w) dV (w), f ∈ Lp′,q′

ν .

Testing Pµ with

f1(z) = χB1(ie¯
)(z)∆−µ+(n/r)(Im z)

and P ∗
µ with

f2(z) = χB1(ie¯
)(z)∆−ν+(n/r)(Im z),

where B1(ie¯
) is the Euclidean ball of radius 1 centred at ie

¯
, it follows from the mean-

value property that Pµf1(z) = CBµ(z, ie
¯
) and P ∗

µf2(z) = C∆µ−ν(Im z)Bµ(z, ie
¯
). Conse-

quently, we have Bµ(z, ie
¯
) ∈ Lp,q

ν and ∆µ−ν(Im z)Bµ(z, ie
¯
) ∈ Lp′,q′

ν . Thus, by Lemma 3.2

https://doi.org/10.1017/S0013091506001593 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506001593


Bergman-type operators in tubular domains over symmetric cones 541

this is equivalent to ν + (µ − ν)q′ > (n/r) − 1, ν > (n/r) − 1,

µ +
(

n

r

)
>

(
2
(

n

r

)
− 1

)
max

(
1
p′ ,

1
p

)

and

µ +
(

n

r

)
> max

{
n

rp′ +
ν + (µ − ν)q′ + (n/r) − 1

q′ ,
n

rp
+

ν + (n/r) − 1
q

}
.

That is,

ν >

(
n

r

)
− 1, µ +

(
n

r

)
>

(
2
(

n

r

)
− 1

)
max

(
1
p′ ,

1
p

)

and

max
{

ν − (n/r) + 1
(µ − (n/r) + 1)+

,
ν + (n/r) − 1
(µ + (n/rp′))+

}
< q < q̃ν,p.

�

Theorem 3.9. The operator T+ is bounded on L∞(TΩ) if and only if α > (n/r) − 1,
β > −1 and γ = α + β + (n/r).

Proof. We first prove the sufficiency. For any f ∈ L∞(TΩ), we have

|T+f(x + iy)| � ∆α(y)
∫

TΩ

|Bγ(x + iy, u + iv)| |f(u + iv)|∆β(v) du dv

� ‖f‖∞∆α(y)
∫

TΩ

∣∣∣∣∆−(γ+(n/r))
(

x − u + i(y + v)
i

)∣∣∣∣
× ∆(β+(n/r))−(n/r)(v) du dv

� C‖f‖∞∆α−γ+β+(n/r)(y)

= C‖f‖∞,

where the third inequality follows from Lemma 3.2 under the hypotheses.
We now prove the necessary condition. First, we show that if T+ is bounded on

L∞(TΩ), then the equality γ = α + β + (n/r) holds. For f ∈ L∞(TΩ), we define the
function fR, R > 0, by fR(z) = f(Rz) for any z ∈ TΩ . The function fR belongs to
L∞(TΩ) and we have ‖fR‖∞ � ‖f‖∞. Using the homogeneity of the determinant func-
tion we obtain

‖T+(fR)‖∞ = Rr(γ+(n/r))−rα−rβ−2n‖T+f‖∞.

It follows from the hypotheses that there exists a positive constant C such that
‖T+(fR)‖∞ � C‖fR‖∞. This implies that Rr(γ+(n/r))−rα−rβ−2n‖T+f‖∞ � C‖f‖∞ for
all R > 0, which necessarily implies that γ = α+β+(n/r). Now, we test T+ on the func-
tion f(x + iy) = χ|x|<1g(y), where g is a positive function compactly supported on the
intersection of the cone with the Euclidean ball of radius δ centred at 0. From Lemma 3.1,
we have that, for x, y with |x| < 1

4 , |y| < δ, the following inequality holds:

∆α(y)
∫

v∈Ω,|v|<δ

∆−γ(y + v)g(v)∆β(v) dv � CT+f(x + iy) � C‖f‖∞.
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We already know that by homogeneity of the kernel we can replace δ by an arbitrary
positive constant K. Thus, by density of compactly supported functions, we can just
write the left-hand side of the above inequality without any bound on the integral.
Taking g(v) = 1, it follows that we should have

∆α(y)
∫

Ω

∆−γ(y + v)∆β(v) dv < ∞.

It follows easily from Lemma 2.2 that we should have β > −1 and −γ + β < −2(n/r) +
1. Thus, using the equality previously obtained, we deduce that α > (n/r) − 1. This
completes the proof of the theorem. �

Although the conditions for the boundedness of T+ are generally only sufficient for
the boundedness of T , in the case of L∞(TΩ) they are also necessary, as we show in the
next result.

Theorem 3.10. The operator T is bounded on L∞(TΩ) if and only if α > (n/r) − 1,
β > −1 and γ = α + β + (n/r).

Proof. We only have to show the necessity. Let T be bounded on L∞(TΩ). The
condition γ = α + β + (n/r) follows from the proof of Theorem 3.9. Let w = ξ + it ∈ TΩ

be fixed and consider the function fw given by

fw(x + iy) =
|Bγ(ξ + it, x + iy)|
Bγ(ξ + it, x + iy)

χ|x|<1g(y),

where g is a positive function compactly supported on the intersection of the cone with
the Euclidean ball of radius δ centred at 0. Testing T with fw and taking x + iy = w

yields (using the same reasoning as in the proof of Theorem 3.9) that we should have
β > −1 and −γ + β < −2(n/r) + 1 and consequently that α > (n/r) − 1. �

4. The topological dual of Ap,q
ν (TΩ), 1 < q < qν

We recall the following notation:

q̃ν,p =
ν + (n/r) − 1
((n/rp′) − 1)+

, qν,p = min{p, p′}qν and qν = 1 +
ν

(n/r) − 1

with q̃ν,p = ∞, if n/r � p′. It is clear that 1 < qν < qν,p < q̃ν,p. By the density of the
intersection Ap,q

ν ∩ A2
µ in Ap,q

ν , we have the following reproducing formula for all α >

(n/r) − 1 and f ∈ Ap,q
ν with 1 � p < ∞ and 1 � q < q̃ν,p:

f(z) =
∫

TΩ

Bα(z, w)f(w)∆α−(n/r)(Im w) dV (w), z ∈ TΩ . (4.1)

The following theorem characterizes the topological dual space of the Bergman space
Ap,q

ν for some values of p, q and ν for which the Bergman projection is not necessarily
bounded.
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Theorem 4.1. Let ν > (n/r) − 1 be real, 1 < p < ∞ and 1 < q < qν . If µ is a
sufficiently large real number so that µ > (n/r)−1 and 1 < q′ < qµ, then the topological
dual space (Ap,q

ν )∗ of the Bergman space Ap,q
ν identifies with Ap′,q′

µ under the integral
pairing

〈f, g〉α =
∫

TΩ

f(w)g(w)∆α−(n/r)(Im w) dV (w),

where
α =

ν

q
+

µ

q′ ,
1
p

+
1
p′ =

1
q

+
1
q′ = 1.

Proof. We have the equality
∫

TΩ

f(z)g(z)∆α−(n/r)(Im z) dV (z)

=
∫

TΩ

(∆(ν−(n/r))/q(Im z)f(z))(∆(µ−(n/r))/q′
(Im z)g(z)) dV (z).

Since, for every f ∈ Ap,q
ν , the function ∆(ν−(n/r))/q(Im z)f(z) is in Lp,q(TΩ , dz) and, for

every g ∈ Ap′,q′

µ , the function ∆(µ−(n/r))/q′
(Im z)g(z) is in Lp′,q′

(TΩ , dz), it follows that
the given form is well defined and every g ∈ Ap′,q′

µ defines an element of (Ap,q
ν )∗ given by

the above integral pairing. The injectivity of the mapping g ∈ Ap′,q′

µ 
→ 〈· , g〉α follows by
testing with f = Bα(· , w) (which belongs to Ap,q

ν by Lemma 3.2 since α > (n/r) − 1 and
q > q′

µ > (µ + (n/r) − 1)/(µ + (n/rp′))) and using the reproducing formula (4.1).
Now let us show that every element M of (Ap,q

ν )∗ can be represented by an element
g of Ap′,q′

µ . By the Hahn–Banach theorem, there exists a function h ∈ Lp′,q′

ν satisfying
‖h‖

Lp′,q′
ν

= ‖M‖ such that, for any f ∈ Ap,q
ν ,

M(f) =
∫

TΩ

F (z)h(z)∆ν−(n/r)(Im z) dV (z).

Let us set k(z) = ∆(ν−µ)/q′
(Im z)h(z). Then k ∈ Lp′,q′

µ and we have
∫

TΩ

f(z)h(z)∆ν−(n/r)(Im z) dV (z) =
∫

TΩ

f(z)k(z)∆α−(n/r)(Im z) dV (z).

It is easy to see that

µ < min
{

q′
(

α −
(

n

r

)
+ 1

)
+

(
n

r

)
− 1, q′α −

(
n

r

)
+ 1

}

and

ν < min
{

q

(
α −

(
n

r

)
+ 1

)
+

(
n

r

)
− 1, qα −

(
n

r

)
+ 1

}
.

Thus, Pα is bounded on Lp′,q′

µ and on Lp,q
ν . If we set g = Pα(k), g belongs to Ap′,q′

µ and
we clearly have

M(f) = 〈f, k〉α = 〈Pαf, k〉α = 〈f, Pαk〉α = 〈f, g〉α.
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We have used the fact that, since Pα is bounded on Lp,q
ν , it reproduces functions of Ap,q

ν .
The proof is complete. �
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4. D. Békollé, A. Bonami, M. M. Peloso and F. Ricci, Boundedness of weighted
Bergman projections on tube domains over light cones, Math. Z. 237 (2001), 31–59.
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