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Abstract 

Data-driven design is believed to be empowered by machine learning (ML) with advanced pattern 

classification and prediction. However, research on how ML can be used to support automotive human-

machine interface (HMI) design is lacking. We presented a case study of truck HMI design to understand the 

current data use and expectations of ML in the design process. Findings show decentralized data practices, 

the role of expertise in decision-making, and the envisioned reactive use of ML, where we underscore the 

implications for advancing human-ML collaboration in designing future truck HMI systems. 
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1. Introduction 
Data-driven design has been a common practice of using data to support design decision-making, where 

data is collected and analyzed to unveil user behavior and evaluate design solutions (Bertoni, 2020). 

Machine learning (ML) empowers data-driven design with advanced pattern classification and 

prediction based on historical data (Wang et al., 2022). A growing body of design research has applied 

ML to automate mundane tasks and predict user experience by quantitative persona creation (Salminen 

et al., 2020), design generation (Gajjar et al., 2021), and automated product evaluation (Wang and Liu, 

2021), primarily focusing on the context of software applications. 

Despite the increasing interest in supporting the design process with ML, there is a lack of research on 

how ML can be used to support interaction design in the automotive context. In this paper, we focus on 

truck human-machine interface (HMI) design, which refers to the design of in-vehicle interaction 

between drivers and trucks. The in-vehicle interaction encompasses the interaction with both digital and 

physical interfaces through multimodalities such as vision, auditory, and haptics. Rooted in hardware, 

commercial trucks have progressively incorporated infotainment systems and other in-cab systems that 

support rich functionalities such as voice assistants, resulting in a blended experience of digital and 

physical interaction. Typically, truck HMI design faces the challenges of handling unpredictable internal 

factors (e.g.: driver experience level) and external factors (e.g.: lighting conditions) that impact how 

drivers interact with trucks (François et al., 2017). Although ML has the untapped potential to enhance 

the understanding of driver journeys, ML technologies have primarily been applied for tasks such as 

driver assistance, predictive maintenance, and autonomous driving (Theissler et al., 2021; Vaughan and 

Wallach, 2021), highlighting the knowledge gap regarding ML-empowered truck HMI system design.  

In this paper, we explore today's data practices and the expected use of ML in the truck HMI design 

domain. ML models seldom reach industry practice due to a lack of context customization (Lu et al., 

2022). Therefore we positioned our research in the context of one large commercial truck manufacturing 

organization to gain in-depth knowledge of how data was used in the design process and identify 
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opportunities and design implications of how ML could contribute. We conducted semi-structured 

interviews with eight experts from different roles in the truck HMI system design process. Our work 

contributes to (1) unpacking how and why human experts use data to support decision-making in the 

context of truck HMI system design, (2) highlighting experts' expectations and design opportunities of 

how ML could be used in the truck HMI design for future research and industry applications, and (3) 

potentially informing design implications of ML-empowered design tools and organization-wise 

preparations for data infrastructure and workflow renovation to empower the design process with ML.  

2. Related work 

2.1. Data-driven design in the era of ML 

ML is defined as a set of methods that "can automatically detect patterns in data […] to predict future 

data or to perform other kinds of decision-making under uncertainty" (Murphy, 2012). The generative 

and predictive capabilities of ML are believed to empower data-driven design with automated design 

generation and predictive analytics that uncover user behavior patterns and inconsistency (Lu et al., 

2022). Facing the identified opportunities, an increasing number of studies have focused on developing 

ML-empowered design tools. Much of the research in this field was devoted to evaluating the cognitive, 

affectional, and behavioral aspects of user experience, such as cognitive workload and usability analysis 

(Bozkir et al., 2019; Fan et al., 2020). Another trending research topic is automated design generation 

where researchers have engaged deep learning neural networks and object detection algorithms to 

generate UI wireframes for a given UI design pattern (Gajjar et al., 2021), translate text description to 

UI mock-ups (Huang et al., 2021).  

However, there still seems to be a gap between the research impact of ML-empowered design tools and 

industry practices (Jiang et al., 2022). Challenges of adapting ML-based tools not only exist in the costly 

implementation and ethical issues of data collection, but also the absence of a sociotechnical perspective 

that considers the context of human designers supported by ML. Current AI/ML-based research is more 

techno-centric (Ehsan et al., 2021), raising concerns about its potential negative effects (Shneiderman, 

2020). Current ML models rarely go beyond graphic interface assistance, and even these automatic 

interface generation tools require excessive effort to customize the ML-generated non-context-specific 

results (Lu et al., 2022). Situated in the context of truck HMI design, our work aims to develop a 

grounded understanding of how industrial practitioners currently work with users, data, and technology, 

and then identify where/how ML-empowered tools can potentially contribute.  

2.2. Data-driven design in the automotive industry 

The digital transformation of automobiles provides useful insights for the design of truck HMI systems. 

In both automobiles and commercial trucks, product design involves long, complex development cycles 

encompassing safety regulations and manufacturing constraints. The automotive industry’s roots in 

hardware bring challenges (Ebel et al., 2021) of data availability: (1) automotive software platforms not 

designed for data collection, (2) data separated among multiple subsystems and external suppliers, and 

(3) data protection regulations.  

Despite these challenges, designers in the automotive industry have expressed particular interest towards 

integrating data into the design process (Ebel et al., 2021). User interaction data could decrease the 

impact of conjecture and guesswork in the consumer vehicle design process (Ebel et al., 2020) through 

data-driven personas, content-dependent design evaluations, and user flow visualizations (Ebel et al., 

2021).  

The value of ML In extracting valuable insights from data to support decision-making in the automotive 

industry has been recognized but practiced to a limited extent. Yadav and Goel proposed a mathematical 

framework to relate customer satisfaction level to component-level product requirements, such as 

interior quietness (Yadav and Goel, 2008). Another example is an ML-based vehicle silhouette design 

system that auto-generated the vehicle design based on user selection (Usama et al., 2021). However, 

most research related to AI/ML in automobiles has focused on integrating AI/ML in vehicles: 

autonomous driving (Yurtsever et al., 2020), driver assistance  (Joshi et al., 2019), and predictive 
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maintenance (Theissler et al., 2021). There is scant attention on developing ML-empowered tools for 

automotive design practitioners, and exclusion of the socio-technical aspect of where and how the tool 

could fit in or change the vehicle design process. This paper is intended to contribute to this gap by 

describing a user study grounded in design experts’ real-world practices, understanding what is the 

current status of data usage in truck HMI design, and identifying the underlying needs, opportunities, 

and design implications for ML-empowered design tools. 

3. Methodology 

3.1. Study procedure 

This case study focused on the design of HMI systems at one large commercial truck manufacturing 

organization with over 10,000 employees globally. We conducted in-depth semi-structured interviews 

with eight industrial experts, 87.5% of whom have more than 7 years of experience in truck HMI design. 

Participants were recruited by direct contact and snowball sampling and the sample size followed the 

principle of data saturation (Guest et al., 2020; Parker et al., 2019). Participants have been anonymized 

and are referred to by ID (P1-P8). Participants' job roles are product design (P1, P3), user experience 

design (P2, P5), engineering (P4, P8), strategy management (P6-P7).  

The interview was structured into three parts: 1) role and experience, 2) data usage in the current product 

design process, and 3) future expectations of ML-empowered product design. The first part gathered 

information on the participant’s role and daily routine. In the second part, the researchers introduced an 

empty canvas which divided the product design process into several phases. The purpose of the canvas 

was to ground the interview in real-world practice, collecting what and how data are used in different 

stages of the truck HMI design process. Each participant was asked to pick a released product function 

as an example. The researcher and participant walked through the design process of this selected 

function together, recalling lived experiences and filling the canvas accordingly. In the third phase, 

participants shared reflections and future expectations of data and ML-empowered product design. The 

interviews were conducted online, video recorded, and transcribed. Each interview took 60-75 minutes. 

3.2. Qualitative analysis 

 
Figure 1. An illustration of codes and categories from the thematic analysis 

A thematic analysis of the interview transcript was done, following the process of open coding, axial 

coding, and selective coding with backward iterations when necessary (Clarke and Braun, 2017). Firstly, 

two authors tagged segments of transcriptions related to data usage with a descriptive code name using 
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the tool Atlas.ti. The purpose was to identify any piece of valuable information. Secondly, one author 

reviewed the highlighted codes and notations, merging connected codes and constructing categories. 

Thirdly, the authors reviewed the codes and categories collaboratively, and built core categories and 

propositions by grouping previous categories. Figure 1 illustrates the developed core categories and 

codes, which reflect today's way of data use and decision-making, and future expectations of ML 

permeated by characteristics of the truck HMI context. 

4. Findings 
The study investigates data usage and future expectations of ML situated in the truck HMI design 

context, taking an organization as a case study. During the interviews, we identified two characteristics 

of the context underlying current use and future use of data. The first characteristic is hardware-

centricity, featuring a lengthy verification process in pre-production vehicles, high manufacturing costs, 

long feedback loops, and dependency on previous hardware versions, as exemplified by P5: “Let’s say 

we wanted a new digital instrument cluster. You can change the software and graphics. But if we wanted 

a bigger cluster, then it’s a big change.” The second characteristic is the siloed approach to data 

collection and use. While truck functionalities are distributed and carried out by multi-stakeholder 

teams, each team conducts its own data collection and use, as opposed to having a centralized process 

and repository of data, making it harder to recycle data and "gain a holistic view of truck usage" (P6). 

The two characteristics of hardware-centricity and siloed approach to data collection and use permeate 

the key themes that emerged during the interview analysis and inform the organization’s trajectory of 

integrating advanced data collection and use in the truck HMI design process. In the sections below, we 

present key themes of data practices and identified opportunities for ML. 

4.1. Decentralized practices inform data use 

Data collection and use was centered on specific projects and concerns of specific job roles within the 

company, following unspoken rules of who collects and uses what type of data. During the qualitative 

analysis of the interviews, four different subsets of data emerged, with each subset connected to a 

particular job role. Product data, such function specifications and context of use, are collected and used 

by product designers to determine if a function fulfills the intended requirements or behaves as expected. 

This data may also be used by UX designers, engineers, and strategy managers. User data such as 

understandability, usability, effectiveness, satisfaction and function usage are the primary focus of UX 

designers, but are also relevant to product designers and strategy managers. Technical data such as 

speed, acceleration, steering wheel angle and pedal pressure are provided by sensors in the truck and is 

acquired by engineers. This type of data may also be needed by product designers and strategy managers. 

The final data type, market data such as return on investments is of relevance primarily to strategy 

managers.  

Decentralized data practices lead to the division of resources for collecting and processing data, and 

dependence on other stakeholders to provide necessary data. On the other hand, decentralization allowed 

relevant stakeholders to directly engage in data collection and use, leading to bespoke and contextually 

relevant data-driven insights. Also, the engagement in acquiring data was considered a valuable learning 

process by the participants as it enhanced the understanding of the product maturity.  

4.2. Data to support high-stakes decisions 

Another recurring theme we discovered is that participants sought a sense of confirmation from data to 

support the decision-making process, as a counterbalance to typical long cycles of collecting user 

feedback in truck HMI design. There is a tension between participants’ desired level of caution for 

decision-making and the restricted time frame. P6 expressed his hesitation about function removal when 

having to wait approximately nine months before acquiring feedback. P8 noted that the irreversibility 

of hardware further increased the stress of decision-making. With the desire to avoid mistakes, P6 had 

to endure uncertainty when lacking confidence in a decision and would like to rely on data for support: 

“I would be much more comfortable if we had more numbers from vehicles on it.” The same needs were 

expressed by other participants when they referred to data as “structured” and “objective” information 
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that confirmed existing assumptions and provided more confidence in decision-making. The perceived 

objectivity of data indicated participants’ strong need for factual support to cope with the anxiety of 

uncertainty in the design process. 

4.3. Human expertise and collaboration are key in decision making 

Human expertise enabled balancing user needs and practical constraints, assessing product feedback, 

and making decisions in the design process. This expertise was cultivated by substantial hands-on 

experience that allowed participants to “jump into the users’ clothes” (P1). Learning by doing also 

helped P2 gain more knowledge of product strategy along the design process. Besides, participants 

related their personal experience to product design to feel closer to user needs. One common way was 

to experience the truck first-hand to develop their own interpretation of functionalities (P1, P3, P5). 

Another way was to work with a subject closer to one’s daily life. P1 felt designing the sound system 

he used every day in his own car was useful, since he “could relate to the end users in a better way.” 

Based on human expertise, participants could evaluate the importance of user feedback by sifting 

through the data and ditching the noise. Expertise enables designers to down-prioritize some user 

feedback regarding less severe issues for the benefit of the overall project.  

Gut feeling, cultivated by years of experience, could be the deciding factor in tough decisions. P6 noted 

that decision-making is “not a precise science,”; with all the factual data presented, “it still requires 

some gut feeling and [previous] experiences.” Due to the siloed way of data collection and use, truck 

HMI experts became the critical carriers of specialized knowledge and conveyors of experience. 

Human collaboration is another critical component in decision-making. Human collaboration allowed 

participants to align “the expectation of the project” (P6), "limitations on design solutions from different 

perspective" (P3), and “pros and cons of different ideas” (P7) to avoid rushing into a reckless decision.  

Three aspects of productive collaboration that required handling with sensitivity were mentioned by the 

participants. Firstly, it was crucial to maintain a mutual understanding of the subject between the 

stakeholders from different roles and backgrounds. P2 recalled an instance where all stakeholders agreed 

on the design but a missed detail was implemented in an unexpected way due to different interpretations. 

Secondly, it was crucial to involve stakeholders from each role to gain a comprehensive view when 

making a decision, as each stakeholder represents the knowledge of their domain. Finally, participants 

treated the task division delicately to avoid overstepping the boundaries of responsibility in human 

collaboration. For example, P2 noted “I would make the proposal on a really high level, not to take 

anybody else’s role.” 

4.4. Expectations of data with ML 

In the final phase of the interviews, participants envisioned how ML can help deliver value through a 

deeper understanding of data. 

4.4.1. ML for analysis of function usage in the wild  

As user needs were currently prioritized based on the criticality of the need, required investment, and 

estimated values, participants envisioned ML to complement a user-centered perspective on user needs 

prioritization. The desire behind this expectation was a concern of devoting resources to develop less-

used functions and a hope that ML would help manage priorities as project parameters shifted during 

the design work. P1 pictured ML to generate a priority list rated according to what was important to the 

users, an opinion also reflected by P4. 

Participants stated that continuous data gathered from trucks on the road can help understand function 

usage and driver intentions. Participants preferred “number-based” (P1) and “measured data, like 

logging speed” because it was perceived as “structured data” and easier to process. The need for 

continuous data came from participants’ desire to inform design work by learning “how users actually 

use our functions and sub-functions” (P3) which they currently did not have access to. Understanding 

the motivation behind function use was of equal significance to the participants, whether the less-used 

function stemmed from a lack of usefulness or misinterpretation of user needs. 

Participants expected ML-supported understanding of function usage and driver intention to enable 

removing obsolete or redundant functions inherited from previous generations of trucks. Removal of 
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functionality was especially challenging due to the concern of users' negative reactions (P2). P6 pointed 

out the trend in the automotive industry moving towards “more and more automated functions." P2 

believed the insights from continuous data could reveal function usage from a larger population of 

vehicles, building up participants’ confidence to remove or automate redundant functions, eventually, 

designing more intuitive, customized, and context-aware functions. 

4.4.2. ML for accelerating concept evaluation  

Six of the 8 participants named the concept phase as the top process they wanted to change with ML. 

The concept phase is the stage that decides the direction for future design and implementation, including 

activities such as concept evaluation, which was constantly limited by time and resource constraints. 

Exploring the concept phase sufficiently requires accelerated efficiency from ideation to evaluation.  

A first expectation for ML was having evaluative predictions on the cost of developing and deploying 

concepts, as cost impacts which concepts get to be developed. For instance, P7 expected ML to predict 

cost and requirements based on the concepts selected by the design team. P8 envisioned the ML tools 

as helpful support for early-on feasibility estimation that is “quick to judge the difficulty or even generate 

early-on code to speed up or make it easier to do.” 

A second expectation was for ML to augment the concept evaluation with “more data and speed” (P6) 

and "more frequency" (P5). P6 stated that a faster pace than the usual six-plus months may keep projects 

fresh in people’s minds and thus keep stakeholders more engaged in projects. 

Finally, participants envisioned that insights generated by ML from real driver usage could challenge 

assumptions and verify design decisions. P3 would like to be “freer and more flexible to implement 

alternative solutions”. P6 would base decisions on “quicker testing and quicker loops to get quantitative 

data from different scenarios and applications”. With a background in design, P7 considered data as the 

most compelling evidence to substantiate a designer's perspective on user experience.  

5. Discussion: Implications for use of ML in the design of HMI systems 
This research found key gaps between expectations regarding the contribution of ML and the current 

use of data in the truck HMI design process. Participants envisioned ML to provide quantified insights 

to justify design decisions and drive design improvements. However, the contextual factors of 

decentralized data practices and hardware-centricity raise significant challenges for the implementation 

of ML practices. Also, how ML aligns with a design process that highly values human expertise 

necessitates consideration, which we will discuss in the following section. 

5.1. Proactive versus reactive use of data 

Our study presents truck HMI design-specific expectations of data and ML. Besides uncovering user 

behavior mentioned by previous work (Gorkovenko et al., 2020), the truck HMI context places more 

emphasis on ML generating quantified and evidence-based insights that enable evaluation and 

prioritization activities to aid experts in high-stakes design decision-making. 

Our findings show a pattern of reactive ML usage, to converge existing design alternatives to a specific 

decision through evaluation and prioritization, rather than to diverge the design space by identifying 

new design opportunities proactively. We transferred the proactive and reactive use of ML from a 

technical study in data mining: proactive ML prediction monitors changes actively, and a reactive 

prediction adapts to changes after detecting they took place (Yang et al., 2005). We propose that the 

reactive use of ML is related to: (1) participants use of data in the design process for its perceived 

objectivity, in response to an increasing need to convince their colleagues of user research findings with 

quantified results (Chromik et al., 2020); (2) the organizational tradition of decentralized data practices 

which made data an important but rare resource that participants consult mostly for critical decisions 

rather than for open exploration; (3) current industry applications of ML in predictive maintenance 

(Theissler et al., 2021) reinforcing the perceived affordance of ML towards pattern recognition and 

prediction. 

To introduce ML as an active collaborator, instead of as supportive material, requires a shift in 

participants’ mindset of data capabilities, organizational efforts in building data infrastructure, and 
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diverse demonstrators of ML use cases. Although we found that participants saw numbers as unbiased 

truth, data itself is merely a value, which needs to be conceptualized in specific contexts (Feinberg, 

2017). Our findings indicate the inherent value of designers engaging in data collection as a design 

activity, deciding what to collect and which scale to use, which helps designers to understand the 

intricacies of data nature, to work with instead of against the inevitable flexibility of data, and to 

conceptualize the data to suit specific objectives. 

5.2. Keeping the organization in the loop 

The decentralized data practices found in this study stress the need to prepare an organization for ML 

in terms of data infrastructure, ML customization, the situated task, and the affected organizational 

process. A successful ML integration needs the organization's practice and ML to be continuously 

aligned and co-evolved, keeping the organization in the loop (Herrmann and Pfeiffer, 2023). 

As for data infrastructure, there exists a delicate balance between decentralized and centralized data 

practices. While centralized data practices bring the benefits of efficiency and unified data format, our 

findings suggest that decentralized data practices provide more context specificity, scalability, and local 

autonomy. With the benefits of centralized data practices widely accepted, we think it is important to 

keep a critical mind on two aspects. The first one is how to balance the varied perspectives and 

expectations of multiple stakeholders as participants showed varied interests in subsets of data. The 

second aspect is that the design of centralized data infrastructure needs to calibrate the intended level of 

specification of data. The more objective and specific the data is, the less room and ambiguity is left for 

the reconceptualization of the data (Feinberg, 2017). To fulfill present and future needs, the collected 

data should either cover enough details to enable diverse data use, or be bundled with sufficient 

contextual information to assist different practitioners in forming interpretations based on their expertise 

and their purpose. 

5.3. Advancing human-ML collaboration in decision-making 

Our findings indicate that decision-making involves the interplay of data, human expertise, and human 

collaboration. Human experts set objectives and assess the reliability of data inputs based on personal 

expertise and collective intelligence. Therefore, we highlight the need to empower human experts’ 

competence and autonomy in human-ML collaboration, considering the facets identified as requiring 

sensitive handling within human collaboration. 

5.3.1. Design for mutual understanding 

As participants noted mutual understanding among stakeholders is important to streamline interpersonal 

communication, maintaining a mutual understanding of ML among stakeholders is of equal importance. 

ML adoption might elevate the complexity since the channels of information exchange will be 

multiplied, exposing more risk of misinformation when interpreting and disseminating the insights from 

ML. 

Facilitating effective communication between humans and ML requires efforts from both sides. On the 

one hand, designers need to acquire knowledge of ML, including the potential, complexity and the 

power imbalance embedded in ML (Mohamed et al., 2020), to avoid excessive trust in automation. On 

the other hand, the design of ML-empowered tools needs to open the black box by bringing in 

transparency and explainability, which supports designers in constructing their own sense-making and 

cultivating trust in. More research is needed to understand the context-specific dimensions of ML system 

transparency and explainabililty.  

5.3.2. Design for human autonomy 

As task division is treated as a delicate process mentioned in the interviews, it is important to consider 

how integrating ML will impact existing power dynamics and human autonomy. Our findings on the 

irreplaceability of human expertise in the truck HMI design process highlight the significance of 

boosting human autonomy in human-ML collaboration. The call for a multi-faceted way to address 

autonomy has long persisted (Güldenpfennig et al., 2019), viewing human autonomy as a context-
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dependent concept. In the context of truck HMI design, we realize participants’ autonomy is partially 

reflected in one’s freedom to explore and the power to decide. Hence, an ML-empowered tool should 

offer sufficient interactivity where designers could engage in exploring different settings, controlling 

the operation process, and tuning the generated results of ML. Future research could also investigate 

how the mentioned facets nuance the perceived human autonomy and what other facets underpin human 

autonomy in the context of truck HMI design. 

5.4. Practical design implications 

Our findings present a decentralized data practice where human expertise drives how data is collected, 

assessed, and interpreted to assist the decision-making process when designing truck HMI systems, and 

highlight experts' expectations of ML. For future work on integrating ML into the truck HMI design 

process, we stressed the following practical design implications to consider the social-technical context 

and avoid disempowering human experts:  

• Importance of context: Integrating ML into the design process requires a highly contextualized 

understanding of designers' current way of working and the expected human-ML relationship. 

• Organization-in-the-loop: It is critical to prepare an organization for ML and customize ML so 

that the organizational practice and ML could co-evolve. 

• Role-related customization: Our research found a role-related interest in subsets of data, which 

potentially suggests a role-related preference for ML-generated output. 

• Human autonomy: Due to human expertise's dominant role in truck HMI design, ML should be 

designed to enhance human autonomy to maintain the existing power dynamics and advance 

human-ML collaboration. 

• Transparency & explainability: ML with transparency and explainability could help industrial 

experts understand the capabilities and complexities of ML, assess and form one's own 

interpretations of ML-generated insights to avoid excessive reliance on automation. 

5.5. Limitations & future work 

Our study provides a backdrop for an important future cross-disciplinary dialogue concerning designing 

ML-empowered tools to support the truck HMI design process. This study has provided insights into 

the use of ML in design work within the specific context of truck HMI design. We acknowledge the 

limitations of our study. The participant pool was limited and consisted of male participants, not by 

design but by availability of participants. Although the interview results indicated thematic saturation 

(Guest et al., 2020), a larger sample may have introduced more diversity into the findings. This study is 

purposefully situated in the traditions and organizational structure of one company to allow a deep 

investigation of a single context instead of the production of more abstract yet more generalized 

principles. Applying the study's design implications in other contexts will therefore require further work 

to examine the particularities of other contexts. Moving forward, co-design activities with industrial 

practitioners in truck HMI design from algorithmic creation to concept design can further tailor ML 

applications to specific industry needs. Moreover, future research could explore how to conceptualize 

ML explainability and human autonomy and how these concepts influence human-ML team 

performance in the context of truck HMI design. There is a need for a social-technical perspective on 

ML adoption, including data infrastructure, ML-integrated organizational workflow, and the 

maintenance of ML. 

6. Conclusion 
Data use is fundamental in truck HMI systems design, and ML is reshaping its impact. This paper 

presents current data use practices and future ML use expectations of eight experts in truck HMI system 

design. Findings indicate that current data use practices are informed by hardware-centricity and 

decentralized, context-specific tasks that prioritize human expertise and cast data as support material. 

ML expectations center on reactive uses such as evaluation tasks, information on user behavioral 

patterns in the wild, and decision support, necessitating transparent and explainable ML technologies 

that are context-dependent on the existing work dynamics and practices of the truck HMI design process. 
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Future work needs to encompass diverse and broader perspectives, including exploring proactive use of 

data through ML, and a closer look into necessary knowledge for Human-ML design collaboration. As 

we advance the capabilities of ML, it is fundamental to consider the social context of the application 

domain to effectively empower humans with relevant capabilities that boost the design process of 

commercial mobility technologies. 
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