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Glucose promotes controlled processing: Matching, maximizing,
and root beer

Anthony J. McMahon and Matthew H. Scheel∗
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Abstract

Participants drank either regular root beer or sugar-free diet root beer before working on a probability-learning task
in which they tried to predict which of two events would occur on each of 200 trials. One event (E1) randomly occurred
on 140 trials, the other (E2) on 60. In each of the last two blocks of 50 trials, the regular group matched prediction and
event frequencies. In contrast, the diet group predicted E1 more often in each of these blocks. After the task, participants
were asked to write down rules they used for responding. Blind ratings of rule complexity were inversely related to E1
predictions in the final 50 trials. Participants also took longer to advance after incorrect predictions and before predicting
E2, reflecting time for revising and consulting rules. These results support the hypothesis that an effortful controlled
process of normative rule-generation produces matching in probability-learning experiments, and that this process is a
function of glucose availability.
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1 Introduction
In two-choice probability learning (PL) experiments, one
event (E1) has a better chance of occurring than the other
(E2), and event likelihoods are independent of responses.
A participant’s task is to predict which event will oc-
cur on each trial. Although participants could maximize
hits by exclusively predicting E1, they tend to approxi-
mately match prediction frequencies with outcome prob-
abilities for many trials (Fantino & Esfandiari, 2002). For
example, if E1 occurs on 70% of trials and E2 occurs
on the other 30% of trials, people usually predict E1 on
about 70% of their choices for hundreds of trials (Gard-
ner, 1958). This probability-matching (PM) behavior is
suboptimal because it produces hits on only 58% of trials
(.3×.3+.7×.7) instead of the maximal 70% hit rate from
always predicting E1.

1.1 Explaining probability-matching
Kahneman (2003) noted that a two-systems view of de-
cision making has become widely accepted among cog-
nitive psychologists. The first, the automatic process-
ing system, relies on associative learning, intuition, and
heuristics; while, the second, the controlled processing
system, relies on deliberate consideration (Kahneman,
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2003; Shiffrin & Schneider, 1977; Sloman, 1996). In
PL, we might expect that automatic processing would
produce maximization, because predicting the most fre-
quent outcome produces the highest rate of reinforcement
(Herrnstein & Loveland, 1975). Controlled processing, in
the form of normative rule generation and testing, should
produce PM, because rules must agree with outcome fre-
quencies to be plausible (Fantino & Esfandiari, 2002;
Wolford et al., 2000).

Early evidence for the hypothesis that PM is a product
of rule-generation came from Yellott (1969). In the first
phase of Yellott’s study, participants probability-matched
when E1 occurred on 80% of trials. In the second phase,
outcomes always agreed with predictions. Nevertheless,
participants still predicted E1 on about 80% of trials. Af-
ter the experiment, participants reported that they tried
various rules until they believed they had discovered one
that determined light presentations, and that they used
this final rule as long as it appeared to keep working.

Unturbe and Corominas (2007) recently replicated Yel-
lott’s basic procedure. In their version, experimenters
asked participants to write down any rule that guided re-
sponding at the end of the experiment. Judges, blind
to participant performance, rated these rules for com-
plexity. The result was an inverse relationship between
rule complexity and likelihood to predict E1. Partici-
pants also took longer to proceed after wrong answers,
and longer to respond before predicting E2. These de-
lays reflected time for rule generation and consultation,
respectively. Other recent studies have also supported
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the rule-generation hypothesis to explain PM. For exam-
ple, Wolford et al., (2004) found that preventing rule-
generation by having participants engage in a compet-
ing verbal working-memory task promoted maximizing,
while Goodie and Crooks (2004) found that reducing op-
portunities for deliberation by offering little time to re-
spond promoted maximization.

Although rule-generation produces suboptimal re-
sponding, it is rational because the PL procedure allows
for the possibility that there could be a pattern (Wolford et
al., 2004). In this important respect, PL experiments dif-
fer from tasks where participants repeatedly predict out-
comes that are inherently independent of one another, as
when betting on dice rolls or coin flips (e.g., Gal & Baron,
1996). Whereas the later are methods for studying irra-
tional behavior, PL is a method for studying the interplay
between processing systems.

1.2 Present study

The brain metabolizes glucose to fuel cognitive processes
(Donohoe & Benton, 1999). A recent study by Masi-
campo and Baumeister (2008) showed participants were
more likely to base decisions on a heursitic (i.e., use au-
tomatic processing) after drinking sugar-free lemonade
than after drinking lemonade sweetened with sugar. This
suggests low blood glucose levels promote reliance on
less demanding automatic processes. If so, then decreas-
ing blood glucose levels contribute to the tendency for
participants to shift from PM towards maximizing af-
ter extended practice (e.g., Edwards, 1961; Goodie &
Fantino, 1999; Fantino & Esfandiari, 2002; Shanks et al.,
2002; Unturbe & Corominas, 2007).

The current procedure tested whether decreasing blood
glucose levels promoted shifting from PM towards max-
imization. Participants drank either regular root beer or
sugar-free diet root beer. If searching for a normative
rule during PL depletes glucose, then participants in the
Diet group should have depleted available resources more
quickly because they had less available glucose to start
with. Therefore, our hypothesis was that both groups
would initially PM, but the Diet group would shift to-
wards maximization before the Regular group. To mag-
nify the effect of the glucose manipulation, all partici-
pants completed a Stroop test before drinking root beer.
Masicampo and Baumeister (2008) found the effect of a
sugary drink was greatest when both groups started with
lower glucose levels, and the Stroop test depletes glucose
(Gailliot et al., 2007).

The present study also served as a partial replication of
Unturbe and Corominas (2007). The computer recorded
reaction times (RTs) before and after choices to test
whether participants took more time after wrong answers,
and more time before predicting the less likely outcome.

If our hypothesis about glucose and rule-generation were
correct, then these delays (if present) should have started
disappearing in the Diet group before the Regular group.
Participants also filled-out a post-test questionnaire ask-
ing if they used any rule to guide predictions. As in Un-
turbe and Corominas, blind judges rated rules for com-
plexity. We predicted average complexity scores to be (a)
inversely related to E1 predictions near the end of the PL
task and (b) higher in the Regular condition.

2 Method

2.1 Participants
A campus-wide email informed all faculty teaching sum-
mer session courses at Carroll University of the opportu-
nity for students to participate in the present study. Fifty
students (36 women), from various majors across cam-
pus, volunteered. The mean age of the volunteers was
21.62 years (SD = 3.94). Two volunteers were turned
away for being diabetic, and three data sets were lost fol-
lowing a computer upgrade.

2.2 Procedure
2.2.1 Overview

The study took place in two adjacent rooms. Room A
contained a desk, a refrigerator, and a countertop. Room
B had two desktop computers. One of the computers was
loaded with two programs: A Stroop test and a PL task.
Each program was written in Python 2.6 using the Psy-
choPy IDE for Windows (Peirce, 2007; 2009). A partic-
ipant filled out a consent form and a demographics sheet
in Room A before moving to the computer in Room B to
take the Stroop test. While the participant took the Stroop
test, the experimenter prepared the root beer taste test in
Room A. After the Stroop test, the participant returned
to Room A to take the taste test. Next, the participant
completed a 10 minute survey on eating habits. After the
survey, the participant returned to the computer in Room
B to work on the PL task. Finally, the participant returned
to Room A to answer a few questions about the PL task.
The entire procedure took about 30 minutes.

2.2.2 Tasks

Stroop test The computer displayed the words “red”,
“green”, or “blue” in the center of the screen. Each word
appeared 26 times. The color of the word agreed with the
meaning of word on half of the trials. On the remaining
trials, the color of the word was split evenly between the
two alternate colors. The participant’s task on each trial
was to press a key that corresponded to the color of the
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word on the screen as quickly as possible. We did not
analyze Stroop test results.

Taste test The experimenter (AM) told participants the
purpose of the study was to investigate a correlation be-
tween taste preference and patterns of reasoning. While
the participant was in Room B taking the Stroop test, the
experimenter poured half of a 12 ounce bottle of root
beer into a disposable red cup, and the other half into
a disposable blue cup. The experimenter had opened the
bottle before the participant had arrived, so the partici-
pant could not hear that only one bottle had been opened.
Participants drank from each cup, then filled out a three
question taste test asking which drink was sweeter, which
drink tasted better, and whether either drink tasted bland.
We did not analyze taste test results.

Prior to testing, the senior researcher (MS) covered
each bottle’s label with duct tape and affixed a sticker
printed with a unique number on each bottle’s neck. Half
were bottles of Point Premium Root Beer1, with 45 grams
of sugar, while the other half were bottles of sugar-free
Point Premium Diet Root Beer2 (Point Brewery, Stevens
Point, WI, USA). The experimenter drew bottles at ran-
dom from the refrigerator and recorded the bottle number
for each participant, unaware of which type of root beer
was in each bottle. This randomly assigned participants
to either a Regular (n = 23) or Diet (n = 22) condition.

Eating habits survey An eating habits survey, com-
piled from questions posted on various nutrition web-
sites, filled the 10-12 minute interval before sugar from
the drink became available to the brain as glucose (Masi-
campo & Baumeister, 2008). The survey also supported
the claim that the study was a test for a relationship be-
tween taste preferences and decision making. Sample
questions included: “Do you add salt to your foods?”;
and “What kind of meat do you usually buy?”. Copies of
the survey are available by request. We did not analyze
survey results.

Probability learning E1 occurred on 70% of trials and
E2 occurred on the remaining 30%. To control for
handedness-bias, we randomly assigned 24 participants
to have “S” as E1. Fifteen of these participants were in
the Diet condition, the other 9 were in the Regular condi-
tion. The remaining 21 participants had “L” as E1. Seven
of these participants were in the Diet condition, the other
14 were in the Regular condition.

1Regular ingredients: Carbonated water, cane sugar and/or fructose
corn sweetner, maldextrine, pure honey, caramel color, natural and arti-
ficial flavors, vanilla, phosphoric acid, and sodium benzoate.

2Diet ingredients: Carbonated water, caramel color, natural and arti-
ficial flavors, phosphoric acid, acesulfame potassium, sodium benzoate,
sucralose, and vanilla.

After a participant was seated in front of the computer,
the experimenter read the following: “You will predict
whether ‘Outcome S’ or ‘Outcome L’ will be displayed
on the screen. The objective of the two-choice test is to
correctly predict as many outcomes as possible.” The ex-
perimenter then moved into Room A.

On each trial, the computer presented the question
“Which will be correct: S or L?” in the center of the
screen. After the participant made a prediction, the com-
puter displayed the participant’s response, whether the
prediction was correct or incorrect, and the participant’s
overall score. A prompt at the bottom of the screen told
participants to “Press any key to continue”. The com-
puter recorded responses and whether the prediction was
correct or not. The computer also recorded two RTs in
seconds, to the millisecond. The first was time to predict
S or L. The second was time press a key to start the next
trial.

Post-test questionnaire After completing the PL task,
participants filled out a post-test questionnaire. The first
question was “Describe any strategies you used to make
predictions”. The second was “How many strategies did
you use?”. The third was “How confident were you that
you had discovered a pattern?”

Two independent judges, blind to participant perfor-
mance and condition, assigned a rule complexity score to
each questionnaire. Judges gave a 0 or 1 for answers that
did not reveal a strategy. Simple rules, such as “I counted
how many L’s occurred and then when an S occurred and
used that number to guess when another S came”, re-
ceived a 2 to 4. Complex rules, such as “I chose S, then
thought every 3 questions was L, then thought every 5
questions was L, then every time there was an L the an-
swer to the next questions would be L”, received a 5 or
6. We discarded two ambiguous self-reports because of
4 point differences in ratings. In these cases, participants
reported using a number of strategies, including exclu-
sively picking E1. The correlation between judges on the
remaining 42 reports was .86. We used ratings from the
senior researcher (MS) to test our hypotheses.

2.3 Data Analysis

All individual RT scores were log-transformed prior to
analysis to minimize distortion from skew that commonly
occurs when measures have lower boundaries without up-
per boundaries (Ratcliff, 1993). Grubbs’ tests checked
overall scores on each dependent variable for outliers,
with two-tailed alphas of .05. One participant, who
picked E1 on 9 of the 200-trials, was an outlier (G = 4.94;
p < .0001) and was removed from all subsequent analy-
ses. This participant was an 18 year-old woman in the
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Diet condition who had L as E1. Re-tests on each de-
pendent measure found no other outliers. Kolmogorov-
Smirnov tests confirmed that overall scores on each de-
pendent variable were normally distributed.

Most analyses were mixed-design analyses of variance
(ANOVAs). A three-way mixed design ANOVA ana-
lyzed E1 prediction data. Condition (Regular vs Diet) and
Stimulus serving as E1 (S vs L) were between-subject
factors and Block (1-4, treated as categories) was the
within-subject factor. A four-way mixed design ANOVA
analyzed RT before predictions. Condition and Stimu-
lus were between-subject factors and Block and Predic-
tion (E1 vs E2) were within-subject factors. Finally, a
four-way mixed design ANOVA analyzed RT to continue
to the next trial. Condition and Stimulus were between-
subject factors and Block and Feedback (correct vs in-
correct) were within-subject factors. In cases of non-
significant interactions, ANOVAs were redone with non-
significant interactions excluded. In cases of significant
interactions, one-tailed Bonferroni post-tests compared
Regular vs Diet groups in each Block. These tests used
one-tailed alphas of .05, adjusted for multiple compar-
isons (.05/4 = .0125), because the hypothesis predicted
which group should have a higher mean.

One-sample t-tests compared E1 predictions by each
group in Blocks 3 and 4 with the hypothetical mean PM
value of 35. A Spearman’s rank-order correlation tested
whether judgments of self-reported rule complexity were
negatively related to E1 predictions in the last block of
trials. A one-tailed t-test compared complexity ratings
for the Regular group with complexity ratings for the Diet
group.

3 Results

3.1 Probability learning

3.1.1 E1 predictions

Table 1 summarizes E1 predictions in each block of 50
trials by Condition (Regular vs. Diet) and Stimulus serv-
ing as E1 (S vs. L). An initial analysis found no signifi-
cant interaction between Stimulus and either Condition or
Block. Reanalysis without testing for interactions involv-
ing Stimulus revealed a significant interaction between
Condition and Block, F(3, 126) = 3.08, MSE = 46.17, p
= .03, two-tailed. Although groups predicted E1 at about
the same rate during Blocks 1 and 2, the Diet group was
more likely to predict E1 in Blocks 3 and 4 (see Table 2).

Figure 1 shows how each group responded relative to
PM. One-sample t-tests confirmed that the Diet group ex-
ceeded PM in Block 3 (SD = 5.6), t(20) = 2.07, one-tailed
p = .03; and Block 4 (SD = 6.39), t(20) = 2.22, one-tailed

Table 1: Mean (SD) E1 predictions

Diet Regular

Block S L S L

1–50 31.60
(5.97)

28.33
(7.06)

30.44
(5.03)

30.07
(5.08)

51–100 34.27
(5.26)

32.67
(7.89)

33.78
(4.18)

33.71
(3.02)

101–150 37.13
(4.60)

38.50
(8.04)

35.00
(3.81)

33.14
(5.50)

151–200 36.80
(6.06)

41.33
(6.53)

33.22
(4.18)

34.57
(4.82)

Table 2: Bonferroni comparisons of Condition by Block

Block Diet Regular Difference 95% CI t

1–50 30.82 30.22 0.60 −3.40,4.60 0.38
51–100 33.81 33.74 0.07 −3.93,4.07 0.04
101–150 37.52 33.87 3.65 −0.35,7.65 2.31∗

151–200 38.09 34.04 4.05 0.05,8.05 2.56∗

∗ One-tailed p < .05; adjusted (.05/4)
Note: CI = confidence interval of the difference.

Figure 1: E1 predictions by condition and block relative
to PM. Error bars indicate SEM.
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p = .02. In contrast, one-sample t-tests failed to find sig-
nificant differences between the Regular group and PM in
Block 3 (SD = 4.9), t(22) = 1.11; or Block 4 (SD = 4.53),
t(22) = 1.01.

To check the interaction between Block and Condition
for E1 predictions, we computed each participants’s slope
for E1 prediction as a function of Block, and the mean
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Figure 2: Response times when predicting E1 vs E2 by
Block. Error bars indicate SEM.
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proportion of E1 predictions over all four blocks. (In
the analysis just reported, Block was a categorical vari-
able, but here it was continuous.) We then regressed each
of these on indices on Condition, Stimulus, and their in-
teraction, with Condition and Stimulus centered on their
means. No predictors were significant for the means, but
the slopes were predicted by Condition (t(40)=2.72, p =
.010), and weakly by Stimulus (t(40)=1.976, p = 0.055).
Perhaps of greater interest the intercepts at block 4 were
also strongly affected by Condition (t(40)=3.080, p =
0.004). No interactions were significant in any analysis.

3.1.2 Response times

Table 3 summarizes log-transformed prediction times in
each of the four Blocks, by Condition, Stimulus, and
whether the participant made a subsequent Prediction of
E1 or E2. Data from one woman in the Diet condition,
who had L as E1, was excluded because she did not pre-
dict E2 during the final two blocks. An initial analysis
found no significant interactions. Reanalysis without test-
ing for interactions revealed a significant main effect for
Block, F(3, 126) = 116.48, MSE = 1.49, p < .0001. The
main effect of Prediction was also significant, F(1, 42)
= 32.33, MSE = 0.33, p < .0001. Figure 2 shows that
participants responded more quickly as trials progressed,
though they consistently took more time before predict-
ing E2 than E1. There were no significant main effects
for Condition or Stimulus type.

Table 4 summarizes log-transformed times before hit-
ting a key to proceed to the next trial in each of the four
blocks, by Condition, Stimulus, and type of Feedback
from the previous trial (correct or incorrect). An ini-
tial analysis found no significant interactions. Reanaly-

Figure 3: Response times after correct vs incorrect pre-
dictions by Block. Error bars indicate SEM.
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sis without testing for interactions revealed a significant
main effect for Block, F(3, 129) = 123.04, MSE = 1.46,
p < .0001. The main effect of Feedback was also sig-
nificant, F(1, 43) = 9.34, MSE = 1.08, p = .004. Figure
3 shows that participants responded more quickly as tri-
als progressed, though they consistently took more time
before continuing after incorrect predictions than correct
predictions. There were no significant main effects for
Condition or Stimulus type.

3.2 Post-test

Forty-two of 44 participants answered the self-report
questionnaire unambiguously. One ambiguous self-
report came from the Regular condition, the other from
the Diet condition. Ratings of rule complexity were neg-
atively correlated with likelihood to predict E1 in the fi-
nal block, rs = –.30, one-tailed p = .03. However, the Diet
group reported using rules (M = 1.65, SD = 1.63) that
were, on average, judged to be as complex as the rules
the Regular group reported using (M = 1.95, SD = 1.70),
t(40) = 0.59.

4 Discussion

4.1 Summary of findings

This study replicated Unturbe and Corominas’ (2007)
findings that (a) E1 predictions were inversely related to
complexity of self-generated normative rules; (b) partici-
pants took longer to respond on trials when they predicted
E2; and (c) participants took longer to advance to the next
trial after incorrect predictions. The relationship between
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Table 3: Mean (SD) log-transformed times by Condition, E1 Stimulus, Block, and Prediction.

Regular Diet
Stimulus L Stimulus S Stimulus L Stimulus S

Block E1 E2 E1 E2 E1 E2 E1 E2

1-50 −0.07 (0.13) 0.05 (0.16) −0.11 (0.16) 0.001 (0.14) −0.09 (0.20) −0.01 (0.15) −0.04 (0.16) −0.05 (0.16)
51-100 −0.28 (0.12) −0.25 (0.13) −0.29 (0.14) −0.23 (0.12) −0.23 (0.21) −0.23 (0.15) −0.24 (0.19) −0.20 (0.22)
101-150 −0.31 (0.12) −0.28 (0.13) −0.35 (0.23) −0.29 (0.15) −0.29 (0.19) −0.19 (0.23) −0.35 (0.20) −0.29 (0.19)
151-200 −0.41 (0.16) −0.31 (0.16) −0.36 (0.19) −0.30 (0.20) −0.28 (0.17) −0.21 (0.20) −0.38 (0.19) −0.26 (0.16)

Table 4: Mean (SD) log-transformed times to continue to the next trial by Condition, E1 Stimulus, Block, and Feed-
back on previous trial.

Regular Diet
Stimulus L Stimulus S Stimulus L Stimulus S

Block Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect

1-50 0.02 (0.13) 0.08 (0.12) 0.03 (0.15) 0.26 (0.45) 0.03 (0.07) 0.16 (0.13) 0.07 (0.09) 0.12 (0.09)
51-100 −0.18 (0.09) −0.10 (0.13) −0.20 (0.15) 0.05 (0.51) −0.17 (0.07) −0.10 (0.04) −0.17 (0.11) −0.07 (0.07)
101-150 −0.23 (0.11) −0.16 (0.14) −0.22 (0.14) −0.01 (0.57) −0.27 (0.09) −0.20 (0.12) −0.23 (0.11) −0.13 (0.13)
151-200 −0.28 (0.13) −0.19 (0.17) −0.18 (0.18) −0.01 (0.58) −0.29 (0.13) −0.17 (0.18) −0.21 (0.10) −0.11 (0.12)

rule complexity and E1 predictions supports the hypoth-
esis that PM is the product of normative rule-generation.
This study also contributed the novel finding that ingest-
ing sugar before working on a PL task promoted PM. This
result agrees with Masicampo and Baumeister’s (2008)
hypothesis that controlled processing becomes less likely
as glucose levels diminish.

The present study failed to find significant differences
between groups in either RT measure, or on judgments
of rule complexity. This may have been due to lack
of sensitivity on these measures. This seems likely for
the crude rating system that measured complexity. RT
data could have failed to show an effect because glu-
cose enhances overall processing speed (Owens & Ben-
ton, 1994). Hence, the Regular group’s controlled pro-
cessing system may have generated normative rules as
quickly as the Diet group’s automatic processing system
reacted to the question.

4.2 Implications

4.2.1 Individual differences

Spearman (1904, 1914) proposed a general factor (g) that
provides energy to localized areas of the brain respon-
sible for specific mental faculties. According to Spear-
man, people differ in how efficiently their different spe-
cific mental faculties make use of this energy. Therefore,
people low in overall g perform poorly in most cognitive
tasks because all but the most efficient faculties lack suf-

ficient energy. Likewise, people high in overall g do well
in most cognitive tasks, because even inefficient faculties
have access to enough energy to produce correct answers.

The basic rationale for Spearman’s theory may be
adapted so that glucose metabolism fills the role of the
hypothetical g-factor. From this perspective, people
who use mental energy less efficiently would deplete re-
sources more quickly and shift towards automatic pro-
cessing sooner. This would explain several otherwise
counterintuitive findings in the PL literature. For exam-
ple, preschool children tend to outperform elementary
school children; while children, and adults with lower
intellectual abilities, outperform adults with average or
above average intellectual abilities (Derks & Paclisanu,
1967; Jones & Liverant, 1960; Singer, 1967; Weir, 1964).

4.2.2 Application

Benton and Parker (1998) found that missing breakfast
impaired memory, though the impairment was eliminated
by ingesting a glucose drink. Likewise, Morris and Sarll
(2001) found students who ingested a glucose drink did
better on a listening span test than controls who drank
saccarine, and concluded that “students should eat break-
fast, but if this is omitted, then a glucose snack or drink
before the first class may reverse any adverse effects” (p.
201). On the surface, results from present study appear
to conflict with these earlier results, because participants
in the present study performed worse after ingesting glu-
cose. However, poor performance in the present study
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was presumably a product of a greater tendency to en-
gage in controlled processing. Our general conclusion,
that glucose promotes controlled processing, supports in-
gesting glucose to enhance performance on tasks requir-
ing extensive controlled processing, at least within a half
hour following ingestion. The body’s efforts to maintain
homeostasis will eventually eliminate the advantage from
ingesting glucose, and could even promote a rebound ef-
fect (Morris & Sarll, 2001).

4.3 Limitations and future directions

Masicampo and Baumeister (2008), and later Gailliot et
al. (2009), manipulated blood sugar levels by having par-
ticipants drink lemonade sweetened with sugar, or lemon-
ade sweetened with sucralose. Several factors contributed
to our decision to manipulate blood glucose levels by hav-
ing participants drink from regular or diet root beer, in-
stead. First, root beer bottles ensured there was no error
from mixing drinks, and that all participants drank the
same total amount. Second, root beer, like lemonade,
does not contain caffeine, which could have interacted
with effects of glucose on cognition (Scholey & Kennedy,
2004). Third, whereas most soft drink makers used either
a different colored container, or a different colored cap,
to differentiate regular from sugar-free, the Point Brew-
ery identified regular and sugar-free varieties of their root
beer on the label, only. This similarity in packaging fa-
cilitated using a double-blind procedure. Finally, regular
and diet root beers have similar tastes.

Of course, regular and diet root beers have simi-
lar tastes only because diet root beer contains artificial
sweeteners. In the case of Point Premium Diet Root Beer,
the artificial sweeteners are acesulfame potassium and su-
cralose. In our study, as in the earlier studies, an effect of
artificial sweetener may have contributed to differences
between groups. However, we felt that to not use an
equally sweet control drink would have also presented a
confound, because the experience of ingesting a sweet
taste alone could have influenced performance (Maben &
Smith, 1996). A follow-up study could compare effects
of water mixed with sugar to either a plain water, or no-
water, control.

Another follow-up study could track effects of glu-
cose ingestion on controlled processing over a longer in-
terval. Such a study could include quick and painless
blood tests at different points in the procedure to ver-
ify changes in blood glucose level. A larger sample size
could also test whether the present study’s failure to find
relationships between glucose ingestion and rule com-
plexity judgments, or reaction times, were due to insuffi-
cient power.
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