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Reciprocity sheaves and logarithmic motives

Shuji Saito

Abstract

We connect two developments that aim to extend Voevodsky’s theory of motives over
a field in such a way as to encompass non-A1-invariant phenomena. One is theory of
reciprocity sheaves introduced by Kahn, Saito and Yamazaki. The other is theory of the
triangulated category logDMeff of logarithmic motives launched by Binda, Park and
Østvær. We prove that the Nisnevich cohomology of reciprocity sheaves is representable
in logDMeff .
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Introduction

We fix once and for all a perfect base field k. The main purpose of this paper is to connect
two developments that aim to extend Voevodsky’s theory of motives over k in such a way as
to encompass non-A1-invariant phenomena. One is the theory of reciprocity sheaves introduced
by Kahn, Saito and Yamazaki [KSY16, KSY22] and developed in [Sai20, BRS22]. Voevodsky’s
theory is based on the category PST of presheaves with transfers, defined as the category of
additive presheaves of abelian groups on the category Cor of finite correspondences: Cor has
the same objects as the category Sm of separated smooth schemes of finite type over k, and mor-
phisms in Cor are finite correspondences. Let NST ⊂ PST be the full subcategory of Nisnevich
sheaves, that is, those objects F ∈ PST whose restrictions FX to the small étale site Xét over X
are Nisnevich sheaves for all X ∈ Sm. Voevodsky proved that NST is a Grothendieck abelian
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S. Saito

category and defined the triangulated category DMeff of effective motives as the localization
of the derived category D(NST) of complexes in NST with respect to an A1-weak equivalence
(see [MVW06, Definition 14.1]). It is equipped with a functor M : Sm→ DMeff associating the
motive M(X) of X ∈ Sm.

Let HINis ⊂ NST be the full subcategory consisting of A1-invariant objects, namely such
F ∈ NST that the projection πX : X ×A1 → X induces an isomorphism π∗X : F (X) � F (X ×
A1) for any X ∈ Sm. We say that F ∈ HINis is strictly A1-invariant if πX induces isomorphisms

π∗X : H i
Nis(X,FX) � H i

Nis(X ×A1, FX×A1) for all i ≥ 0.

The following theorem plays a fundamental role in Voevodsky’s theory.

Theorem 0.1 (Voevodsky [Voe00]). Any F ∈ HINis is strictly A1-invariant and we have a
natural isomorphism

H i
Nis(X,FX) � HomDMeff (M(X), LA1

F [i]) for X ∈ Sm, (0.1.1)

where LA1
: D(NST)→ DMeff is the localization functor.

Notice that there are interesting and important objects of NST which do not belong to
HINis. Such examples are given by the sheaves Ωi of (absolute or relative) differential forms; the
p-typical de Rham–Witt sheaves WmΩi of Bloch, Deligne and Illusie; smooth commuta-
tive k-group schemes with a unipotent part (seen as objects of NST); and the complexes
Rε∗Z/pr(n) with ch(k) = p > 0, where Z/pr(n) is the étale motivic complex of weight n
with Z/pr coefficients and ε is the change of site functor from the étale to the Nisnevich
topology. For such examples, (0.1.1) fails to hold since πX : X ×A1 → X induces an isomorphism
M(X ×A1) �M(X) in DMeff but the maps induced on the cohomology of those sheaves are
not isomorphisms.

The category RSCNis of reciprocity sheaves is a full abelian subcategory of NST that con-
tains HINis as well as the non-A1-invariant objects mentioned above. Heuristically, its objects
satisfy the property that for any X ∈ Sm, each section a ∈ F (X) ‘has bounded ramification at
infinity’ and the objects of HINis are special reciprocity sheaves with the property that every
section a ∈ F (X) has ‘tame’ ramification at infinity.1 Slightly more exotic examples of reci-
procity sheaves are given by the sheaves Conn1 (for ch(k) = 0), whose sections over X are rank
1-connections, or Lisse1

� (in case ch(k) = p > 0), whose sections on X are the lisse Q�-sheaves of
rank 1. Since RSCNis is an abelian category equipped with a lax symmetric monoidal structure
by [RSY22], many more interesting examples can be manufactured by taking kernels, quotients
and tensor products (see [BRS22, § 11.1] for more examples).

The main purpose of this paper is to establish formula (0.1.1) for all F ∈ RSCNis in a new
category which enlarges DMeff (see (0.2)). It is the triangulated category logDMeff of loga-
rithmic motives introduced by Binda, Park and Østvær in [BPØ22]. Let lSm be the category
of log smooth and separated fs log schemes of finite type over k, and lCor be the category
with the same objects as lSm and whose morphisms are log finite correspondences (see [BPØ22,
Definition 2.1.1]). Let PShltr be the category of additive presheaves of abelian groups on lCor
and Shvltr

dNis ⊂ PShltr be the full subcategory consisting of those F whose restrictions to lSm are
dividing Nisnevich sheaves (see [BPØ22, Definition 3.1.4]). It is shown in [BPØ22, Theorem 1.2.1]
that Shvltr

dNis is a Grothendieck abelian category, and logDMeff is defined as the localiza-
tion of the derived category D(Shvltr

dNis) of complexes in Shvltr
dNis with respect to a �-weak

equivalence, where � is P1 with the log structure associated to the effective divisor ∞ ↪→ P1

1 This heuristic viewpoint is manifested in [RS21a, Theorem 2].
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(see [BPØ22, Definition 5.2.1]).2 It is equipped with a functor M : lSm→ logDMeff associat-
ing the logarithmic motive M(X) of X ∈ lSm. Thanks to [BM12, Theorem 1,1], the standard
t-structure on D(Shvltr

dNis) induces a t-structure on logDMeff called the homotopy t-structure,
and its heart is identified with the abelian full subcategory CIltr

dNis ⊂ Shvltr
dNis consisting of strictly

�-invariant objects in the sense of [BPØ22, Definition 5.2.2].3 We can now state the main result
of this paper.

Theorem 0.2 (Theorems 6.1 and 6.3). There exists an exact and fully faithful functor

Log : RSCNis → CIltr
dNis : F → F log = Log(F ). (0.2.1)

For X ∈ Sm we have a natural isomorphism

H i
Nis(X,FX) � HomlogDMeff (M(X, triv), L�F log[i]), (0.2.2)

where L� : D(Shvltr
dNis)→ logDMeff is the localization functor and (X, triv) is the log scheme

with the trivial log structure.

We remark (see Remark 5.6) that, for F = Ωi, F log(X) for X ∈ lSm whose underlying scheme
is smooth agrees with the sheaf of logarithmic differential forms of X at least assuming ch(k) = 0.4

We now explain the organization of the paper.
In § 1 we discuss some preliminaries and fix notation. We recall the definitions and basic

properties of modulus (pre)sheaves with transfers from [KMSY21a, KMSY21b, KSY22, Sai20].
These are a generalization of Voevodsky’s (pre)sheaves with transfers to a version with modulus.
The category MCor of modulus correspondences is introduced. Its objects are pairs X = (X,D),
where X is a separated scheme of finite type over k equipped with an effective Cartier divisor
D such that the interior X −D = X is smooth. The morphisms are finite correspondences on
the interiors satisfying admissibility and a properness condition. Let MPST be the category
of additive presheaves of abelian groups on MCor. A full subcategory MNST ⊂MPST of
Nisnevich sheaves is defined and there is a functor (see § 1(20))

ωCI : RSCNis →MNST .

For every F ∈ RSCNis and X ∈ Sm, it provides an exhaustive filtration on the group F (X)
of sections over X which measures the depth of ramification along a boundary of a partial
compactification of X: for (X,D) ∈MCor with X −D = X, we get the subgroups F̃ (X,D) ⊂
F (X) with F̃ = ωCIF such that F̃ (X,D1) ⊂ F̃ (X,D2) if D1 ≤ D2.

In § 2 we prove as a key technical input an analogue of the Zariski–Nagata purity theorem
[SGA2, X 3.4] for F̃ (X,D) as above. This asserts the exactness of the sequence

0→ F̃ (X,D)→ F (X)→
⊕
ξ∈D(0)

F (Xh
|ξ − ξ)

F̃ (Xh
|ξ, ξ)

,

where X ∈ Sm and D is a reduced simple normal crossing divisor, and where D(0) is the set of

the irreducible components of D and X
h
|ξ is the henselization of X at ξ. In [RS21b] this result

is generalized to the case where D may not be reduced under the assumption that X admits a
smooth compactification.

2 In fact it is defined in [BPØ22, Definition 5.2.1] as the localization of the homotopy category of complexes in

Shvltr
dNis with respect to a �-local descent model structure.

3 It is a logarithmic analogue of Voevodsky’s strict A1-invariance.
4 The assumption is necessary to use [RS21a, Corollary 6.8] proved in the case ch(k) = 0. We expect that it can be
dispensed with by using a forthcoming work of K. Rülling extending [RS21a, Corollary 6.8] to the case ch(k) > 0.
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In § 3 we review higher local symbols for reciprocity sheaves constructed in [RS21c]. These
are an effective tool with which one can decide when a given element of F (X) with F ∈ RSCNis

and X ∈ Sm belongs to F̃ (X,D) as above. The construction of the pairing depends on pushfor-
ward maps for the cohomology of reciprocity sheaves constructed in [BRS22] (which means that
Theorem 0.2 depends on the result of [BRS22]).

In § 4 we prove the following result. Let MCorfin
ls be the subcategory of MCor whose objects

are pairs (X,D) such that X ∈ Sm and the reduced divisor Dred underlying D is a simple normal
crossing divisor on X and whose morphisms are modulus correspondences satisfying a finiteness
conditions instead of the properness condition (see § 1(5)). Then, for F ∈ RSCNis, the association

F̃ log : (X,D)→ ωCIF (X,Dred)

gives a presheaf on MCorfin
ls , which gives rise to a cohomology theory H i

log(−, F̃ log) on MCorfin
ls ,

called the ith logarithmic cohomology with coefficient F (see Definition 4.4). The higher local
symbols for F play a fundamental role in the proof of the result.

In § 5 we prove the invariance of logarithmic cohomology under blowups. Let Λfin
ls be the

subcategory of MCorfin
ls whose objects are the same as MCorfin

ls and whose morphisms are
those ρ : (Y,E)→ (X,D) where E = ρ∗D and ρ are induced by blowups of X in smooth centers
Z ⊂ D which are normal crossing to D (see the beginning of the section). Then, for F ∈ RSCNis

and ρ : Y → X in Λfin
ls , we have

ρ∗ : H i
log(X , F ) ∼= H i

log(Y, F ) ∀i ≥ 0.

In § 6 we prove Theorem 0.2, which is a formal consequence of the theorems in §§ 4 and 5.

1. Preliminaries

We fix once and for all a perfect base field k. In this section we recall the definitions and basic
properties of modulus sheaves with transfers from [KMSY21a, Sai20].

(1) Denote by Sch the category of separated schemes of finite type over k and by Sm the full
subcategory of smooth schemes. For X,Y ∈ Sm, an integral closed subscheme of X × Y
that is finite and surjective over a connected component of X is called a prime correspon-
dence from X to Y . The category Cor of finite correspondences has the same objects
as Sm, and for X,Y ∈ Sm, Cor(X,Y ) is the free abelian group on the set of all prime
correspondences from X to Y (see [Voe00]). We consider Sm as a subcategory of Cor by
regarding a morphism in Sm as its graph in Cor.

Let PST be the category of additive presheaves of abelian groups on Cor whose objects
are called presheaves with transfers. Let NST ⊆ PST be the category of Nisnevich sheaves
with transfers and let

aVNis : PST→ NST

be Voevodsky’s Nisnevich sheafification functor, which is an exact left adjoint to the inclu-
sion NST→ PST. Let HI ⊆ PST be the category of A1-invariant presheaves and put
HINis = HI∩NST ⊆ NST.

(2) Let Smpro be the category of k-schemes X which are essentially smooth over k, that is,X is
a limit lim←−i∈I Xi over a filtered set I, where Xi is smooth over k and all transition maps are
étale. Note that SpecK ∈ Smpro for a function field K over k thanks to the assumption
that k is perfect. We define Corpro whose objects are the same as Smpro and whose
morphisms are defined as [RS21a, Definition 2,2]. We extend F ∈ PST to a presheaf on
Corpro by F (X) := lim−→i∈I F (Xi) for X as above.
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(3) We recall the definition of the category MCor from [KMSY21a, Definition 1.3.1]. A pair
X = (X,D) consisting of X ∈ Sch and an effective Cartier divisor D on X is called a
modulus pair if X −D ∈ Sm. Let X = (X,DX), Y = (Y,DY ) be modulus pairs and Γ ∈
Cor(X −DX , Y −DY ) be a prime correspondence. Let Γ ⊆ X × Y be the closure of Γ,
and let ΓN → X × Y be the normalization. We say that Γ is admissible (respectively,
left proper) if (DX)

Γ
N ≥ (DY )

Γ
N (respectively, if Γ is proper over X). Let MCor(X ,Y)

be the subgroup of Cor(X −DX , Y −DY ) generated by all admissible left proper prime
correspondences. The category MCor has modulus pairs as objects and MCor(X ,Y) as
the group of morphisms from X to Y.

(4) Let MCorls ⊂MCor be the full subcategory of (X,D) ∈MCor with X ∈ Sm and |D|
a normal crossing divisor on X.

(5) Let MCorfin ⊂MCor be the full subcategory of the same objects such that
MCorfin(X ,Y) are generated by all admissible finite prime correspondences, where finite
prime correspondences are defined by replacing the left properness in (3) by finiteness. We
also define MCorfin

ls = MCorfin ∩MCorls.
(6) There is a canonical pair of adjoint functors λ � ω:

λ : Cor→MCor X �→ (X, ∅),

ω : MCor→ Cor (X,D) �→ X −D.
(7) There is a full subcategory MCor ⊂MCor consisting of proper modulus pairs, where a

modulus pair (X,D) is proper if X is proper. Let τ : MCor ↪→MCor be the inclusion
functor and ω = ωτ .

(8) Let MPST (respectively, MPST) be the category of additive presheaves of abelian
groups on MCor (respectively, MCor) whose objects are called modulus presheaves with
transfers. For X ∈MCor, let Ztr(X ) = MCor(−,X ) be the representable object of
MPST. We sometimes write X for Ztr(X ) for simplicity.

(9) In the same manner as (2), the category MCorpro is defined and F ∈MPST is extended
to a presheaf on MCorpro (see [RS21a, § 3.7]).

(10) The adjunction λ � ω induces a string of four adjoint functors (λ! = ω!, λ∗ = ω!, λ∗ =
ω∗, ω∗) (see [KMSY21a, Proposition 2.3.1]):

MPST

ω!

←−
ω!−→
ω∗
←−
ω∗−→

PST

where ω!, ω∗ are localizations and ω! and ω∗ are fully faithful.
(11) The functor τ yields a string of three adjoint functors (τ!, τ∗, τ∗):

MPST

τ!−→
τ∗←−
τ∗−→

MPST

where τ!, τ∗ are fully faithful and τ∗ is a localization; τ! has a pro-left adjoint τ !, hence is
exact (see [KMSY21a, Proposition 2.4.1]). We will denote by MPSTτ the essential image
of τ! in MPST.

(12) The modulus pair � := (P1,∞) has an interval structure induced by that of A1 (see
[KSY22, Lemma 2.1.3]). We say that F ∈MPST is �-invariant if p∗ : F (X )→ F (X ⊗�)
is an isomorphism for any X ∈MCor, where p : X ⊗�→ X is the projection. Let CI be
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the full subcategory of MPST consisting of all �-invariant objects and CIτ ⊂MPST be
the essential image of CI under τ!.

(13) Recall from [KSY22, Theorem 2.1.8] that CI is a Serre subcategory of MPST, and that
the inclusion functor i� : CI→MPST has a left adjoint h�

0 and a right adjoint h0
� given

for F ∈MPST and X ∈MCor by

h�
0 (F )(X ) = Coker(i∗0 − i∗1 : F (X ⊗�)→ F (X )),

h0
�(F )(X ) = Hom(h�

0 (X ), F ).

For X ∈MCor, we write h�
0 (X ) = h�

0 (Ztr(X )) ∈ CI, and by abuse of notation we also
write h�

0 (X ) for τ!h�
0 (X ) ∈ CIτ .

(14) For F ∈MPST and X = (X,D) ∈MCor, write FX for the presheaf on the small étale
site Xét over X given by U → F (XU ) for U → X étale, where XU = (U,D|U ) ∈MCor.
We say that F is a Nisnevich sheaf if FX is also one for all X ∈MCor (see [KMSY21a,
§ 3]). We write MNST ⊂MPST for the full subcategory of Nisnevich sheaves and put

MNSTτ = MNST∩MPSTτ , CIτNis = CIτ ∩MNSTτ .

By [KMSY21a, Proposition 3.5.3] and [KMSY21b, Theorem 2], the inclusion functor iNis :
MNST→MPST has an exact left adjoint aNis such that aNis(MPSTτ ) ⊂MNSTτ . The
functor aNis has the following description. For F ∈MPST and Y ∈MCor, let FY,Nis be
the usual Nisnevich sheafification of FY . Then, for (X,D) ∈MCor, we have

aNisF (X,D) = lim−→
f :Y→X

F(Y,f∗D),Nis(Y )

where the colimit is taken over all proper maps f : Y → X that induce isomorphisms
Y − |f∗D| ∼−→ X − |D|.

(15) By [KMSY21b, Proposition 6.2.1], ω∗ and ω! from (10) respect MNST and NST and
induce a pair of adjoint functors (which for simplicity we write ω! and ω∗). Moreover, we
have

ω!aNis = aVNisω!.

By [KSY22, Lemma 2.3.1] and [KMSY21b, Proposition 6.2.1a)], for F ∈ PST, we have
F ∈ HI (respectively, F ∈ HINis) if and only if ω∗F ∈ CIτ (respectively, ω∗F ∈ CIτNis).

(16) We say that F ∈MPST is semipure if the unit map

u : F → ω∗ω!F

is injective. For F ∈MPST (respectively, F ∈MNST), let F sp ∈MPST (respectively,
F sp ∈MNST) be the image of F → ω∗ω!F (called the semipurification of F . See [Sai20,
Lemma 1.30]). For F ∈MPST we have

aNis(F
sp) � (aNisF )sp.

This follows from the fact that aNis is exact and commutes with ω∗ω!. For F ∈MPSTτ

we have F sp ∈MPSTτ since τ is exact and ω∗ω!τ! = τ!ω
∗ω!.

(17) Let CIτ,sp ⊂ CIτ be the full subcategory of semipure objects and consider the full
subcategory

CIτ,spNis = CIτ,sp ∩MNSTτ ⊂ CIτNis .

By [Sai20, Theorems 0.1 and 0.4], we have aNis(CIτ,sp) ⊂ CIτ,spNis .
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(18) We write RSC ⊆ PST for the essential image of CI under ω! (which is the same as
the essential image of CIτ,sp under ω! since ω! = ω!τ! and ω!F = ω!F

sp). Put RSCNis =
RSC ∩NST. The objects of RSC (respectively, RSCNis) are called reciprocity presheaves
(respectively, sheaves). By [Sai20, Theorem 0.1], we have

aVNis(RSC) ⊂ RSCNis. (1.0.1)

We have HI ⊆ RSC which also contains smooth commutative group schemes (which
may have non-trivial unipotent part), the sheaf Ωi of Kähler differentials, and the
de Rham–Witt sheaves WnΩi (see [KSY16, KSY22]).

(19) NST is a Grothendieck abelian category by [Voe00, Lemma 3.1.6] and we can make
RSCNis its full subabelian category as follows. We define the kernel (respectively,
cokernel) of a map φ : F → G in RSCNis to be that of φ as a map in NST. Here we
need (1.0.1) to ensure that the cokernel of φ in NST stays in RSCNis. By definition, a
sequence 0→ F → G→ H → 0 is exact in RSCNis if and only if it is exact in NST.

(20) By [KSY22, Proposition 2.3.7] we have a pair of adjoint functors

CI
ωCI

←−
ω!−→

RSC, (1.0.2)

where ωCI = h0
�ω
∗ and is fully faithful. It induces a pair of adjoint functors

CIτ
ωCI

←−
ω!−→

RSC, (1.0.3)

where ωCI = τ!h
0
�ω
∗ and is fully faithful. Indeed, let F = τ!F̂ for F̂ ∈ CI and G ∈ RSC.

In view of (13) and the exactness and full faithfulness of τ!, we have

HomCIτ (F, τ!h0
�ω
∗G) � HomCI(F̂ , h0

�ω
∗G)

� HomMPST(F̂ , ω∗G) � HomMPST(τ!F̂ , ω∗G) � HomRSC(ω!F,G).

In view of (15), (1.0.3) induces a pair of adjoint functors

CIτ,spNis

ωCI

←−
ω!−→

RSCNis. (1.0.4)

2. Purity with reduced modulus

For F ∈MPST, we put

F−1 = Ker
(
HomMPST((P1 − 0,∞), F )

i∗1−→ F
)
,

F
(1)
−1 = Ker

(
HomMPST((P1, 0 +∞), F )

i∗1−→ F
)

Note that if F ∈ CIτ,spNis , then F−1, F
(1)
−1 ∈ CIτ,spNis and

F
(1)
−1 (X ) = HomMPST(h�,sp

0,Nis(P
1, 0 +∞)0,HomMPST(Ztr(X ), F )),

F−1(X ) = lim−→
n

HomMPST(h�,sp
0,Nis(P

1, n · 0 +∞)0,HomMPST(Ztr(X ), F ))
(2.0.1)

for X ∈MCor, where

h�,sp
0,Nis(P

1, n · 0 +∞)0 = Coker
(
Z = Ztr(Spec k, ∅) i1−→ h�,sp

0,Nis(P
1, n · 0 +∞)

)
.
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Definition 2.1. For e1, . . . , er ∈ {0, 1}, put

τ (e1,...,er)F = τ (er) · · · τ (e1)F,

where

τ (0)F = F−1 and τ (1)F = F−1/F
(1)
−1 ,

where the quotient is taken in MPST.

The existence of retractions in the following lemma was suggested by A. Merici. It implies
τ (e1,...,er)F ∈ CIτ,spNis if F ∈ CIτ,spNis .

Lemma 2.2. For F ∈ CIτ,spNis , the inclusion F
(1)
−1 → F−1 admits a retraction sF : F−1 → F

(1)
−1 such

that for any map φ : F → G in CIτ,spNis , the following diagram is commutative:

F−1

sF ��

φ

��

F
(1)
−1

φ
��

G−1

sF �� G
(1)
−1

In particular, τ (1)F ∈ CIτ,spNis if F ∈ CIτ,spNis .

Proof. In view of (2.0.1), this follows from [BRS22, Lemma 2.4]. �

Theorem 2.3. Let F ∈ CIτ,spNis . Let K{t1, . . . , tn} be the henselization of K[t1, . . . , tn] at
(t1, . . . , tn) and X = SpecK{t1, . . . , tn} and D = {te11 · · · ten

n = 0} ⊂ X with e1, . . . , en ∈ {0, 1}.
For a subset I ⊂ [1, n] let iH : H ↪→ X be the closed immersion defined by {ti = 0}i∈I and
DH =

{∏
j∈[1,n]−I t

ej

j = 0
} ⊂ H. Then

Rνi!HF(X ,D) = 0 for ν �= q := |I|, (2.3.1)

and there is an isomorphism

(τ (eI)F )(H,DH) � Rqi!HF(X ,D) with eI = (ei)i∈I ∈ Z
q
≥0. (2.3.2)

Proof. The proof is divided into two steps.

Step 1: we prove (2.3.1) and (2.3.2) for q = |I| = 1. For ν = 0, (2.3.1) follows from the semipu-
rity of F and [Sai20, Theorem 3.1]. Thus, it suffices to show (2.3.1) only for ν > 1. Let
J = {j ∈ [1, n] | ej �= 0} and r = |J |. If dim(X ) = 0, the assertion is trivial. If r = 0, the assertion
follows from [Sai20, Corollary 8.6(3)]. Assume r > 0 and dim(X ) ≥ 1, and proceed by the double
induction on r and dim(X ). Without loss of generality, we may assume

(♠) e1 �= 0, and H = {t1 = 0} if H ⊂ |D|.
Let ι : Z ↪→ X be the closed immersion defined by {t1 = 0} and DZ = {te22 · · · ter

r = 0} ⊂ Z and
D′ = {te22 · · · ter

r = 0} ⊂ X . By [Sai20, Lemma 7.1], we have an exact sequence sheaves on XNis,

0→ F(X ,D′) → F(X ,D) → ι∗(F
(e1)
−1 )(Z,DZ ) → 0,

which gives rise to a long exact sequence of sheaves on HNis,

· · · → Rνi!HF(X ,D′) → Rνi!HF(X ,D) → Rνi!Hι∗(F
(e1)
−1 )(Z,DZ ) → · · · . (2.3.3)
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By the induction hypothesis, Rνi!HF(X ,D′) = 0 for ν > 1. If H �= Z, we have a Cartesian diagram
of closed immersions

H ∩Z ι′ ��

iH∩Z
��

H
iH

��
Z ι �� X

and we have an isomorphism

Rνi!Hι∗(F
(e1)
−1 )(Z,DZ ) � ι′∗Rνi!H∩Z(F (e1)

−1 )(Z,DZ ).

By the induction hypothesis, Rνi!H∩Z(F (e1)
−1 )(Z,DZ ) = 0 for ν > 1, noting that F (e1)

−1 ∈ CIτ,spNis by
Lemma 2.2. So the desired vanishing follows from (2.3.3). Moreover, the assumptions (♠) and
H �= Z imply that H �⊂ |D|. Then (2.3.2) (with q = 1) follows from [Sai20, Lemma 7.1(2)].

If Z = H, we have

Rνi!Hι∗(F
(e1)
−1 )(Z,DZ ) = Rνι!ι∗(F

(e1)
−1 )(Z,DZ ),

which vanishes for ν > 0. Hence, (2.3.3) gives the desired vanishing together with an exact
sequence

0→ (F (e1)
−1 )(H,DH)

δ−→ R1i!HF(X ,D′) → R1i!HF(X ,D) → 0.

By [Sai20, Lemma 7.1(2)] we have an isomorphism

(F−1)(H,DH) � R1i!HF(X ,D′)

through which δ is identified with the map induced by the canonical map F
(e1)
−1 → F−1. This

proves the desired isomorphism (2.3.2) for Z = H and completes step 1.

Step 2: we prove the theorem by induction on q assuming q > 0. Let I = {i1, . . . , iq} ⊂ [1, n]
and Y ⊂ X be the closed subscheme defined by {ti1 = 0}. Let iY : Y ↪→ X and iH,Y : H → Y be
the induced closed immersions. By step 1 we have Rνi!YF(X ,D) = 0 for ν �= 1 and we have an
isomorphism

(τ (ei1
)F )(Y,DY ) � R1i!YF(X ,D) with DY = {te11 · · ·

∨
t
ei1
i1
· · · ten

n = 0} ⊂ Y.
Note τ (ei1

)F ∈ CIτ,spNis by Lemma 2.2. Thus, by the induction hypothesis, we have
Rνi!H,Yτ

(ei1
)F(Y,DY ) = 0 for ν �= q − 1. By the spectral sequence

Ea,b
2 = Rbi!H,YR

ai!YF(X ,D) ⇒ Ra+bi!HF(X ,D),

we get the desired vanishing (2.3.1) and an isomorphism

Rqi!HF(X ,D) � Rq−1i!H,YR
1i!YF(X ,D) � Rq−1i!H,Y(τ (ei1

)F )(Y,DY )

� (τ (ei2
,...,eiq )(τ (ei1

)F ))(H,DH) � (τ (ei1
,ei2

,...,eiq )F )(H,DH),

where the third isomorphism holds by the induction hypothesis. This completes the proof of the
theorem. �

We say that X = (X,D) ∈MCor is reduced if so is D. The following Corollaries 2.4 and 2.5
are immediate consequences of Theorem 2.3.
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Corollary 2.4. Take F ∈ CIτ,spNis and (X,D) ∈MCorls reduced. Let x ∈ X(n) with K = k(x)
and let X = Xh

|x be the henselization of X at x. Then

H i
x(XNis, F(X,D)) = 0 for i �= n.

Choosing an isomorphism

ε : X � SpecK{t1, . . . , tn}
such that D|X = {te11 · · · ten

n = 0} ⊂ X with e1, . . . , en ∈ {0, 1}, there exists an isomorphism
depending on ε:

θε : τ (e1,e2,...,en)F (x) � Hn
x (XNis, F(X,D)).

Corollary 2.5. For F ∈ CIτ,spNis and X = (X,D) ∈MCorls reduced, the following sequence is
exact:

0→ F (X,D)→ F (X −D, ∅)→
⊕
ξ∈D(0)

F (Xh
|ξ − ξ, ∅)

F (Xh
|ξ, ξ)

.

The idea of deducing the following corollary from the above is due to A. Merici.

Corollary 2.6. Let X = (X,D) ∈MCorls be reduced.

(1) Assume given an exact sequence in MNST,

0→ H
φ−→ G

ψ−→ F , (2.6.1)

such that F,G,H ∈ CIτ,spNis and that ω!ψ is surjective in NST. If X is henselian local, then

0→ H(X )→ G(X )→ F (X )→ 0

is exact.
(2) Let γ : F → G be a map in CIτ,spNis such that ω!γ is an isomorphism. Then F (X )→ G(X ) is

an isomorphism.
(3) For F ∈ CIτ,spNis , the unit map u : F → ωCIω!F induces an isomorphism F (X ) ∼= ωCIω!F (X ).

Proof. To show (1), it suffices to show the surjectivity of G(X )→ F (X ). Let η ∈ X be the generic
point and consider the following commutative diagram of the Cousin complexes:

0 �� H(X ) ��

��

H(η) ��

φ(η)

��

⊕
x∈X(1)

H1
x(X,HX ) ��

H1
x(φ)

��

⊕
y∈X(2)

H2
y (X,HX )

H2
y(φ)

��

0 �� G(X ) ��

��

G(η) ��

ψ(η)

��

⊕
x∈X(1)

H1
x(X,GX ) ��

H1
x(ψ)

��

⊕
y∈X(2)

H2
y (X,GX )

H2
y(ψ)

��

0 �� F (X ) �� F (η) ��
⊕

x∈X(1)

H1
x(X,FX ) ��

⊕
y∈X(2)

H2
y (X,FX )

By Corollary 2.4, the horizontal sequences are exact. By the assumption, ψ(η) is surjective. By
a diagram chase we are reduced to showing the following claim.
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Claim 2.6.1.

(i) For x ∈ X(1), the sequence

H1
x(X,HX )→ H1

x(X,GX )→ H1
x(X,FX )

is exact.
(ii) For y ∈ X(2), H2

y (φ) is injective.

To show (i), by Corollary 2.4, it suffices to show the exactness of τ (e)H → τ (e)G→ τ (e)F for
e ∈ {0, 1}. The case e = 0 follows from the left exactness of the endofunctor HomMPST(X ,−)
on MNST for any X ∈MCor. We have a commutative diagram

τ (1)H
φ

��

sH

��

τ (1)G
ψ

��

sG

��

τ (1)F

sF

��

τ (0)H
φ

��

pH

��

τ (0)G
ψ

��

pG

��

τ (0)F

pF

��

where p∗ are the projections and s∗ is a right inverse of p∗ coming from the retractions from
Lemma 2.2. We have

φ ◦ pH = pG ◦ φ, ψ ◦ pG = pF ◦ ψ, φ ◦ sH = sG ◦ φ, ψ ◦ sG = sF ◦ ψ.
By a diagram chase, the case e = 1 follows from the case e = 0.

To show (ii), by Corollary 2.4, it suffices to show the injectivity of τ (e)H → τ (e)G for e ∈
{(0, 0), (0, 1), (1, 0), (1.1)}. The case e = (0, 0) follows from the same left exactness as above, and
the other cases from this case thanks to Lemma 2.2.

To show (2), we may assume X is henselian local. Then it follows from (1).
Finally, (3) follows from (2) since ω!u is an isomorphism. This completes the proof of the

corollary. �

3. Review of higher local symbols

In this section we recall from [RS21c] the higher local symbols for reciprocity sheaves, which
are a fundamental tool to prove Theorem 4.2, one of the main theorems of this paper. First we
introduce some basic notation. In this section X is a reduced noetherian separated scheme of
dimension d <∞ such that X(0) = X(d).

Let K be a field. For an integer r ≥ 0, let KM
r (K) be the Milnor K-group of K. Let A be a

local domain with the function field K. For an ideal I ⊂ A, let KM
r (A, I) ⊂ KM

r (K) denote the
subgroup generated by symbols

{1 + a, b1, . . . , br−1} with a ∈ I, bi ∈ A×.
Let A be a noetherian excellent one-dimensional local domain with function field K and residue
field F . Let Ã be the normalization of A and S be the set of the maximal ideals of Ã. For m ∈ S,
denote κ(m) = Ã/m. Then we define

∂A :=
∑
m∈S

Nmκ(m)/F ◦∂m : KM
r (K)→ KM

r−1(F ), (3.0.1)

where ∂m : KM
r (K)→ KM

r−1(κ(m)) denotes the tame symbol for the discrete valuation ring Ãm,
the localization of Ã at m, and Nmκ(m)/F is the norm map.
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For x, y ∈ X, we write

y < x :⇐⇒ {y} � {x}, that is, y ∈ {x} and y �= x.

A chain on X is a sequence

x = (x0, . . . , xn) with x0 < x1 < · · · < xn. (3.0.2)

The chain x is a maximal Paršin chain (or maximal chain) if n = d and xi ∈ X(i). Note that the

assumptions on X imply xi ∈ {xi+1}(1). We denote

mc(X) = {maximal chains on X}.
A maximal chain with break at r ∈ {0, . . . , d} is a chain (3.0.2) with n = d− 1 and xi ∈ X(i), for
i < r, and xi ∈ X(i+1), for i ≥ r. We denote

mcr(X) = {maximal chain with break at r on X}.
For x = (x0, . . . , xd−1) ∈ mcr(X), we denote by b(x) the set of y ∈ X(r) such that

x(y) := (x0, . . . , xr−1, y, xr, . . . , xd−1) ∈ mc(X). (3.0.3)

In the rest of this section we fix F = ωCIG ∈ CIτ,spNis with G ∈ RSCNis (cf. (1.0.4)). We also
fix a function field K over the base field k. Let X be an integral scheme of finite type over K and
assume d = dim(X) ≥ 1. Recall from [RS21c, § 5] that we have a collection of bilinear pairings
(cf. the convention from § 1(9)){

(−,−)X/K,x : F (K(X))⊗KM
d (K(X))→ F (K)

}
x∈mc(X)

. (3.0.4)

The following properties hold for all a ∈ F (K(X)) (see Remark 3.1 below).

(HS1) Let X ↪→ X ′ be an open immersion where X ′ is an integral K-scheme of dimension d.
Then, for all β ∈ KM

d (K(X)),

(a, β)X/K,x = (a, β)X′/K,x.

(HS2) Let x = (x0, . . . , xd−1, xd) ∈ mc(X) and Z ⊂ X be the closure of z = xd−1, and set x′ =
(x0, . . . , xd−1) ∈ mc(Z). Assume a ∈ F (OX,z) and let a(z) ∈ F (K(Z)) be the restriction
of a. Then

(a, β)X/K,x = (a(z), ∂zβ)Z/K,x′ for β ∈ KM
d (K(X)),

where ∂z : KM
d (K(X))→ KM

d−1(K(Z)) is the map (3.0.1) for A = OX,z.
(HS3) LetD ⊂ X be an effective Cartier divisor with ID ⊂ OX its ideal sheaf. Assume thatX\D

is regular so that (X,D) ∈MCorpro and that a ∈ F (X,D). For x = (x0, . . . , xd−1, xd) ∈
mc(X), we have

(a, β)X/K,x = 0 for β ∈ KM
d (OX,xd−1

, IDOX,xd−1
).

(HS4) Let x′ ∈ mcr(X) with 0 ≤ r ≤ d− 1. For β ∈ KM
d (K(X)),

(a, β)X/K,x′(y) = 0 for almost all y ∈ (
¯
x′).

Assume that either r ≥ 1 or r = 0, X is quasi-projective, and the closure of x1 in X is
projective over K, where x′ = (x1, . . . , xd). Then∑

y∈b(x′)
(a, β)X/K,x′(y) = 0.

366

https://doi.org/10.1112/S0010437X22007862 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007862


Reciprocity sheaves and logarithmic motives

Remark 3.1. Properties (HS1)–(HS4) are slight variants of the (stronger) properties (HS1)–(HS4)
in [RS21c, Proposition 5.3], where the Milnor K-group KM

d (Kh
X,x) of the iterated henselization

Kh
X,x of K(X) along the chain x is used instead of KM

d (K(X)). The version stated here follows
easily using the natural maps ιx : K(X)→ Kh

X,x and the commutative diagram in the situation
of (HS2),

KM
d (Kh

X,x)
∂x

�� KM
d−1(K

h
Z,x′)

KM
d (K(X))

∂z ��

ιx

��

KM
d−1(K(Z))

ιx′
��

and the commutative diagram in the situation of (HS4),

KM
d−1(K

h
X,x′)

ιy

��

KM
d (K(X))

ιx′
��������������

ιx′(y)

�� KM
d−1(K

h
X,x′(y))

where ∂x (respectively, ιy) is defined in [RS21c, (4.1.1)] (respectively, [RS21c, (3.2.3)]). We also
note that KM

d (OX,xd−1
, IDOX,xd−1

) in (HS2) coincides with the Zariski stalk at xd−1 of the sheaf
V d,X|D defined in [RS21c, 4.4].

For a scheme Z over k, write ZK = Z ⊗k K. If ZK is integral, we denote byK(Z) the function
field of ZK . We quote the following result from [RS21c, Proposition 7.3]. It is a key tool in the
proof of Theorem 4.2.

Proposition 3.2. Let X ∈ Sm and assume D is a reduced simple normal crossing divisor on X
with ID ⊂ OX its ideal sheaf. Let U ⊂ X be an open subset containing all the generic points ofD.
Let a ∈ F (X\D). Assume that, for all function fields K/k and for all x = (x0, . . . , xd−1, xd) ∈
mc(UK) with xd−1 ∈ D(0)

K , we have

(a, β)XK/K,x = 0 for all β ∈ KM(OX,xd−1
, IDOX,xd−1

).

Then a ∈ F (X,D).

4. Logarithmic cohomology of reciprocity sheaves

For X = (X,D) ∈MCorls, we write Xred = (X,Dred) ∈MCorls. We say that X = (X,D) ∈
MCorls is reduced if X = Xred.

Definition 4.1. Let F ∈MPST.

(1) We say that F is log-semipure if for any X ∈MCorls, the map F (Xred)→ F (X ) is injective.
Note that if F is semipure, F is log-semipure (cf. § 1(16)).

(2) We say that F is logarithmic if it is log-semipure and satisfies the condition that for
X ,Y ∈MCorls with X reduced and α ∈MCorfin(Y,X ), the image of α∗ : F (X )→ F (Y)
is contained in F (Yred) ⊂ F (Y).

Let MPSTlog be the full subcategory of MPST consisting of logarithmic objects and put
MNSTlog = MNST∩MPSTlog.
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Theorem 4.2. Any F ∈ CIτ,spNis is logarithmic, that is, CIτ,spNis ⊂MNSTlog.

We need a preliminary lemma for the proof of the theorem.

Lemma 4.3. Let F ∈ CIτ,spNis . Let An
K = SpecK[x1, . . . , xn] be the affine space over a function

field K over k and V = SpecK{x1, . . . , xn} be the henselization of An
K at the origin and Li =

{xi = 0} ⊂ V for i ∈ [1, n]. For an integer 0 < r ≤ n, the natural map

K{xr+1, . . . , xn}[x1, . . . , xr]→ K{x1, . . . , xn}
induces a map in MCorpro (cf. § 1(9)):

ρr : (V,L1 + · · ·+ Lr)→ (Ar
S , {x1 · · ·xr = 0}) � (A1, 0)⊗r ⊗ (S, ∅),

where S = SpecK{xr+1, . . . , xn}. It induces

ρ∗r : F (Ar
S , {x1 · · ·xr = 0})→ F (V,L1 + · · ·+ Lr). (4.3.1)

Then F (V,L1 + · · ·+ Lr) is generated by the image of ρ∗r and

F (V,L1 + · · ·+
∨
Li + · · · Lr) for i = 1, . . . , r.

Proof. For Y ∈MCor, let FY ∈MPST be defined by FY(Z) = F (Y ⊗ Z). Clearly, we have
FY ∈ CIτ,spNis for F ∈ CIτ,spNis . We prove the lemma by induction on r. The case r = 1 holds since
by [Sai20, Lemmas 7.1 and 5.9], ρ1 induces an isomorphism

F (A1,0)(S)/F (A1,∅)(S) −→ F (V,L1)/F (V ).

By definition L1 = SpecK{x2, . . . , xn} and we have a map in MCorpro,

(V,L1 + · · ·+ Lr)→ (A1, 0)⊗ (L1,L1 ∩ (L2 + · · ·+ Lr)),
induced by the natural mapK{x2, . . . , xn}[x1]→ K{x1, . . . , xn}. By [Sai20, Lemmas 7.1 and 5.9],
it induces an isomorphism

F (A1,0)(L1, E)/F (A1,∅)(L1, E) −→ F (V,L1 + · · ·+ Lr)/F (V,L2 + · · ·+ Lr)
with E = L1 ∩ (L2 + · · ·+ Lr). By the induction hypothesis, F (A1,0)(L1, E) is generated by

F (A1,0)(L1, Ej) with Ej = L1 ∩ (L2 · · ·+
∨
Lj + · · · Lr) for j = 2, . . . , r together with the image

of the map

(F (A1,0))(A
1,0)⊗r−1

(S) = F (A1,0)⊗r
(S)→ F (A1,0)(L1, E)

induced by

(L1, E)→ (Ar−1
S , {x2 · · ·xr = 0}) � (A1, 0)⊗r−1 ⊗ (S, ∅)

coming from the map K{xr+1, . . . , xn}[x2, . . . , xr]→ K{x2, . . . , xd}. This proves the lemma. �

Proof of Theorem 4.2. By Corollary 2.6(3), we may assume F = ωCIG for G ∈ RSCNis. Take
X = (X,D),Y = (Y,E) ∈MCorls with X reduced, and let α ∈MCorfin(Y,X ) be an elementary
correspondence. We need to show that α∗(F (X )) ⊂ F (Yred). The question is Nisnevich local over
X and Y . Hence, we may assume (X,D) = (V,L1 + · · ·+ Lr) ∈MCorpro in the notation of
Lemma 4.3. If r = 0, we have α ∈MCor((Y, ∅), (X, ∅)) by the assumption α ∈MCorfin(Y,X )
so that

α∗(F (X )) = α∗(F (X, ∅)) ⊂ F (Y, ∅) ⊂ F (Yred).
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Assume r > 0 and proceed by induction on r. By Lemma 4.3, we may then assume

(X,D) =M := (A1, 0)⊗r ⊗ (S, ∅) for S ∈ Smpro .

On the other hand, by Corollary 2.5, we have an exact sequence

0→ F (Y,Ered)→ F (Y − Ered, ∅)→
⊕
ξ∈E(0)

F (Y h
|ξ − ξ, ∅)

F (Y h
|ξ , ξ)

.

Hence, we may replace Y with its Nisnevich neighborhood of a generic point ξ of E. Using the
assumption that k is perfect, we may then assume the following condition (♠). Recall that α is
by definition an integral closed subscheme of (Y − E)× (X −D) finite surjective over Y − E,
and its closure α in Y ×X is finite surjective over Y .

(♠) Let Y ′ be the normalization of α and E′ := E ×Y Y ′. Then X, Y , E and E′ are irreducible,
and α, Y ′, Ered and E′red are essentially smooth over k.

Let g : Y ′ → Y and f : Y ′ → X be the induced maps. We have E′ = g∗E ≥ f∗D as Cartier
divisors on Y ′ by the modulus condition for α. Hence, these maps induce

F (X,D)
f∗−→ F (Y ′, E′) g∗−→ F (Y,E).

We claim that α∗ : F (X,D)→ F (Y,E) agrees with this map. Indeed, this follows from the
equality

Γf ◦t Γg = α ∈ Cor(Y − E,X −D),

where tΓg ∈ Cor(Y − E, Y ′ − E′) is the transpose of the graph of g and Γf ∈ Cor(Y ′ − E′,
X −D) is the graph of f . By definition this follows from the equality

tΓg ×Y ′−E′ Γf = α ⊂ (Y − E)× (X −D)

which one can check easily, noting that Y ′ → α is an isomorphism over α since α is regular
by (♠). Then we get a commutative diagram

F (Y ′, E′red)

↪→
��

F (Y ′, Ered ×Y Y ′)
g∗

��

↪→
��

F (Y,Ered)

↪→
��

F (X,D)
f∗

�� F (Y ′, E′)
g∗

�� F (Y,E)

where the top inclusion comes from the inequality Ered ×Y Y ′ ≥ E′red as Cartier divisors on Y ′

thanks to the semipurity of F (cf. § 1(16)). Hence, it suffices to show f∗(F (X,D)) ⊂ F (Y ′, E′red).
By replacing (Y,E) with (Y ′, E′), we may now assume that α is induced by a morphism f : Y →
X = Ar × S. Then α factors in MCor as

(Y,E) i−→ (A1, 0)⊗r ⊗ (Y, ∅)→ (A1, 0)⊗r ⊗ (S, ∅),
where the first map is induced by the map

i = (prAr ◦ f, idY ) : Y → Ar × Y,
and the second is induced by

idAr × (prS ◦ f) : Ar × Y → Ar × S.
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Note that i is a section of the projection Ar × Y → Y . Thus, we are reduced to show-
ing i∗(F ((A1, 0)⊗r ⊗ (Y, ∅))) ⊂ F (Y,Ered). By Proposition 3.2 this follows from the following
claim. �
Claim 4.3.1. Take a ∈ F ((A1, 0)⊗r ⊗ (Y, ∅)). There exists an open neighborhood U ⊂ Y of the
generic point of E such that for every function field K over k and every δ = (δ0, . . . , δe−1, δe) ∈
mc(UK) with ξ := δe−1 ∈ E(0)

K and e = dim(Y ), we have

(i∗(a)K , γ)YK/K,δ = 0 ∀γ ∈ KM
e (OYK ,ξ,mξ)

for the pairing from (3.0.4):

(−,−)YK/K,δ : F (K(Y ))⊗KM
d (K(Y ))→ F (K).

Proof. After replacing Y by an open neighborhood of the generic point of E, we may assume
that Y = Spec(A) is affine and Ered = Spec(A/(π)) for π ∈ A and, moreover, that writing

Ar × Y = SpecA[x1, . . . , xr], (A1, 0)⊗r ⊗ (Y, ∅) = (Ar
Y , {x1 · · ·xr = 0}),

we have
i(Y ) =

⋂
1≤i≤r

{xi − uiπmi = 0} with mi ∈ Z≥0, ui ∈ A×.

Let δ = (δ0, . . . , δe) be as in the claim and put δ′ = (δ0, . . . , δe−1) ∈ mc((Ered)K). Put X̃K =
Ar × YK and F = {π = 0} ⊂ X̃K . Note d := dim(X̃K) = e+ r. Let zj for e ≤ j ≤ d− 1 be the
generic point of

Zj =
⋂

1≤i≤d−j
{xi − uiπmi = 0} ⊂ X̃K

which lies over δe,5 and wj for e− 1 ≤ j ≤ d− 2 be the generic point of

Wj = F ∩ Zj+1 = {π = x1 = · · · = xd−j−1 = 0}
which is contained in the closure of zj+1. Note dim(Zj) = dim(Wj) = j and the section i induces
isomorphisms

YK � Ze and (Ered)K �We−1. (4.3.2)

Let σ = (i(δ′), we, . . . , wd−2, η1, ν) ∈ mc(X̃K), where ν is the generic point of X̃K lying over δe, η1

is the generic point of D1 = {x1 = 0} ⊂ X̃K contained in the closure of ν, and i(δ′) ∈ mc(We−1)
is the image of δ′ under (4.3.2). Take any γ ∈ KM

e (OYK ,ξ,mξ) and put

β =
{
ι(γ),

u1π
m1 − x1

u1πm1
, . . . ,

urπ
mr − xr
urπmr

}
∈ KM

d (OX̃K ,ν
), (4.3.3)

where ι : KM
e (OYK ,δe)→ KM

e (OX̃K ,ν
) is induced by the projection X̃K → YK . For a ∈

F ((A1, 0)⊗r ⊗ (Y, ∅)) and its restriction aK ∈ F ((A1, 0)⊗r ⊗ (YK , ∅)), we have

0 = (aK , β)X̃K/K,σ
= −

∑
τ∈X̃(1)

K −{η1}
τ>wd−2

(aK , β)X̃K/K,(i(δ′),we,...,wd−2,τ,ν)

= −(aK , β)X̃K/K,(i(δ′),we,...,wd−2,zd−1,ν)

= ±((aK)|Zd−1
, β1)Zd−1/K,(i(δ′),we,...,wd−2,zd−1),

5 Although Y is assumed to be irreducible, YK may not be so and possibly a finite product of schemes essentially
smooth over k, noting that k is perfect.
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β1 =
{
ι1(γ),

u2π
m2 − x2

u2πm2
, . . . ,

urπ
mr − xr
urπmr

}
∈ KM

d−1(OZd−1,zd−1
),

where ι1 : KM
e (OYK ,δe)→ KM

e (OZd−1,zd−1
) is induced by the dominant map Zd−1 → YK induced

by the projection X̃K → YK . The first equality follows from § 3 (HS3) applied to D1 ⊂ X̃K ,
noting that β lies in K

M
d (OX̃K ,η1

,mη1) since (u1π
m1 − x1)/u1π

m1 ∈ 1 + x1OX̃K ,η1
. The second

follows from (HS4). The third equality holds since zd−1 is the unique τ ∈ X̃(1)
K − {η1} such that

τ > wd−2 and (aK , β)X̃K/K,(i(δ′),we,...,wd−2,τ,ν)
may not vanish, which follows from (HS2), noting

that ι(γ)|F = 0. The final equality follows from (HS2). When r = 1, the last term in the above
formula is equal to ((aK)|YK

, γ)YK/K,δ by (4.3.2), so that the proof is complete. When r > 1, we
further get

0 = ((aK)|Zd−1
, β1)Zd−1/K,(i(δ′),we,...,wd−2,zd−1)

= −
∑

τ∈Z(1)
d−1−{wd−2}
τ>wd−3

((aK)|Zd−1
, β1)Zd−1/K,(i(δ′),we,...,wd−3,τ,zd−1)

= −((aK)|Zd−1
, β1)Zd−1/K,(i(δ′),we,...,wd−3,zd−2,zd−1)

= ±((aK)|Zd−2
, β2)Zd−2/K,(i(δ′),we,...,wd−3,zd−2),

β2 =
{
ι2(γ),

u3π
m3 − x3

u3πm3
, . . . ,

urπ
mr − xr
urπmr

}
∈ KM

d−1(OZd−2,zd−2
),

where ι2 : KM
e (OYK ,δe)→ KM

e (OZd−2,zd−2
) is induced by the dominant map Zd−2 → YK induced

by the projection X̃K → YK . The above equalities hold by the same arguments as above, except
that for the third equality there are a priori two τ ∈ Z(1)

d−1 − {wd−2} with τ > wd−3 for which
((aK)|Zd−1

, β1)Zd−1/K,(i(δ′),we,...,wd−3,τ,zd−1) may not vanish. One is zd−2 and the other is the generic
point η2 of Zd−1 ∩D2 with D2 = {x2 = 0} ⊂ X̃K which is contained in the closure of zd−1.
But ((aK)|Zd−1

, β1)Zd−1/K,(i(δ′),we,...,wd−3,η2,zd−1) = 0. Indeed, (aK)|Zd−1
∈ F (Spec(OZd−1,η2), η2)

since Zd−1 and D2 intersect transversally in X̃K . Hence, the vanishing follows from (HS3)
applied to Zd−1 ∩D2 ⊂ Zd−1, noting that

(
(u2π

m2 − x2)/u2π
m2

)
|Zd−1

∈ 1 + x2OZd−1,η2 so that

β1 ∈ KM
d (OZd−1,η2 ,mη2). Repeating the same arguments, we finally get

0 = ((aK)|Ze
, ιr(γ))Ze/K,(i(δ′),ze) = ((aK)|YK

, γ)YK/K,δ,

where ιr : KM
e (OYK ,δe)→ KM

e (OZe,ze) is induced by the isomorphism Ze → YK induced by the
projection X̃K → YK and the second equality follows from (4.3.2). This completes the proof of
the claim and Theorem 4.2. �

Definition 4.4. For F ∈MNSTlog and an integer i ≥ 0, consider the association

H i
log(−, F ) : MCorfin

ls → Ab ; (X,D)→ H i(XNis, F(X,Dred)).

By the definition this gives a presheaf on MCorfin
ls , which we call the ith logarithmic cohomology

with coefficient F .
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5. Invariance of logarithmic cohomology under blowups

Retain the notation of § 4.

Definition 5.1. Let Λfin
ls be the class of morphisms ρ : (Y,E)→ (X,D) in MCorfin

ls satisfying
the following conditions.

(a) ρ is induced by a proper morphism ρ : Y → X inducing an isomorphism Y \E −→ X\D and
E = ρ∗D.

(b) Zariski locally on X, ρ : Y → X is the blowup of X in a smooth center Z ⊂ D which is
normal crossing to D.

Here, a smooth Z contained in D is normal crossing to D if, letting D1, . . . , Dn be the irre-
ducible components of D, there exists a subset I ⊂ {1, . . . , n} such that Z ⊂ ⋂

i∈IDi and Z is
not contained in Dj for any j �∈ I and intersects

∑
j �∈I Dj transversally. Note that the condition

is equivalent to that called strict normal crossing in [BPØ22, Definition 7.2.1].

Theorem 5.2. For F ∈ CIτ,spNis and ρ : Y → X in Λfin
ls , we have

ρ∗ : H i
log(X , F ) ∼= H i

log(Y, F ) ∀i ≥ 0. (5.2.1)

Proof. Write Y = (Y,E) and X = (X,D). First we prove the theorem for i = 0. We may assume
that D is reduced and E = ρ∗D. By [KMSY21a, Proposition 1.9.2 b)], ρ is invertible in MCor,
so that ρ∗ : F (X ) ∼= F (Y). Since this factors through F (Y,Ered) by Theorem 4.2, we get (5.2.1)
for i = 0.

To show (5.2.1) for i > 0, it suffices to prove Riρ∗F(Y,Ered) = 0. The problem is Nisnevich
local, so we may assume that ρ is induced by a blowup ρ : Y → X in a smooth center Z ⊂ D
normal crossing to D. By [KS21, Corollary 9], Nisnevich locally around a point of Z, (X,D) is
isomorphic to

(Ac, L1 + · · ·+ Lr)⊗W with W = (W,W∞) ∈MCorls,

where Ac = Spec k[t1, . . . , tc] with c = codimz(Z,X) and Li = V (ti) for i = 1, . . . , r with
1 ≤ r ≤ c, and Z corresponds to 0×W . Hence, the theorem follows from the following
proposition. �
Proposition 5.3. Let F ∈ CIτ,spNis and W = (W,W∞) ∈MCorls. Let An = Spec k[t1, . . . , tn]
and put Li = V (ti) for 1 ≤ i ≤ n. Let ρ : Y → An be the blowup at the origin 0 ∈ An and
L̃i ⊂ Y be the strict transforms of Li for 1 ≤ i ≤ n and E = ρ−1(0) ⊂ Y . For any 1 ≤ r ≤ n, we
have

RiρW∗F(Y,L̃1+···+L̃r+E)⊗W = 0 for i ≥ 1, (5.3.1)

where ρW := ρ× idW : Y ×W → A2 ×W .

Lemma 5.4. Proposition 5.3 holds for n = 2.

Proof. The case r = 1 is proved in [BRS22, Lemma 2.13] and we show the case r = 2.6 Put
D = L1 + L2. By the case i = 0 of Theorem 5.2, we get

F(A2,D)⊗W ∼= ρW∗F(Y,L̃1+L̃2+E)⊗W . (5.4.1)

Set
F := F(Y,L̃1+L̃2+E)⊗W ,

6 The following argument is adopted from [BRS22, Lemma 2.13], but the present case is easier.
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and A2
W = A2 ×W with the projection p : A2

W →W . Since RiρW∗F for i ≥ 1 is supported in
0×W , we have

RiρW∗F = 0⇐⇒ p∗RiρW∗F = 0

⇐⇒ (p∗RiρW∗F)w = 0 ∀w ∈W
⇐⇒ H0(A2

Ww
, RiρW∗F) = 0 ∀w ∈W,

where Ww is the henselization of W at w. Hence, it suffices to show H0(A2
W , R

iρW∗F) = 0,
assuming W is henselian local. Then we have

Hj(A2
W , R

iρW∗F) = 0, ∀i, j ≥ 1.

By (5.4.1) and [BRS22, Lemma 2.10],

H i(A2
W , ρW∗F) = H i(A2

W , F(A2,D)⊗W) = 0.

Thus, the Leray spectral sequence yields

H0(A2
W , R

iρW∗F) = H i(Y ×W,F), i ≥ 0,

and we have to show that this group vanishes for i ≥ 1. We can write

A2 = Spec k[x, y] and L1 = V (x), L2 = V (y) ⊂ A2.

Then we have

Y = Proj k[x, y][S, T ]/(xT − yS) ⊂ A2 ×P1.

Denote by

π0 : Y ↪→ A2 ×P1 → P1 = Proj k[S, T ]

the morphism induced by projection, and let π : Y ×W → P1
W be its base change. Then π0

induces an isomorphism E � P1, and we have

L̃1 = π−1
0 (0), L̃2 = π−1

0 (∞). (5.4.2)

Set s = S/T = x/y and write

P1\{∞} = A1
s := Spec k[s], P1\{0} = Spec k[1s ].

Set U := A1
s ×W , V := (P1\{0})×W and

U := (A1
s, 0)⊗W, V := (P1\{0},∞)⊗W.

We have

π−1(U) = A1
y × U, π−1(V ) = A1

x × V,
and the restriction of π to these open subsets is given by projection. Furthermore, E ×W ⊂ Y
is defined by y = 0 on π−1(U) and by x = 0 on π−1(V ). In view of (5.4.2), we have

F|π−1(U) = F(A1
y ,0)⊗U , F|π−1(V ) = F(A1

x,0)⊗V . (5.4.3)

Thus, [BRS22, Lemma 2.10] yields

Rjπ∗F = 0 for j ≥ 1,

and it remains to show

H i(P1
W , π∗F) = 0 for i ≥ 1, (5.4.4)
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where P1
W = P1 ×W . For this consider the map

a0 : Y → A1
x ×P1

which is the closed immersion Y ↪→ A2 ×P1 followed by the projection A2 → A1
x. Let a : Y ×

W → A1
x ×P1 ×W be its base change. In view of (5.4.2), the map a induces a morphism in

MCor,

α : (Y, L̃1 + L̃2 + E)⊗W → (A1
x, 0)⊗ (P1,∞)⊗W,

which is an isomorphism over (A1
x, 0)⊗ (P1\{0},∞)⊗W. Setting

F1 := Hom(Ztr(A1
x, 0), F ) ∈ CIτ,spNis ,

it induces a map of Nisnevich sheaves on P1
W ,

π∗(α∗) : F1,(P1,∞)⊗W → π∗F ,
which becomes an isomorphism over (P1 − {0})×W . Hence, (5.4.4) follows from

H i(P1
W , F1,(P1,∞)⊗W) = 0 for i ≥ 1,

which follows from [Sai20, Theorem 0.6]. �

Lemma 5.5. Let N > 2 be an integer and assume that Proposition 5.3 holds for n < N . Let
(X,D) ∈MCorls and Z ⊂ X be a smooth integral closed subscheme with 2 ≤ codim(Z,X) =:
c < N . Assume

D = D1 + · · ·+Dr +D′ with r ≤ c,
where D1, . . . , Dr are distinct and reduced irreducible components of D containing Z, and D′ is
an effective divisor on X such that none of the component of D′ contains Z and Z is transversal
to |D′|. Let ρ : Y → X be the blowup of X in Z, let D̃i and D̃′ ⊂ Y be the strict transforms of
Di and D′ respectively, and let EZ = ρ−1(Z). Then, for all W = (W,W∞) ∈MCorls,

RiρW∗F(Y,D̃1+···+D̃r+EZ+D̃′)⊗W = 0 for i ≥ 1,

where ρW : Y ×W → X ×W denotes the base change of ρ.

Proof. This proof is adapted from [BRS22, Lemma 2.14]. The question is Nisnevich local around
the points in Z ×W . Let z ∈ Z ×W be a point and set A := OhX×W,z. For V ⊂ Y ×W , we
denote V(z) := V ×X×W SpecA. By assumption we find a regular system of local parameters
t1, . . . , tm of A, such that

(Di ×W )(z) = V (ti) for 1 ≤ i ≤ r, (Z ×W )(z) = V (t1, . . . , tc),

(D′ ×W )(z) = V (tec+1

c+1 · · · t
em0
m0 ) with c+ 1 ≤ m0 ≤ m,

(X ×W∞)(z) = V (t
em0+1

m0+1 · · · t
em1
m1 ) with m0 ≤ m1 ≤ m.

Letting K be the residue field of A, we can choose a ring homomorphism K ↪→ A which is a
section of A→ K. Then we obtain an isomorphism

K{t1, . . . , tm} −→ A.

Let ρ1 : Ãc → Ac be the blowup in 0. By the above,

ρW : (Y, D̃1 + · · ·+ D̃r + EZ + D̃′)⊗W → (X,D)⊗W
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is Nisnevich locally around z isomorphic over k to the morphism

(Ãc, L̃1 + · · ·+ L̃r + E)⊗W ′ → (Ac, L1 + · · ·+ Lr)⊗W ′,(
W ′ =

(
Am−c
K ,

( m1∏
i=c+1

tei
i

)))

induced by a map (Ãc, L̃1 + · · ·+ L̃r + E)→ (Ac, L1 + · · ·+ Lr) as in Proposition 5.3. Hence,
the statement follows from the proposition for n = c < N . �

Proof of Proposition 5.3. The proof is by induction on n ≥ 2. The case n = 2 follows from
Lemma 5.4. Assume that n > 2 and that the proposition is proven for Am with m < n. For r = 1,
Proposition 5.3 is proved in [BRS22, Theorem 2.12]. Assume that r ≥ 2. Let Z := L1 ∩ L2 ⊂ An

and Z̃ ⊂ Y be the strict transform of Z. Denote by ρ′ : Y ′ → Y the blowup of Y in Z̃, let
L̃′i, E

′ ⊂ Y ′ be the strict transforms of L̃, E respectively, and let E′′ = (ρ′)−1(Z̃). Note that
Z̃ = L̃1 ∩ L̃2 intersecting transversally with L̃3 + · · ·+ L̃r + E and codim(Z̃, Y ) = 2. Hence, by
Lemma 5.5,

Riρ′W∗F(Y ′,L̃′
1+···+L̃′

r+E′+E′′)⊗W = 0 for i ≥ 1.

Since Theorem 5.2 has been proved for i = 0, we have

ρ′∗F(Y ′,L̃′
1+···+L̃′

r+E′+E′′)⊗W = F(Y,L̃1+···+L̃r+E)⊗W .

Hence, we obtain

RiρW∗F(Y,L̃1+···+L̃r+E)⊗W = Ri(ρρ′)W∗F(Y ′,L̃′
1+···+L̃′

r+E′+E′′)⊗W . (5.5.1)

Denote by σ : Ŷ → An the blowup in Z, let L̂i ⊂ Ŷ be the strict transform of Li, and let
Ξ = σ−1(Z). By Lemma 5.5 we get

RiσW∗F(Ŷ ,L̂1+···+L̂r+Ξ)⊗W = 0 for i ≥ 1. (5.5.2)

Denote by σ′ : Ŷ ′ → Ŷ the blowup in Ẑ = σ−1(0) ⊂ Ξ, let L̂′i, Ξ′ ⊂ Ŷ ′ be the strict transforms
of L̂i, Ξ respectively, and let Ξ′′ = σ′−1(Ẑ). Note that Ẑ ⊂ L̂3 ∩ · · · ∩ L̂n ∩ Ξ and codim(Ẑ, Ŷ ) =
n− 1 and Ẑ intersects transversally with L̂1 + L̂2. Thus, by Lemma 5.5 and the case i = 0 of
Theorem 5.2, we obtain

Rσ′W∗F(Ŷ ′,L̂′
1+···+L̂′

r+Ξ′+Ξ′′)⊗W = F(Ŷ ,L̂1+···+L̂r+Ξ)⊗W . (5.5.3)

Finally, by [BRS22, Lemma 2.15], there is an isomorphism of An ×W -schemes

(Ŷ ′, L̂′1, . . . , L̂r,Ξ
′,Ξ′′) ∼= (Y ′, L̃′1, . . . , L̃

′
r, E

′, E′′). (5.5.4)

Altogether we obtain, for i ≥ 1,

RiρW∗F(Y,L̃1+···+L̃r+E)⊗W = Ri(ρρ′)W∗F(Y ′,L̃′
1+···+L̃′

r+E′+E′′)⊗W , by (5.5.1),

= Ri(σσ′)W∗F(Ŷ ′,L̂′
1+···+L̂′

r+Ξ′+Ξ′′)⊗W , by (5.5.4),

= RiσW∗F(Ŷ ,L̂1+···+L̂r+Ξ)⊗W , by (5.5.3),

= 0, by (5.5.2).

This completes the proof of the proposition. �
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Remark 5.6. For simplicity, we write

H i
log(−, F ) = H i

log(−, ωCIF ) for F ∈ RSCNis.

By [RS21a, Corollary 6.8], if ch(k) = 0 and F = Ωi, we have

H i
log(−,Ωi) = H i(X,Ωi(log |D|) for (X,D) ∈MCorls.

Hence, H i
log(−, F ) for F ∈ RSCNis is a generalization of cohomology of sheaves of logarithmic

differentials.

6. Relation with logarithmic sheaves with transfers

In this section we use the same notation as [BPØ22].
Let lSm be the category of log smooth and separated fs log schemes of finite type over the

base field k and SmlSm ⊂ lSm be the full subcategory consisting of objects whose underlying
schemes are smooth over k. Let lCor be the category with the same objects as lSm and whose
morphisms are log correspondences defined in [BPØ22, Definition 2.1.1]. Let lCorSmlSm ⊂ lCor
be the full subcategory consisting of all objects in SmlSm.

Let PShltr be the category of additive presheaves of abelian groups on lCor and Shvltr
dNis ⊂

PShltr be the full subcategory consisting of those F whose restrictions to lSm are dividing
Nisnevich sheaves (see [BPØ22, Definition 3.1.4]). It is shown in [BPØ22, Theorem 1.2.1 and
Proposition 4.7.5] that Shvltr

dNis is a Grothendieck abelian category and there is an equivalence
of categories

Shvltr
dNis � Shvltr

dNis(SmlSm), (6.0.1)

where the right-hand side denotes the full subcategory of the category PShltr(SmlSm) of addi-
tive presheaves of abelian groups on lCorSmlSm consisting of those F whose restrictions to
SmlSm are dividing Nisnevich sheaves.

We now construct a functor

Log : MNSTlog → Shvltr
dNis. (6.0.2)

For X = (X,M) ∈ SmlSm, we put XMP = (X, ∂X), where ∂X ⊂ X is the closed subscheme
consisting of the points where the log structure M is not trivial. By [BPØ22, Lemma A.5.10],
∂X with reduced structure is a normal crossing divisor on X, so that we can view XMP as an
object of MCorls. For F ∈MPSTlog and X ∈ SmlSm, we put

F log(X) = F (XMP). (6.0.3)

Take Y ∈ SmlSm and α ∈ lCor(Y,X). By [BPØ22, Definition 2.1.1 and Remark 2.1.2(iii)], we
have

α ∈MCorfin((Y, n · ∂Y), (X, ∂X)) for some n > 0,

where n · ∂Y ↪→ Y is the nth thickening of ∂Y ↪→ Y . By the assumption F ∈MPSTlog, the
induced map

F log(X) = F (XMP) α∗−→ F (Y, n · ∂Y)

factors through F log(Y) = F (Y, ∂Y) ⊂ F (Y, n · ∂Y) and we get a map

α∗ log : F log(X)→ F log(Y).
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Moreover, for a map γ : F → G in MPSTlog, the diagram

F log(X)
γ

��

α∗ log

��

Glog(X)

α∗ log

��

F log(Y)
γ

�� Glog(Y)

is obviously commutative. Hence, the assignment X → F log(X ) gives an object F log of
PShltr(SmlSm) and we get a functor

Log : MPSTlog → PShltr(SmlSm), F → F log. (6.0.4)

By the definitions of sheaves ([KMSY21a, Definition 1], [BPØ22, Definition 3.1.4] and [KMSY21a,
Proposition 1.9.2]), this induces a functor

MNSTlog → Shvltr
dNis(SmlSm)

which induces the desired functor (6.0.2) using (6.0.1). By the construction, for F ∈MNSTlog

and X ∈ SmlSm with X = XMP ∈MCorls, we have

H i
Nis(X,FX ) = H i

sNis(X, F
log) (F log = Log(F )), (6.0.5)

where the right-hand side is the cohomology for the strict Nisnevich topology (see [BPØ22,
Definition 4.3.1]).

Theorem 6.1. For F ∈ CIτ,spNis , F log = Log(F ) ∈ Shvltr
dNis is strictly �-invariant in the sense

of [BPØ22, Definition 5.2.2]. For X ∈ SmlSm with X = XMP ∈MCorls, we have a natural
isomorphism

H i
Nis(X,FX ) � HomlogDMeff (M(X), F log[i]), (6.1.1)

where logDMeff is the triangulated category of logarithmic motives defined in [BPØ22,
Definition 5.2.1].

Proof. Let XSm
div be the category of log modifications Y→ X such that Y ∈ SmlSm (see [BPØ22,

Definition A.11.12]) and XSm
divsc ⊂ XSm

div be the full subcategory given by those maps Y→ X

that are isomorphic to compositions of log modifications along smooth centers (see [BPØ22,
Definitions 4.4.4 and A.14.10]). We have isomorphisms

H i
Nis(X,FX )

(6.0.5)� H i
sNis(X, F

log)
(∗1)� lim−→

Y∈XSm
divsc

H i
sNis(Y, F

log)

(∗2)� lim−→
Y∈XSm

div

H i
sNis(Y, F

log)
(∗3)� H i

dNis(X, F
log),

where (∗2) follows from [BPØ22, Corollary 4.4.5] and (∗3) from [BPØ22, Theorem 5.1.8], and
(∗1) is a consequence of Theorem 5.2 in view of (6.0.5) and the fact that a log modification of
X = (X,M) ∈ SmlSm along smooth center is induced Zariski locally by a blowup of X in an
intersection of irreducible components of ∂X so that it corresponds to a morphism in Λfin

ls from
Definition 5.1.

Hence, the strict �-invariance of F log follows from [Sai20, Theorem 0.6]. Finally, (6.1.1)
follows from [BPØ22, Proposition 5.2.3]. �

377

https://doi.org/10.1112/S0010437X22007862 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007862


S. Saito

We now consider the composite functor

Log′ : RSCNis
ωCI

−→ CIτ,spNis

Log−→ CIltr
dNis,

where CIltr
dNis ⊂ Shvltr

dNis is the full subcategory consisting of strictly �-invariant objects. By
[BM12, Theorem 5.7], CIltr

dNis is a Grothendieck abelian category.

Lemma 6.2. Log and Log′ have the same essential image.

Proof. This follows directly from the construction and Corollary 2.6(3). �
In what follows, we let

Log : RSCNis → CIltr
dNis : F → F log (6.2.1)

denote Log′ defined as above. By (6.0.3), we have

F log(X, triv) = F (X) for F ∈ RSCNis, X ∈ Sm, (6.2.2)

where (X, triv) denotes the log scheme with the trivial log structure.

Theorem 6.3. Log is exact and fully faithful.

Proof. First we prove the full faithfulness. Faithfulness follows from (6.2.2). Let F,G ∈ RSCNis

and γ : F log → Glog be a map in Shvltr
dNis. By (6.2.2) it induces maps γX : F (X)→ G(X) for all

X ∈ Sm. They are compatible with the action of Cor since by [BPØ22, Example 2.1.3(3)],

Cor(Y,X) = lCor(Y, triv), (X, triv)) for X,Y ∈ Sm.

Thus, γX for X ∈ Sm give a map γRSCNis
: F → G in RSCNis. To see Log(γRSCNis

) = γ, it
suffices by (6.0.1) to show that Log(γRSCNis

) and γ induce the same map F log(X)→ Glog(X) for
X ∈ SmlSm. If X has the trivial log structure, this follows immediately from the construction
of γRSC. The general case follows from this in view of the commutative diagram

F log(X)
γ

��

j∗
��

Glog(X)

j∗
��

F log(X\∂X, triv)
γ

�� Glog(X\∂X, triv)

where j∗ are induced by the natural map (X\∂X, triv)→ X of log schemes and are injective by
the construction and the semipurity of ωCIF . This completes the proof of the full faithfulness.

Next we show the exactness of Log. It suffices to show the following claim.

Claim 6.3.1. Given an exact sequence 0→ F → G→ H → 0 in RSCNis, the induced sequence

0→ F log(X)→ Glog(X)→ H log(X)→ 0

is exact for every X ∈ SmlSm with X henselian local.

Indeed, by the definition of Log, this is reduced to the exactness of

0→ ωCIF (XMP)→ ωCIG(XMP)→ ωCIH(XMP)→ 0,

which follows from Corollary 2.6(2). This completes the proof of Theorem 6.3. �
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BRS22 F. Binda, K. Rülling and S. Saito, On the cohomology of reciprocity sheaves, Forum Math.
Sigma 10 (2022), E72.

KMSY21a B. Kahn, H. Miyazaki, S. Saito and T. Yamazaki, Motives with modulus, I: modulus sheaves
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RS21b K. Rülling and S. Saito, Ramification theory of reciprocity sheaves, I: Zariski-Nagata purity,
J. Reine Angew., to appear. Preprint (2021), arXiv:2111.01459.
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