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A family of adverse pressure gradient turbulent
boundary layers with upstream favourable
pressure gradients
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A flat-plate turbulent boundary layer (TBL) is experimentally subjected to a family of 22
favourable–adverse pressure gradients (FAPGs) using a ceiling panel of variable convex
curvature. We define FAPGs as a sequence of streamwise pressure gradients in the order
of favourable followed by adverse, similar in sequence to the pressure gradients over
the suction side of an airfoil. For the strongest pressure gradient case, the acceleration
parameter, K, varied spatially from 6 × 10−6 to −4.8 × 10−6. The adverse pressure
gradient (APG) region of this configuration is studied using particle image velocimetry in
the streamwise–wall-normal plane. The statistics of the APG TBL show that the upstream
favourable pressure gradient (FPG) exerts a strong and lasting downstream influence, and
that the rapid spatial changes in the pressure gradients imposed cause an internal boundary
layer to grow within the TBL for 15 of the cases studied. The internal layer typically
occupies 20 % of the boundary layer thickness and dominates the boundary layer response,
containing the peak turbulent production, peak strength and population of vortices, and
most of the spectral energy content of the flow. The outer layer, on the other hand, develops
in the APG region without considerable changes to the state dictated by the upstream FPG.
These trends are in contrast to APG TBLs that originate from a zero pressure gradient
region, where the outer/wake region is known to dominate TBL response. The observed
changes are quantified across the family of FAPGs imposed.
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1. Introduction

A canonical turbulent boundary layer (TBL) is one that is developed over a smooth, flat
wall, under zero pressure gradients (ZPGs) and a statistically stationary free stream. The
present paper reports on deviations from canonical behaviour of a TBL when a range
of streamwise pressure gradients are imposed, to develop the state of knowledge on
non-canonical TBLs. Mild to strong pressure gradients that are qualitatively similar to
those over curved aerodynamic surfaces and converging–diverging ducts are chosen to be
imposed, and the response is quantified across the different pressure gradients.

The extent of departure from canonical behaviour of pressure gradient TBLs depends on
the strength and spatial variation of the pressure gradients imposed, typically quantified by
one of two non-dimensional parameters: the acceleration parameter, K ≡ (ν/U2)(dU/dx),
and the Clauser pressure gradient parameter, β = (δ∗/τw)(dP/dx), with the former more
common in favourable pressure gradient (FPG) studies and the latter in adverse pressure
gradient (APG) studies. Parameter ν is the kinematic viscosity, U and P are the velocity
and static pressure at a streamwise location x, δ∗ is the displacement thickness and τw is
the wall shear stress. Under the stabilising influence of a FPG, the TBL mean velocity
profile exhibits an enlarged viscous sublayer and buffer region, and the thickness of the
wake region is reduced (Yuan & Piomelli 2014). The existence of a logarithmic region
and its scaling depend on the strength of the FPG. For mild FPGs (K < 0.5 × 10−6),
the mean retains its universal logarithmic behaviour (Harun, Monty & Marusic 2011),
while for moderate–strong pressure gradients (0.5 × 10−6 < K < 6 × 10−6), some studies
have shown that a logarithmic region exists but lacks universality, i.e. the slope 1/κ

and constant B of the log law vary significantly (Piomelli, Balaras & Pascarelli 2000;
Dixit & Ramesh 2008; Bourassa & Thomas 2009), while others have shown a vanishing
logarithmic region under the pressure gradient (Patel & Head 1968; Badri Narayanan &
Ramjee 1969). The Reynolds stresses of the boundary layer decay under a FPG, and this
decay is more pronounced in the outer region due to suppressed turbulence production in
the outer region (Joshi, Liu & Katz 2011; Volino 2020). For a strong enough FPG, the
TBL enters a process of retransition to laminar flow, known as relaminarisation. This is
marked by a significant decrease in skin friction coefficient, Cf , and a rapid suppression of
turbulent stresses. Upon removal of the pressure gradient, the TBL quickly recovers from
the relaminarisation process, but recovery to the canonical state takes place over several
initial boundary layer thicknesses (Ichimiya, Nakamura & Yamashita 1998). The APGs
create nearly the opposite effect on TBLs as FPGs. The mean velocity develops a thinner
viscous sublayer and a thicker wake region. The departure from universal logarithmic
behaviour depends on β, with significant departures seen for β > 2 (Gungor, Maciel &
Gungor 2022). An increase in production in the outer region causes a strengthening outer
peak in the Reynolds stresses, regardless of the choice of local inner or outer scaling,
even for mild APGs. This is attributed to an increase (in energy and/or population) of
large-scale structures in the outer region, which manifests in the turbulent spectrum (Vila
et al. 2020a). The increased large scales are considered responsible for other observations
of APG TBLs including an increase in skewness and nearer-wall amplitude modulation
(Monty, Harun & Marusic 2011; Lee 2017). If the destabilising effect of the APG is
sufficiently large, backflow events occur near the wall, and this is followed by either
shallow or large-scale separation.

One of the complexities in understanding pressure gradient TBLs stems from the strong
influence of upstream conditions, dubbed ‘history effects’ (Vinuesa et al. 2017). Rather
than the local value of non-dimensional pressure gradient, the cumulative effect of its
upstream variation governs the statistics and structure of the TBL at the streamwise
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station considered. Scaling laws that account for history effects have been proposed
(Schatzman & Thomas 2017; Maciel et al. 2018). However, in more complex pressure
gradient impositions, the pressure gradients alternate in sign between favourable and
adverse. Since favourable and adverse pressure gradients evoke essentially opposing
responses from the boundary layer, it is less clear how and if their effects sum when
they act sequentially. The studies that have probed such configurations report deviations
from well-known pressure gradient effects of the mean, turbulent stresses and the
skin friction. These include observations of a more rapid departure from standard law
behaviours compared with when a continuously adverse or favourable pressure gradient
of similar strength is imposed, asymmetric recovery depending on the exact sequence
of favourable–adverse pressure gradients (FAPGs), and the appearance of multiple knee
points in the Reynolds stress profiles (Tsuji & Morikawa 1976; Bandyopadhyay & Ahmed
1993; Webster, DeGraaff & Eaton 1996; Cavar & Meyer 2011; Fritsch et al. 2021).

The formation of knee points (inflectional points) in the stress profiles has been the
most consistent observation across flows with rapid changes in free-stream or boundary
conditions and is known to be a signature of internal boundary layers in the flow.
In a study of a TBL over a curved hill, Baskaran, Smits & Joubert (1987) observed
inflectional stress profiles originating at points of abrupt changes in surface curvature
and attributed them to the formation of an internal layer within the external TBL. The
internal layer grew to establish its own inner and outer regions, dominating the skin
friction behaviour and the process of flow separation in the APG region of the hill,
while the external layer developed over the hill as a free shear layer. The triggering of
internal layers by discontinuities in surface curvature has also been observed by Webster
et al. (1996) in their experimental study, where they noted the formation of two internal
layers, one at the switch from concave to convex curvature at the leading edge and one
at the trailing edge where the curvature changed from convex to concave. In a large-eddy
simulation study of a geometry similar to that of Webster et al. (1996), Wu & Squires
(1998) confirmed the formation of internal layers at surface discontinuity changes and
suggested that a quasi-step change in skin friction due to changes in pressure gradient
and surface curvature triggered the formation of internal layers by selectively modifying
the near-wall production of turbulent stresses. A series of streamwise pressure gradient
changes (zero–adverse–favourable–adverse–favourable) were imposed on a flat wall by
Tsuji & Morikawa (1976) using a wavy ceiling geometry. The pressure gradient switch
from favourable to adverse was shown to trigger an internal layer. It was argued that
although there were no direct changes imposed to the surface/wall conditions to trigger
a new layer as in the case of the hill/bump geometries of Baskaran et al. (1987) and
Webster et al. (1996), the free-stream pressure gradient change was akin to a change in
the wall-normal wall shear stress gradient.

Recently, the study of smooth bump geometries (i.e. without jumps in surface curvature)
has gained traction as it represents a canonical version of the sequential pressure gradients
often encountered in engineering situations like over the suction side of an airfoil.
A sequence of mild APG at the foot of the bump, strong FPG until the apex, strong APG in
the downstream half and a mild FPG at the end of the bump is imposed by this geometry,
in addition to the effects of (continuous) surface curvature (Williams et al. 2020; Balin
& Jansen 2021; Uzun & Malik 2021). Globally, the stabilising effect of the strong FPG
until the bump apex has been shown to cause the APG TBL to become more resilient to
flow separation (Webster et al. 1996; Balin & Jansen 2021), while, locally, the formation
and growth of internal layers have been shown to dominate the flow statistics, skin friction
behaviour and the mechanism of flow separation in the APG region. Kim & Sung (2006)
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also found internal layers to be responsible for significant acoustic generation at the trailing
edge of a bump. In their direct numerical simulation of the TBL over a bump, Uzun
& Malik (2021) observed that three internal layers had formed, one originating at each
pressure gradient sign change, at the foot, the apex and the tail of the bump, and discussed
their growth in the presence of each other.

From a mean momentum balance, Smits & Wood (1985) suggested that internal layers
form because of the differential ability of the inner and outer regions of the boundary layer
to adjust to pressure gradient changes, with the latter responding slower. But a rigorous
condition for their formation has not yet been established. Baskaran et al. (1987) dictated
a threshold for surface discontinuity that can trigger an internal layer. Wu & Squires (1998)
suggested that a quasi-step-change in skin friction was a sufficient condition, whereas Wu
et al. (2006) found in their study of an internal layer formed at the throat of a diffuser,
where the pressure gradient changed from mildly favourable to strongly adverse, that a
quasi-step-change in skin friction followed by a stabilisation (plateau) was a necessary
condition. A rigorous method to detect the edge of the internal layer does not exist, either.
It is well known, however, that when an internal layer does form, it is a region of strong
anisotropic turbulence within which the turbulent stresses grow rapidly and outside which
the stresses either remain frozen or slowly suppress in magnitude (Webster et al. 1996;
Wu & Squires 1998; Balin, Jansen & Spalart 2020). The effects of the formation and
growth of internal layers in these configurations are also known to present additional
challenges to lower-fidelity simulation tools in predicting TBLs with complex pressure
gradient history. These shortcomings are well summarised in Matai (2018) and some of the
on-going validation efforts involving experiments and high-fidelity simulations of TBLs
encountering pressure gradient sequences are presented in Slotnick (2019).

The present experimental investigation is aimed at gaining fundamental insights into
pressure gradient TBLs with complex spatial history. Specifically, a FAPG sequence is
imposed on a flat plate TBL, and the pressure gradient strength is statically increased from
ZPG to a strong FAPG through 22 cases. This results in a series or ‘family’ of FAPG
TBLs, allowing a refined view of the breakdown of equilibrium. The APG region of the
pressure gradient sequence is the focus of this work. The effect of the upstream FPG on
the APG TBL as the FAPG strength changes, the growth of internal layers and the coupled
effects of these two on the statistics, the turbulent production, vortex organisation and the
turbulent spectrum are studied in detail. The relatively recent studies in this area, some of
which were referenced above, have been more numerical in nature than experimental, and
the systematically acquired data in the present work additionally attempts to redress this
disproportion.

The paper is structured as follows. The experimental framework including the facility
used to generate the pressure gradient family, the strength of pressure gradients imposed
and the details of the particle image velocimetry (PIV) data acquisition are given in
§ 2. The flow statistics, vortex organisation, turbulent production and energy spectra are
presented and discussed in § 3. A summary and concluding remarks are given in § 4 along
with some interesting questions pertinent to pressure gradient sequences identified through
this work.

2. Experimental framework

2.1. Unsteady Pressure Gradients Facility
Experiments were conducted in the Unsteady Pressure Gradients Facility (UPGF), located
at the UIUC Aerodynamics Research Laboratory (figure 1). The UPGF comprises a

966 A11-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.429


A TBL subjected to favourable–adverse pressure gradients

DC

FPG APG

TEST AREA

PIV FOV

Statically / dynamically

    deformable ceiling
Flat plate TBL

Test area

DC

U

FPG APG

Test area
TBL mean within FOV

PIV FOV

UPGF

(a)

(b) (c)

Statically/dynamically

deformable ceilingFlat plate TBL

x/δ0

y/
δ 0

1 2 3

1

0

X
Y

x y

y’

x’

A B

Figure 1. Illustration of the experimental details. (a) The UPGF at UIUC. The red box bounds the test area.
(b) Close-up view of the test area illustrating the family of FAPGs being imposed on the flat plate. Distance Dc
is the vertical distance between the flat ceiling and any deflected ceiling. The field of view (FOV) for PIV is set
in the APG region and is marked by the green box. Locations A and B mark two key streamwise locations of
interest. (c) Example TBL mean computed from PIV.

boundary layer wind tunnel and a removable installation to generate steady and unsteady
streamwise pressure gradients (Parthasarathy & Saxton-Fox 2022). The wind tunnel
accesses low subsonic speeds in the range 1–40 m s−1 within a test section of dimensions
0.381 m × 0.381 m × 3.66 m. Inlet flow conditioning is achieved through honeycomb
straighteners, turbulence-reducing screens and a high contraction ratio (27 : 1). A flat
plate with a leading-edge trip is mounted within the test section spanning its entire length
in order to develop a nominally ZPG TBL. The free-stream conditions relevant to the
current tests are summarised in table 1, all measured at the centre of the PIV field of view,
including the free-stream velocity, U0, friction velocity, uτ0 , Reynolds number based on
distance from the leading edge, ReX0 , friction Reynolds number, Reτ0 , 99 % boundary layer
thickness, δ0, displacement thickness, δ∗

0 , shape factor, H0, and free-stream turbulence
intensity, TI. Friction velocity uτ0 was computed by applying the Clauser method (Clauser
1956) on the ZPG mean velocity profile obtained from PIV.

At a distance of 2.35 m from the leading edge of the flat plate, a 0.61 m section of
the ceiling is replaced with the pressure gradients installation. The installation holds a
flexible metal ceiling panel within the test section that is connected mechanically to an
actuation mechanism located above the test section. The mechanism is used to deform
the ceiling panel to the shape of an inverted convex bump of different radii, imposing
FAPG sequences of different strengths. The ceiling deformation can be performed either
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U0 (m s−1) uτ0 (m s−1) ReX0 Reτ0 δ0 (m) δ∗
0 (m) H0 TI (%)

7.6 0.34 1.23 × 106 990 0.042 0.0085 1.34 0.58

Table 1. Free-stream conditions measured at the centre of the PIV field of view for the ZPG case.

statically or dynamically, depending on whether steady or unsteady pressure gradients are
desired. The details of this set-up can be found in Parthasarathy & Saxton-Fox (2022).
For the present work, a series of steady pressure gradients were generated by statically
deforming the ceiling to 22 different curvatures. The vertical extent of deformation (Dc in
figure 1) governs the spatial strength of the pressure gradient imposed and was set to span
[1–76 mm] in the current 22 cases. The maximum deflection of Dc = 76 mm corresponds
to a minimum area ratio (A/A0)min of 40 %, where A is the cross-sectional area above the
flat plate local to a streamwise location and A0 is that upstream of the test region.

The spatial distributions of the pressure coefficient, CP, created in the test area due
to the 22 deformed states of the ceiling are shown in figure 2(a). The profiles were
computed analytically with a steady, incompressible, one-dimensional flow assumption,
using the exact geometric states of the ceiling obtained by imaging the deformed states,
and were experimentally validated to be accurate within 6 % using high-frequency pressure
measurements, the details of which can be found in Parthasarathy & Saxton-Fox (2022).
In 0 < x′/Lc < 0.5, the pressure gradient is favourable, and in 0.5 < x′/Lc ≤ 0.82, the
pressure gradient is adverse. The flow over the ceiling was found to have separated in
x′/Lc > 0.82, rendering the pressure distributions invalid after this point. The field of
view for PIV was chosen to remain within x′/Lc ≤ 0.81. The pressure gradient variations
in the test area are shown in figure 2(b,c) in terms of the acceleration parameter, K
(≡ (ν/U2

l )(dUl/dx), where Ul is the local average velocity outside the boundary layer),
and the approximate Clauser pressure gradient parameter, β0 (≡ (δ∗

0/τw0)(dP/dx), where
τw0 is the ZPG wall shear stress estimated from uτ0), valid in 0 < x′/Lc ≤ 0.81. Note that
since δ∗

0 and τw0 correspond to the ZPG TBL, the β0 distributions presented are only meant
to approximate the variation of the Clauser parameter in the test area.

2.2. Particle image velocimetry
The response of the flat-plate TBL to the pressure gradients imposed by the UPGF
were captured using planar (two-dimensional) PIV in a 150 mm × 93.75 mm (Lx × Ly,
3.57δ0 × 2.23δ0) streamwise–wall-normal plane set in the APG region starting at x′ =
0.228 or x′/Lc = 0.5. This field of view is indicated by the green box in figure 1.
A mineral-oil-based seeding was introduced at the tunnel inlet and a Terra PIV 527-80-M
dual-pulse laser was used along with a set of sheet-forming optics to illuminate the field
of view. A Phantom VEO 710L camera was used to capture the particle image pairs in a
frame straddling mode. Both non-time-resolved and time-resolved PIV data are collected
for each of the 22 FAPG impositions. The latter has only been used in the present work
for the spectral analysis presented in § 3.4. A total of 10 000 image pairs were acquired
at a rate of 0.2 kHz in the non-time-resolved dataset and 6170 image pairs at a rate of
3.755 kHz were acquired in the time-resolved dataset. The vector fields were processed
using DaVis 10.1 software using a multi-pass approach with a final interrogation window
size of 16 × 16. The resulting vector fields had a spatial resolution of �l+ = 8.9. The
time-resolved fields additionally had a temporal resolution of �t+ = 1.78. The kinematic
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Figure 2. (a) Coefficient of pressure distributions caused by the 22 deflected ceiling states. Darker greys
correspond to higher ceiling deflection (Dc). Length Lc is the length of the ceiling section. Corresponding
pressure gradient distributions are shown in (b) in terms of the acceleration parameter, K, and in (c) in terms of
the approximate Clauser pressure gradient parameter, β0, which has been computed using uτ0 , the ZPG friction
velocity. The red dashed line in each panel indicates the location until which flow over the ceiling is attached
for all test conditions and within which the PIV field of view is set.

viscosity, ν, and the friction velocity, uτ0 , were used in defining the viscous scales. A
comparison of the measured ZPG mean and streamwise root-mean-square (RMS) velocity
with direct numerical simulation of Schlatter et al. (2009) is shown in figure 3.

2.3. Strength of pressure gradients within the PIV field of view
Under the different deflections of the ceiling panel, the TBL within the PIV field of view
locally experiences a spatially strengthening APG. For higher ceiling deflections, the local
APG is stronger, and so is the upstream FPG as seen in figure 2. While the local magnitudes
of the non-dimensional parameters (K and β0 in 0.5 ≤ x′/Lc ≤ 0.81 in figure 2b,c) capture
the local APG strengths, they do not signify the presence or strengths of the upstream FPGs
that strongly affect the APG TBL response. It is an open question as to what cumulative
parameters are most important for spatially varying pressure gradients. A few candidate
parameters that may influence the total response of the system are reported in table 2, some
of which are inspired by Vinuesa et al. (2017).

The pressure gradient cases are numbered 1 through 22 in order of increasing
FAPG strength (or increasing ceiling deflection). Parameters Kmax and βmax are the
maximum K and β, respectively, realised within the test area in each case. Parameters
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Figure 3. Comparison of experimental data with benchmark direct numerical simulation (DNS) data
(Schlatter et al. 2009): (a) streamwise velocity; (b) streamwise RMS velocity.

Case Kmax × 106 K̄ ≡ K(x)B × 106 βmax β̄ ≡ β0(x)B (dK/dx)m × δ0 × 106

1 �0 �0 �0 �0 �0
2 0.5250 0.1134 −0.4664 −0.1182 −0.1084
3 0.8399 0.1636 −0.7551 −0.1754 −0.1684
4 1.0153 0.1839 −0.9225 −0.2055 −0.2306
5 1.3079 0.2540 −1.2005 −0.2877 −0.2989
6 1.5392 0.3002 −1.4270 −0.3479 −0.3465
7 1.8923 0.4096 −1.7587 −0.4758 −0.4262
8 2.1587 0.4533 −2.0255 −0.5398 −0.4922
9 2.4286 0.5029 −2.2990 −0.6088 −0.5630
10 2.7231 0.5535 −2.6067 −0.6832 −0.6268
11 3.0461 0.6015 −2.9512 −0.7607 −0.6936
12 3.4517 0.6793 −3.3782 −0.8791 −0.7787
13 3.7496 0.7376 −3.7238 −0.9719 −0.8476
14 3.9254 0.7750 −3.9716 −1.0355 −0.9003
15 4.2201 0.8426 −4.3506 −1.1470 −0.9797
16 4.4733 0.9018 −4.6959 −1.2461 −1.0328
17 4.7657 0.9628 −5.0641 −1.3462 −1.0957
18 5.0928 1.0339 −5.4371 −1.4514 −1.1386
19 5.2330 1.1210 −5.8558 −1.6072 −1.2201
20 5.5054 1.1721 −6.1831 −1.7027 −1.2693
21 5.7365 1.1945 −6.5208 −1.7550 −1.3167
22 5.9733 1.2002 −7.0709 −1.7692 −1.3786

Table 2. Variables representing the strength of the pressure gradients imposed by each ceiling deflection.
Definitions are provided in the text.

K(x)B and β(x)B are the spatially averaged K and β, respectively, computed as
Q(x)B ≡ (1/(xB − x0))

∫ xB
x0

Q dx, where x0 corresponds to x′/Lc = 0, the beginning of the
FPG region, and xB corresponds to x/Lx = 1, the last station of the PIV field of view.
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Here Q is either K or β. Note that although the integrated K(x)B takes positive values
for all cases, the imposed conditions are not equivalent to purely FPGs with matched
K(x). This is discussed in § 3.1, further emphasising the need to explore parameters that
sufficiently represent history effects for sequential pressure gradients. The rapid spatial
changes in the pressure gradients imposed emerged as important to the TBL response,
prompting the definition of the maximum dK/dx in each case, reported in the table. Since
an appropriate variable is an open question, the overall pressure gradient strengths imposed
in the different cases will be referred to by K(x)B in most of the discussion. Parameter
K(x)B × 106 is denoted by K̄ for convenience.

3. Results and discussion

3.1. Statistics
The mean and Reynolds stresses of the TBL under the imposed pressure gradients are
presented and discussed for 6 cases out of the 22 sets. Statistics for all the cases are
included in the supplementary material available at https://doi.org/10.1017/jfm.2023.429.
The six cases presented here correspond to sets [1, 5, 9, 13, 17, 22] in table 2, with
K̄ = [00.25 0.5 0.74 0.96 1.2]. The streamwise mean velocity, streamwise Reynolds stress
(u-RS), wall-normal Reynolds stress (v-RS) and Reynolds shear stress (uv-RS) are shown
in figure 4. The statistics are scaled with local outer units (edge velocity Ue and boundary
layer thickness δ) obtained using the diagnostic plot technique for pressure gradient TBLs
(Vinuesa et al. 2016). Parameters Ue and δ naturally vary in x and with K̄ as the boundary
layer accelerates and decelerates. Scaling using these variables affects the statistical trends
to be discussed, but the overall trends remain the same regardless of local or global scaling.
This is demonstrated in the Appendix. Uncertainties in the statistics were computed with
95 % confidence, following Benedict & Gould (1996), at two spatial locations (x/Lx = 0
and x/Lx = 1) and averaged. The uncertainties were then averaged along the wall-normal
direction and are as follows, in the format ‘average [minimum, maximum]’: in the
streamwise mean, 0.21 % [0.08 %, 0.82 %]; in the u-RS, 3.06 % [2.22 %, 3.63 %]; in the
v-RS, 3.38 % [2.86 %, 4.14 %]; in the uv-RS, 3.46% [2.47 %, 10.18 %]. The streamwise
locations from which the data shown in figure 4 are extracted are indicated above each
panel in terms of x/Lx; x = 0 at the upstream end of the PIV field of view (station A) and
x = Lx at the downstream end (station B).

The mean velocity profiles show evidence of upstream acceleration from the FPG region
and local deceleration from that accelerated state throughout the APG region. At x/Lx = 0,
at the transition from FPG to APG, the mean velocity profiles shown in figure 4(a) are
seen to become fuller as the overall pressure gradient strength is increased (K̄, darker data
points), which is an effect of stronger acceleration caused by stronger upstream FPGs for
higher K̄. The mean velocities at this station resemble profiles extracted from successive
spatial stations in a region of FPG (Ichimiya et al. 1998). At all locations except x/Lx = 0,
the shown data are in a local APG. Moving along x/Lx at a given K̄, the mean velocity
gradient in y < 0.2δ decreases due to the deceleration caused by the APG. For a given
location within x/Lx > 0, the mean profiles become fuller with increasing K̄, despite
higher K̄ corresponding to a stronger local APG in x/Lx > 0. This is because for higher
K̄, the upstream FPG in the region x/Lx < 0 is also stronger, creating a more accelerated
incoming TBL on which the APG locally acts. Comparing x/Lx = 0 and x/Lx = 1, the
mean velocity profiles are observed to decelerate through the APG region, but to remain
more accelerated than the equivalent ZPG case. This could be expected from the CP
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Figure 4. Statistics as a function of space (x) and pressure gradient (K̄). (a) Mean streamwise velocity.
(b) Streamwise Reynolds stress. (c) Wall-normal Reynolds stress. (d) Reynolds shear stress. The streamwise
location from which the statistics are extracted is indicated above each panel in red in terms of x/Lx. Stronger
pressure gradients or higher K̄ are marked using darker greys. Here K̄ = 0, 0.25, 0.5, 0.74, 0.96 and 1.2 for the
cases shown.

distributions of figure 2(a), where CP remains negative through the APG region, much
like the suction side of typical airfoils at moderate angles of attack, where the strong
upstream FPG causes the APG flow to remain faster than the incoming flow despite the
local deceleration. Mean velocity variations under other FAPG sequences also exhibit
similar trends in the mean, such as in the flow over a bump in Cavar & Meyer (2011).

The Reynolds stresses (figure 4b–d) show two main trends. First, suppression and the
appearance of a bimodal structure coming out of the spatially varying FPG; and, second,
the strengthening of the near-wall peak across the APG region. Both behaviours show
traits specific to the spatially varying pressure gradient used in this experiment. The u-RS
at the transition from FPG to APG, x/Lx = 0, in figure 4(b) exhibits a suppression of
the stress throughout the measured boundary layer with increasing K̄, as is expected of an
accelerated TBL (Volino 2020). However, a two-peak structure appears, with the two peaks
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separated by a ‘knee point’ at their valley. At x/Lx = 0, the knee point can be quantified
as a local minimum for the three largest pressure gradients shown (K̄ ≥ 0.74). For these
pressure gradients, the wall-normal location of the knee point reduces with increasing
pressure gradient, forming at y = 0.35δ when K̄ = 0.74 and at y = 0.24δ when K̄ = 1.2.
At the same streamwise location, x/Lx = 0, v-RS and uv-RS shown in figures 4(c) and
4(d), respectively, also show a suppression of stresses caused by the upstream FPG for
increasing K̄ and the formation of a two-peak structure. For large pressure gradients,
K̄ ≥ 0.96, the magnitude of the second peak exceeds that of the first peak. The wall-normal
location of the local minimum approximately coincides with that formed in the u-RS
(figure 4b). The wall-normal location of the first peak in v-RS and uv-RS at x/Lx = 0
shifts away from the wall as K̄ increases, from y = 0.097δ at K̄ = 0 to y = 0.136δ at
K̄ = 1.2.

Along the streamwise direction, for a given K̄, the knee point generally persists, and its
wall-normal location moves away from the wall. The knee point in the uv-RS is located
at y = 0.36δ for K̄ = 1.2 and x/Lx = 1, versus y = 0.24δ at x/Lx = 0. In x/Lx > 0, the
peak moves closer to the wall and reverts back to y = 0.1δ at x/Lx = 1 for all K̄. Below
the knee point location, all the stresses are seen to increase with streamwise distance in
the APG region, while above the knee point, the stresses are seen to decrease. In the u-RS
shown in figure 4(b), this increase and decrease in magnitude below and above the knee
point, respectively, cause the knee point to become indistinguishable for x/Lx ≥ 0.8. In
the v-RS and uv-RS shown in figure 4(c,d), the increase in magnitude below the knee
point with increasing x/Lx yields a dramatic increase in the magnitude of the first peak
(by factors of 2.8 and 4.4, respectively, for K̄ = 1.2). For x/Lx > 0, the Reynolds stresses
in figure 4(b–d) are weaker for larger x/Lx or higher K̄ over most of the boundary layer,
despite larger x/Lx indicating longer exposure to an APG and higher K̄ corresponding to a
stronger local APG imposition. For example, at x/Lx = 1, the u-RS magnitude in the wake
region at y = 0.4δ is 43 % lower at K̄ = 1.2 compared with that at K̄ = 0.

Overall, there are two key observations from the Reynolds stresses. The first is that the
Reynolds stresses of the current APG TBL exhibit knee points and multiple peaks. As
introduced in § 1, inflectional footprints in second-order statistics indicate the presence
of an internal layer within the TBL. A discontinuity in surface curvature (Matai 2018),
a step change in surface roughness (Hanson & Ganapathisubramani 2016), a change in
the sign of pressure gradient encountered (Tsuji & Morikawa 1976), the application of
blowing/suction (Simpson 1971) can all trigger the formation of internal layers, which
have been shown to dominate the near-wall dynamics of the TBL, especially through skin
friction. Thus, an internal layer is inferred to have formed in the present experiments due
to the rapid changes in pressure gradients imposed, giving rise to the inflectional stress
profiles. The second observation is that the trends with which the magnitude of Reynolds
stresses vary with increasing local APG strength along x and K̄ are different from (in
fact, opposite to) well-established APG effects. The trends in x showing a strengthening
inner peak and weakening/frozen outer peak are consistent with the APG statistics of
bump/hill TBLs with internal layers. The growth of the inner peak is attributed to the
presence and growth of this layer (Cavar & Meyer 2011; Matai & Durbin 2019), yet much is
unknown about the nature of turbulence within these internal layers. The weakening/frozen
outer peak has previously been suggested to be effects of convex curvature (Baskaran
et al. 1987; Balin & Jansen 2021), but similar trends observed in the current experiments
where the measurements have been made on the flat wall indicate that surface curvature
may not explain this peculiar behaviour. These aspects are investigated in the reminder
of this paper. The decreasing Reynolds stresses throughout most of the boundary layer
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with increasing K̄ is likely a direct result of the stronger upstream FPG for cases with
higher K̄, as suggested by the lasting influence of the upstream FPG on the turbulent
mean throughout the recorded APG region. This significant history effect is also studied
in parallel in the subsequent sections.

3.2. Internal layers
The presence and growth of internal layers, whose signatures were seen to dominate
the statistics, are investigated in this section with the goals of identifying the pressure
gradient strengths for which an internal layer is clearly present, characterising the internal
layer’s spatial growth and characterising the nature of turbulence within and outside this
layer.

To correctly bifurcate the boundary layer as regions within and outside the internal layer,
the edge of the internal layer needs to be detected. Several techniques to approximate
the edge have been introduced by the community studying step changes in surface
roughness. These methods are summarised in Rouhi, Chung & Hutchins (2019). A simple
half-power plotting scheme proposed by Antonia & Luxton (1971) has been adopted in this
study. In this scheme, mean velocities are plotted with respect to y1/2. When an internal
layer is present, two regions with differing linear trends appear separated by a ‘kink’.
The intersection point between linear fits of these two regions is said to approximately
correspond to the wall-normal height of the internal layer. Antonia & Luxton (1971)
supported this convenient scaling using dimensional arguments and the method has been
widely used since (Jacobi & McKeon 2011; Hanson & Ganapathisubramani 2016; Li et al.
2022), including in a study of internal layers past a step roughness change under APGs
(Schofield 1975) and a study on internal layers in sequences of curvatures and pressure
gradients (Bandyopadhyay & Ahmed 1993). Half-power plots of the mean velocity profiles
at stations A and B are shown for all 22 pressure gradient cases in figures 5(a) and 5(b),
respectively. The profiles have been extracted from the wall-normal region relevant to the
internal layer identification, 0.07 < y/δ0 < 0.29, and the wall-normal coordinate has been
non-dimensionalised by the ZPG boundary layer thickness. Darker profiles mark stronger
FAPGs (or higher K̄). At both stations, the ZPG case does not exhibit a change in slope.
The pressure gradient case for which a kink appears is not obvious by visual inspection.

To systematically identify the kink, an algorithm is implemented that partitions the
half-power plot data at different points (starting from the third data point) and linearly
fits the data below and above the partitioning point. The difference between the slopes of
the linear fits is found. The difference is the highest when the data are partitioned at the
kink. The intersection between the linear fits with the kink as the partitioning point is the
location of internal layer edge. This process is illustrated in figure 5(c,d) for K̄ = 1.2 at
station B. The latter figure shows the slope differences (�p) between the linear fits as the
partitioning point (yp) is varied. Difference �p is computed as

�p( yp) =
[

U( yp) − U( yi)√
yp − yi

− U( yf ) − U( yp)√
yf − yp

] √
δ0

U0
, (3.1)

and is plotted as a function of the half-power of yp in figure 5(d). Here yi = 0.07δ0 and
yf = 0.29δ0. The partitioning point that corresponds to the maximum slope difference �p
is the programmatically obtained kink and is marked with a red circle in figure 5(c,d).
Linear fits of the data below and above the kink intersect at the local edge of the internal
layer, marked with the blue dashed line in figure 5(c). The detected wall-normal heights of
the internal layer at successive streamwise locations for K̄ = 1.2 are shown in figure 5(e)
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Figure 5. Detection of internal layer edge. Half-power plot of the mean velocity profiles in 0.07 < y/δ0 <

0.29 at (a) station A and (b) station B. (c) Half-power plot of the mean velocity profile at station B for K̄ =
1.2. The red circle marks the kink identified programmatically by finding the maximum slope difference, �p,
between linear fits of the data when partitioned at different points (yp). Blue dashed line marks the data point
corresponding to the wall-normal height of the internal layer obtained. (d) Difference �p for the same case
and location as (c). Velocity U0 is the constant free-stream velocity. (e) Edge of the internal layer for K̄ = 1.2
(black line) overlaid on the average spanwise vorticity field.

as a black line overlaid on the average spanwise vorticity field. The internal layer is seen to
spatially grow, as expected, and can be observed to be a region of significant shear, outside
which the average spanwise vorticity is considerably less.
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Figure 6. Spatial growth rates of the internal layer within the APG region for cases where a clear internal
layer is deemed to be present, K̄ ≥ 0.45.

Using this edge detection method on pressure gradient cases 1 through 7 resulted in
the maximum slope difference (�p) being less than 0.2 and did not result in a consistent
detection of kinks (i.e. subsequent kinks were not spatially well correlated), suggesting
that an internal layer is only clearly present in cases 8 through 22 for which K̄ ≥ 0.45
or −(dK/dx)mδ0 ≥ 0.49 × 10−6. For these cases, the edge of the internal layer exhibited
power-law growth within the APG region as δi ∝ xα . The growth rates were computed and
are shown in figure 6 as a function of K̄. The growth rate is seen to increase with increase in
strength of the FAPG and the relationship appears to be linear. The linear relationship was
found to be true even when α was plotted against other pressure gradient parameters listed
in table 2. Additionally, for all cases shown, the growth rate is greater than 1. In contrast,
the growth rates reported for internal layers in TBLs past step changes in roughness have
consistently been less than 1: 0.4 < α < 0.8 for smooth to rough flows and 0.2 < α < 0.4
for rough to smooth flows. This difference is likely due to the growth of the current internal
layers in a local APG and is consistent with the growth rates deduced from previous studies
of pressure gradient sequences where the approximate edge of the internal layer has been
reported at discrete spatial locations (Tsuji & Morikawa 1976; Baskaran et al. 1987; Uzun
& Malik 2022).

As demonstrated by figure 5(e) for the strongest FAPG case, the internal layer is a region
of strong spanwise vorticity. However, average vorticity magnitudes are not good indicators
of whether the region contains significant swirling motion or is a region of pure shear. To
elucidate this and to characterise the internal layer further for the different FAPG strengths
imposed, a vortex identification technique is used. The swirling strength criterion (or λci
method) is chosen as it is frame-independent and can distinguish between rotation and
shear (Adrian, Christensen & Liu 2000). The spanwise swirling strength, λci, is obtained
from the two-dimensional velocity gradient tensor. Swirling strength λci > 0 indicates the
presence of a vortex. Defining Λci ≡ λci × ω/|ω| assigns the direction of instantaneous
vorticity to the swirling strength.

The RMS of the swirling strength parameter, ΛRMS
ci , characterises the strength of

vortices at a given location (Wu & Christensen 2006). The wall-normal variation of ΛRMS
ci

is studied to understand the composition of swirling motion within the internal layer.
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Figure 7. (a) Outer-scaled RMS of swirling strength parameter (Λci) with respect to wall-normal height for
select FAPG cases and streamwise locations indicated by the legend. The increase in Λci in y/δ < 0.4 for
K̄ = 1.2 suggests the internal layer to be a growing region of strong vortex activity. (b) Plots of ΛRMS

ci at
y/δ = 0.1 for all FAPG cases investigated, at stations A (x/Lx = 0) and B (x/Lx = 0). In K̄ ≥ 0.45, identified
earlier as the pressure gradients for which an internal layer is clearly present, a significant increase ΛRMS

ci is
observed from stations A to B.

Figure 7(a) shows the wall-normal profiles of ΛRMS
ci for the ZPG case (K̄ = 0) and the

strongest FAPG case (K̄ = 1.2) at different streamwise locations. Local outer scaling has
been used in the non-dimensionalisation, as in the case of the statistics. The analysis is
restricted to y ≥ 0.1δ since the derivatives computed (in computing the velocity gradient)
are noisy closer to the wall. The ZPG ΛRMS

ci (marked in black in figure 7a) shows the
presence of strong vortices near the wall and the strength gradually decreases away from
the wall, consistent with Lee et al. (2010). The profiles for the strongest FAPG case are
shown at station A (x/Lx = 0, red), at station B (x/Lx = 1, blue) and at the middle of
these two locations (x/Lx = 0.5, green). At station A, where the TBL has experienced a
strong upstream FPG and encounters the pressure gradient sign change, a significant decay
in vortex strength is seen throughout the boundary layer compared with the ZPG profile.
While a peak in the ZPG case is expected to have formed much closer to the wall (not
resolved here, but see Lee et al. (2010)), a peak is observed in the FAPG case at station A
at y = 0.14δ. For milder pressure gradients (not shown), the peak was found to be narrower
and formed closer to the wall for the same streamwise location, for example, at y = 0.097δ

for K̄ = 0.45. At x/Lx = 0.5 (figure 7a, green), the peak is seen to have grown and to have
shifted closer to the wall. In y ≥ 0.26δ, the locally scaled strength of vortices has remained
the same as at station A (0.73δ ≤ y ≤ δ) or decreased further (0.26δ ≤ y ≤ 0.73δ). At
this streamwise location, the boundary layer has experienced a locally APG region for
2.5 average boundary layer thicknesses. From x/Lx = 0.5 to x/Lx = 1, in keeping with
the trend, the peak is seen to grow significantly and to move closer to the wall while
also broadening in the wall-normal direction. Outside this broad peak (y ≥ 0.35δ), the
vortex strength is observed to have increased compared with x/Lx = 0.5 (while remaining
considerably less than the increase in y ≤ 0.35δ) and to stay approximately constant across
this wall-normal region.

The structure of ΛRMS
ci in the APG region of this experiment is different from that of

APG TBLs originating from a ZPG region, where a dramatic increase in ΛRMS
ci is expected
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to be centred in the wake region. For example, Lee et al. (2010) saw an increase of up to 3.5
times the ZPG value at y = 0.5δ for a mild APG with β = 1.68. The weakening of vortices
observed at station A in figure 7(a) can be expected as a result of the stabilising influence of
the upstream FPG. But the presence of the peak at y = 0.14δ is not an expected FPG effect
and is associated with the presence of the internal layer. The internal layer, then, appears to
be a region of increased swirling motion compared with the rest of the boundary layer. The
wall-normal location of the scaled ΛRMS

ci peak was observed to remain within the internal
layer, while the peak magnitude grew significantly with x. In the outer layer, only a weak
increase in scaled ΛRMS

ci was observed from stations A to B, while the unscaled ΛRMS
ci was

found to remain unchanged under the local APG.
The effect of the imposed FAPG magnitude on the strength of vortices close to the wall

is quantitatively studied by tracking scaled ΛRMS
ci at y = 0.1δ for each case. This is shown

in figure 7(b) at stations A (red markers) and B (blue markers). Strength parameter ΛRMS
ci

at y = 0.1δ was chosen to be tracked rather than the magnitude of the peak observed in
figure 7(a) to enable plotting for milder pressure gradient cases for which no peak was
found/resolved. At station A, figure 7(b) shows that the outer-scaled ΛRMS

ci at y = 0.1δ

reduces as K̄ increases, as expected. The rate of reduction, however, is considerably milder
in K̄ < 0.45 and stronger in K̄ ≥ 0.45. Similarly at station B, the variations with K̄ are
slightly different for K̄ < 0.45 and K̄ ≥ 0.45, remaining almost constant in the former
range and increasing slowly in the latter. Larger differences were observed above and below
K̄ = 0.45 in the unscaled ΛRMS

ci , although not shown here. For a given K̄ > 0, the strength
of vortices at y = 0.1δ is seen in figure 7(b) to increase from stations A to B. For K̄ = 0.45,
a 19 % increase is observed, and for K̄ = 1.2, a 283 % increase is observed. As mentioned
earlier, this increase in ΛRMS

ci near the wall with x is associated with the growth of the
internal layer, which appears to contain increasingly strong swirling motions within it as
it grows in the APG region. In stronger FAPG cases, the rapid spatial pressure gradient
changes are more severe, resulting in a stronger and faster-growing internal layer (figure 6)
that causes a more dramatic strengthening of swirling motion near the wall. Qualitatively
similar trends resulted when ΛRMS

ci was averaged over different regions in y = [0.1δ, 0.3δ]
as well, instead of being tracked at y = 0.1δ as done in figure 7(b).

Although the streamwise and wall-normal variations in ΛRMS
ci for the different pressure

gradients imposed indicate that vortices within the internal layer strengthen, it does not
reveal if this layer is composed of an increased number of vortices or if it has caused the
swirling strengths of existing vortices to increase. Hence, vortices in the flow are detected
and counted across all ensembles. The universal threshold given by |Λci/Λ

RMS
ci | ≥ 1.5 is

used to detect vortices in 3 × 3 windows of the data in the streamwise and wall-normal
directions. The resulting window size is 0.033δ0 × 0.033δ0. A vortex satisfying the
threshold is counted only if it occupies at least a 2 × 2 window, consistent with standard
practices in the literature used while estimating vortex population densities (Wu &
Christensen 2006). A large vortex occupying multiple 3 × 3 windows is appropriately
counted as 1. Prograde and retrograde vortices are counted separately. Figure 8(a) shows
the number (NV ) of prograde (solid lines) and retrograde (dashed lines) vortices detected
across the ensembles as a function of the wall-normal height for the ZPG case (K̄ = 0,
black), and for the strongest FAPG (K̄ = 1.2) at stations A (x/Lx = 0, red) and B (x/Lx =
1, blue). Similar to figure 7(b), figure 8(b) shows NV at y = 0.1δ plotted as a function of
the overall pressure gradient strength for stations A and B.

For K̄ = 0, the wall-normal variations in figure 8(a) show that the number of prograde
vortices in the ZPG TBL is 1.4 to 5.8 times more than the number of retrograde vortices.
The prograde vortices are largest in population near the wall and drop off with increase in
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Figure 8. (a) Number of vortices detected as a function of wall-normal height for the ZPG case (K = 0) and
the strongest FAPG case (K = 1.2) at stations A (x/Lx = 0) and B (x/Lx = 1). Solid lines represent prograde
vortices and dashed lines represent retrograde vortices. An increase in the number of total number of vortices
occurs in y/δ < 0.3 for K = 1.2, a wall-normal region within the internal layer identified. (b) Plots of NV at
y/δ = 0.1 for all FAPG cases investigated at stations A (x/Lx = 0) and B (x/Lx = 1). Squares mark prograde
and circles mark retrograde vortices. In K̄ ≥ 0.45, identified earlier as the pressure gradients for which an
internal layer is clearly present, a significant increase the total number of vortices from stations A to B can be
deduced.

height from the wall, while the retrograde vortices show a maximum near the outer edge
of the logarithmic region. These variations are consistent with literature observations of
vortex populations in ZPG TBLs (Lee et al. 2010; Herpin et al. 2013). Under the strongest
FAPG imposed (K̄ = 1.2), at station A, the population of both prograde and retrograde
vortices throughout the boundary layer is seen to have reduced as a result of the upstream
FPG. The retrograde vortices have reduced in population everywhere, while the prograde
vortices show a manner of reduction similar to the scaled ΛRMS

ci shown in figure 7(a),
exhibiting a peak at a similar wall-normal height embedded within the internal layer. Note
that because of the windowing involved with the vortex identification, the wall-normal
resolution is lower in figure 8(a) than in figure 7(a). From stations A to B, the number
of prograde vortices near the wall increases significantly as the internal layer grows in
the local APG, and the peak moves closer to the wall, again qualitatively similar to the
variation in figure 7(a). Outside the broad peak at station B (in y > 0.3δ), the number of
vortices at a given wall-normal location slightly decreases compared with that at station A.
This is despite the TBL experiencing a strengthening APG over 5 average boundary layer
thicknesses by the time it reaches station B, which may have been expected to cause an
increase in the population of vortices. The retrograde vortices, on the other hand, show a
different variation. Their number decreases within the internal layer in 0.12δ < y < 0.31δ

and stays constant outside the layer.
All the population trends discussed here for K̄ = 1.2 were found to be consistent across

cases with K̄ ≥ 0.45. The variation from stations A to B at y = 0.1δ is tracked for all
FAPG cases imposed and shown in figure 8(b). The figure reveals the strong increase in
the number of prograde vortices as a result of the internal layer growth for K̄ ≥ 0.45. In
K̄ < 0.45, only a weak change is observed. This reinforces the identification of K̄ = 0.45
as the average pressure gradient for which an internal layer is clearly present and is strong
enough to modify the TBL response significantly. The number of retrograde vortices at

966 A11-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.429


A. Parthasarathy and T. Saxton-Fox

y = 0.1δ changes less in x than prograde, but a mild trend of increasing vortices can be
deduced for the strong FAPGs with K̄ > 0.8.

While the interpretations of prograde and retrograde vortices in terms of the structure of
the TBL are still debated, they have often been associated with hairpin vortices (Natrajan,
Wu & Christensen 2007; Gao, Ortiz-Duenas & Longmire 2011; Herpin et al. 2013).
Prograde vortices are considered signatures of the heads of hairpin vortices and retrograde,
of the necks. Isolated retrograde vortices have also been said to form when hairpin vortices
merge in the spanwise direction (Tomkins & Adrian 2003). The current analysis suggests
that the internal layer is composed of an increased number of hairpin vortices, whose heads
populate 0.1δ ≤ y ≤ 0.3 and necks and tails extend down below y = 0.1δ. The latter could
explain the reduced population of retrograde vortices within most of the internal layer.
Another likely explanation is that the retrograde vortices are less successful in resisting the
increased mean shear due to the internal layer, which opposes their rotation. Overall, when
the internal layer is present, the flow clearly exhibits an increased total number of vortices
within that region compared to the rest of the boundary layer (as seen in figure 8a), which
further increases as the flow progresses through the APG region and the internal layer
grows. This increased population is at least partially responsible for the increased vortex
strength seen in figure 7. In contrast, in a TBL that only experiences an APG, the APG
causes an increase in the population of prograde vortices centred in the wake region and
no significant change in the population of retrograde vortices at all wall-normal locations
(Lee et al. 2010).

3.3. Turbulent production
It has been established that the FAPG conditions imposed in the current experiments have
a strong influence on the TBL response, including a lasting effect of the upstream FPG on
the downstream APG region, the formation of an internal boundary layer in cases where
K̄ ≥ 0.45 and subsequent changes to the statistics and vortex organisation of the TBL.
With a better understanding of the internal layer and its characteristics, the reasons for
the trends in the statistics observed in § 3.1 with x and K̄ are revisited by investigating the
production rates of turbulent kinetic energy (TKE) (Pk) and Reynolds shear stress (Puv).
These quantities are computed as

Pk = −u′
iu

′
j
∂ ūi

∂xj
,

Puv = −
(

u′
1u′

i
∂ ū2

∂xi
+ u′

2u′
i
∂ ū1

∂xi

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

where ui are instantaneous velocities, overbar denotes ensemble average, primed quantities
are fluctuations about the mean and subscripts 1 and 2 denote component along the
streamwise and wall-normal directions, respectively. Here i and j each take values 1, 2.
Before computing the derivatives, the data in the [313 × 197] grid were interpolated into
a grid of [1000 × 1000] using a shape-preserving interpolant: piecewise cubic Hermite
interpolating polynomial. The derivatives were then computed using second-order central
difference everywhere except at the edges where single-sided difference was used.

Outer-scaled wall-normal profiles of Pk and Puv are shown in figure 9 at stations A
and B for the six FAPG cases focused on in § 3.1 and at six streamwise stations for the
strongest FAPG case to show a representative streamwise evolution. Stronger pressure
gradients and successive streamwise stations are marked by darker greys in the figure.
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At station A, the production rates of TKE and uv-RS in the ZPG case (K̄ = 0, lightest grey
in figure 9a,c) follow an expected variation in the wall-normal direction with maximum
Pk and Puv occurring closer to the wall, which gradually decay to 0 at the edge of the
boundary layer. The same qualitative variation is exhibited by the mild FAPG case with
K̄ = 0.25 at station A, along with a slight reduction in the magnitudes of production
observed throughout the boundary layer due to upstream FPG. For K̄ ≥ 0.5, the production
of TKE and uv-RS at this station decrease considerably, as expected, under the stabilising
action of the strengthening upstream FPG. But the wall-normal structure assumed by the
production profiles is different for K̄ ≥ 0.5. Production rate Pk shows a larger difference
between the rates of reduction within and outside of y ∼ 0.2δ compared with K̄ < 0.5,
suggesting the appearance of a production peak within the internal layer, although the
peak itself has not been resolved. Above y ∼ 0.2δ, Pk almost decreases to 0, consistent
with the observation by Balin (2020) that the TKE production is ‘turned off’ in the outer
layer at the exit of the FPG region of a bump flow. Parameter Puv shows the formation of
a peak in y ∼ 0.2δ that moves away from the wall for higher K̄, outside of which the shear
stress production is significantly lower (but not negligible).

As the boundary layer moves through a local APG region to reach station B, the
changes to the production in TKE and uv-RS are shown at successive streamwise stations
in figures 9(e) and 9( f ), respectively, for case K̄ = 1.2, to demonstrate the streamwise
variation. Within the internal layer, a strong increase in production is observed as the layer
grows in x, resulting in an increase of over an order of magnitude in the TKE production.
The wall-normal region over which the increase occurs in figure 9(e, f ) widens with x,
consistent with the wall-normal growth of the internal layer with x. In contrast to the
production within the internal layer, the production in the outer layer is seen to remain
frozen throughout the local APG region. The production of TKE and uv-RS remaining
‘turned off’ within the APG region could partially explain the reduction in outer peak
magnitudes of the Reynolds stresses observed with x in figure 4(b–d) for the stronger
pressure gradients, in contrast to the increase expected of a typical APG TBL (Gungor
et al. 2022). Lastly, the production profiles that result at station B for the six FAPG cases
are shown in figure 9(b,d). With increase in K̄ imposed, the production close to the wall
and within the internal layer increases and that outside decreases as a result of the stronger
upstream FPG associated with higher K̄. Comparing figure 9(a) with 9(b) and figure 9(c)
with 9(d) shows the changes between stations A and B in Pk and Puv for each FAPG
case considered. The strongest increase in production within the internal layer happens for
K̄ = 1.2, as can be expected. In the outer layer, none of the cases show any significant
change in the production of TKE and uv-RS from stations A to B.

3.4. Energy spectra
The energy-carrying scales in the TBL are studied by computing the one-dimensional
premultiplied Fourier power spectral densities (PSDs) of the streamwise and wall-normal
velocity fluctuations. The objective is to assess the trends in scale composition and how
they change relative to the ZPG as the pressure gradient is changed along x and K̄. The
PSDs are premultiplied by the streamwise wavenumber.

The PSDs of the streamwise velocity fluctuations are shown in figure 10 for select
cases and streamwise locations. Figure 10(a) shows the ZPG spectrum. The second row
(figure 10b–f ) shows the spectra at station A for the five non-ZPG cases focused on in
§§ 3.1 and 3.3 with K̄ = 0.25, 0.5, 0.74, 0.96 and 1.2, capturing the effect of increasing
upstream FPG on the spectral densities. The third row (figure 10g–k) shows the spectra
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Figure 9. Production of TKE at stations (a) A and (b) B for K̄ = 0, 0.25, 0.5, 0.74, 0.96 and 1.2. Stronger
FAPGs (or higher K̄) are marked by darker greys. Production of Reynolds shear stress at stations (c) A and
(d) B for the same FAPG cases as (a,b). (e) Production of TKE for K̄ = 1.2 at streamwise stations x/Lx = 0,
0.2, 0.4, 0.6, 0.8 and 1. Successive streamwise stations are marked by darker greys. ( f ) Production of Reynolds
shear stress for K̄ = 1.2 at the same streamwise stations as (e).

966 A11-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.429


A TBL subjected to favourable–adverse pressure gradients

101100

λx/δ

y/δ

100

10–1

kxδ/U2
 × φuu

0

4

6

y/δ

y/δ

100

10–1

100

10–1

101100 101100 101100 101100 101100

λx/δ

101100 101100 101100 101100 101100

(b)

(a)

(c) (d ) (e) ( f )

(g) (h) (i) ( j) (k)

2

0

4

6

2

0

4

6

2

(×10–4)

kxδ/U2
 × φuu

(×10–4)

kxδ/U2
 × φuu

(×10–4)

Figure 10. Outer-scaled Fourier PSDs of the streamwise velocity fluctuations of the flat-plate TBL computed
for (a) K̄ = 0 (ZPG condition), (b–f ) streamwise station A (x/Lx = 0) in cases K̄ = 0.25, 0.5, 0.74, 0.96, 1.2
and (g–k) streamwise locations x/Lx = 0, 0.25, 0.5, 0.75, 1 in case K̄ = 1.2 (strongest FAPG case). The insets
schematically show the ceiling configuration and streamwise station from which data have been extracted for
each panel.

for the strongest FAPG case with K̄ = 1.2 at a few equidistant streamwise locations,
capturing the streamwise variation in the spectral densities due to the local APG. The
FAPG case (or ceiling deformation state corresponding to each K̄) and the spatial location
from which data are extracted for each panel are schematically shown in the insets of
figure 10. The PSDs and the axes have been outer scaled. Taylor’s hypothesis has been
invoked in converting frequencies to wavelengths using the local mean velocity as the
convection speed, following Vila et al. (2020b).

The PSD of the ZPG TBL in figure 10(a) shows an expected structure with high
spectral density in the logarithmic region, contained in a spectrum of scales. Scales with
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0.2 ≤ λx ≤ 8 appear energetic. In the wake region, a significant amount of energy is
contained in λx = 3δ–5δ, which is a wavelength range associated with large-scale motions
in a TBL (Harun et al. 2011; Yoon, Hwang & Sung 2018). For the mild FAPG case
with K̄ = 0.25, the PSD at station A (figure 10b) shows a visible reduction in energy
throughout the boundary layer compared with the ZPG spectrum. The spatially averaged
acceleration parameter up to this station equals 7.4 × 10−7, indicating that the TBL has
only experienced a mild FPG in this case before reaching station A. At y = 0.3δ, λx = 3δ

structure has already lost 33 % energy compared with the ZPG boundary layer under this
mild upstream FPG effect. This decreasing trend in the spectral densities at station A
continues as the cumulative strength of the upstream FPG increases across the FAPG cases
(figure 10c–f ). For the strongest pressure gradient case (figure 10f ), the spectral densities
of all the resolved scales appear strongly suppressed, with that of 1.5δ < λx < 6δ reduced
by almost an order of magnitude compared with the ZPG case. A shift in the spectrum
towards longer wavelengths is also apparent from figure 10(b–f ), compared with the ZPG
spectrum. For example, a local maximum in the PSD near the wall (y = 0.03δ) in the
ZPG case occurs at λx = 2δ, and that shifts to λx = 5δ for K̄ = 0.74 and to λx = 8.5δ

for K̄ = 1.2. For this strongest FAPG case (K̄ = 1.2), the effect of the local APG on
the strongly altered PSD at station A is shown in figure 10(g–k). The overall energy
contained in the boundary layer is seen to recover from the suppressed state at the exit
of the FPG region, but this recovery is almost entirely contained within a wall-normal
region of y < 0.1δ to y < 0.3δ, depending on the streamwise location. An overall shift in
energy towards shorter wavelengths is also observed in this region as the boundary layer
grows downstream. The streamwise evolution causes two distinct wavelength ranges to be
energised at the last station recorded (figure 10k): small scales with 0.5δ < λx < 1.5δ and
large scales with 3δ < λx < 8.5δ.

The effects of the upstream FPG on the PSDs at station A are as expected, causing
structures in the outer region to be weakened and causing a shift in energy towards longer
wavelengths. The weakening of outer-region structures is a result of the stabilising effect
of the upstream FPG and is similar to that reported by other researchers (Dixit & Ramesh
2008; Bourassa & Thomas 2009). The extent of suppression of this large-scale energy is
seen to depend on the strength of the upstream FPG. Since large scales are considered
essential for the production and inter-component transfer of turbulence in the outer region
(Bradshaw 1967; Gungor et al. 2022), the reduction of strength and/or population of
large scales inferred from the PSDs at station A could explain the production of TKE
and uv-RS in the outer region diminishing as the FAPG strength is statically increased
(figure 9). The shift in energy towards longer wavelengths near the wall for increasing
upstream FPG strength seen here is consistent with work by Warnack & Fernholz (1998)
and Dixit & Ramesh (2008), among others, who have reported ‘stretched’ and ‘flattened’
long structures under FPGs. In the downstream APG region, while milder FAPG cases
(not shown) exhibited slight changes to the PSD including a shift in energy towards longer
wavelengths near the wall and a fairly unchanged structure of the wake, the stronger
FAPG cases showed a qualitatively different evolution of the spectrum, as shown in
figure 10(g–k) for a representative case. The energy-carrying scales that were dampened
by the upstream FPG did recover under the APG, but most of the increased spectral density
at a given streamwise location was found to be confined within a wall-normal region
locally occupied by the growing internal layer. Thus, the PSDs in figure 10(g–k) show the
spectral composition of the internal layer and how its presence overshadows the energy
content outside the layer. These variations in the spectra were consistent for milder FAPG
conditions for which the internal layer was present (K̄ ≥ 0.45). The centre wavelength
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Figure 11. Outer-scaled Fourier PSDs of the wall-normal velocity fluctuations of the flat-plate TBL computed
for (a) K̄ = 0 (ZPG condition), (b–f ) streamwise station A (x/Lx = 0) in cases K̄ = 0.25, 0.5, 0.74, 0.96, 1.2
and (g–k) streamwise locations x/Lx = 0, 0.25, 0.5, 0.75, 1 in case K̄ = 1.2 (strongest FAPG case). The insets
schematically show the ceiling configuration and streamwise station from which data have been extracted for
each panel.

of the large-scale maxima within the internal layer (observed at λx = 5δ in figure 10k)
depended on the FAPG case, forming at slightly lower wavelengths for milder FAPGs (for
example, at λx = 4.3δ for K̄ = 0.74). The small-scale maxima in 0.5δ < λx < 1.5δ began
clearly appearing for K̄ > 0.5.

The PSDs of the wall-normal velocity fluctuations are shown in figure 11. The figure
is organised similarly to figure 10, showing the ZPG spectrum in the first row, spectra
at station A for K̄ = 0.25, 0.5, 0.74, 0.96 and 1.2 in the second row and at x/Lx = 0,
0.25, 0.5, 0.75 and 1 for K̄ = 1.2 in the third row. The ZPG spectrum shows that
the energetic scales of the wall-normal velocity fluctuations are shorter than those of
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the streamwise velocity fluctuations, consistent with an understanding that wall-normal
scales are not as streamwise-elongated. Most of the energy is observed to be contained
in wavelengths 0.2δ < λx < 1δ, as expected (Gungor et al. 2022). Under an increasing
cumulative upstream FPG (figure 11b–f ), the stabilising effect of the acceleration
causes the wall-normal structures to significantly lose energy throughout the boundary
layer. This is observed to happen across all scales, tending towards a more uniformly
energised spectrum as the FAPG strength is increased. Similar to the streamwise spectra
(figure 10b–f ), the wall-normal spectra show a reduction of up to an order of magnitude in
the most energetic scales of the ZPG under this upstream FPG effect. The development of
the wall-normal spectrum in the following APG region is shown in figure 11(g–k) for
K̄ = 1.2. From x/Lx = 0 to x/Lx = 0.25, no significant change is observed, and from
x/Lx = 0.25 to x/Lx = 1, the APG is seen to energise the wall-normal fluctuations in
the boundary layer. This energisation is strong in the wall-normal region bounded by the
local internal layer edge (y < 0.1δ to y < 0.3δ, depending on the streamwise location), and
relatively mild elsewhere. This is why no significant change is seen at x/Lx = 0.25 because
the local internal layer edge is at y/δ = 0.12 and this is not resolved by the wall-normal
spectrum shown. This continued to be the case until x/Lx = 0.36. Comparing figure 11(k)
with figure 11(a) shows that the strong wall-normal velocity scales are contained within
the internal layer. A shift in the spectral energy towards lower wavelengths is also apparent.
It is interesting to note that the wall-normal structures in the outer layer recover better than
the streamwise structures (see y > 0.3δ in figure 10k, for example) as the flow progresses
through the APG region.

4. Conclusion

An experimental campaign to study TBLs experiencing a family of pressure gradients
characterised by a spatially varying FAPG in sequence was carried out. The pressure
gradients were imposed on a flat plate by employing a convex ceiling bump with variable
bump height. Particle image velocimetry was performed in a streamwise–wall-normal
plane in the APG region of the flat-plate flow for 22 FAPG conditions. The outer-scaled
mean and Reynolds stress statistics were presented for 6 of the 22 cases, while the data of
all cases are provided as supplementary material along with the pressure distributions
and boundary layer edge parameters. The data suggested that the upstream FPG had
expected influences on the mean profiles within the APG region: the mean velocity field
was accelerated by the upstream FPG and then somewhat decelerated by the local APG.
However, the Reynolds stresses showed results that, while consistent with prior work on
bump flows, were qualitatively different from traditional expectations of APG TBLs.

The stresses showed a bimodal structure coming out of the spatially varying FPG. The
first peak of the bimodal structure showed significant growth as the flow advanced through
the APG region, while the second peak showed a decay, particularly for stronger pressure
gradients. These were signatures of an internal boundary layer within the TBL, formed
due to the rapid spatial changes in the pressure gradients imposed. The presence and
growth of this layer and its effects on other turbulence quantities subsequently studied
were found to be significant for FAPG cases where the maximum spatial rate of change of
the imposed pressure gradient satisfied −(dK/dx)mδ0 ≥ 0.45 × 10−6. For these cases, the
internal layer exhibited power-law growth within the APG region, with the growth rates
linearly increasing from 1.03 to 2.05 as the overall FAPG strength statically increased. The
internal layer was observed to be a region of significant shear, containing vortices of an
increased number and strength, which grew as the layer developed in space. In contrast,
the strength and population of vortices were significantly lower in the outer layer (i.e. the
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region within the TBL and outside the internal layer) and remained that way under the
action of the local APG.

The wall-normal variations of the production rates of TKE and uv-RS, studied at
different streamwise locations for different FAPG cases, showed a similar bifurcation of
the boundary layer into an ‘active’ region composed of the internal layer and a ‘passive’
region outside the layer. In the outer layer, the upstream FPG acted to strongly suppress the
production of TKE and uv-RS coming into the PIV field of view. The production levels
remained frozen in the outer layer of the boundary layer throughout the recorded APG
region, while an increase of up to an order of magnitude in production was observed within
the ‘active’ internal layer. A spectral decomposition of the flow showed the PSDs of the
streamwise velocity fluctuations at the exit of the FPG region to be suppressed everywhere,
but more significantly in the outer layer, and shifted to longer wavelengths compared with
the ZPG flow. The PSDs of the wall-normal fluctuations also exhibited strongly suppressed
states, but the suppression was more uniform throughout the boundary layer. For the
strongest pressure gradient considered, the spectral densities of large scales (λx = 3δ–5δ)
in the outer layer in both the streamwise and wall-normal velocity spectra reduced by
almost an order of magnitude due to the upstream FPG. Within the APG, most of the
recovery in the PSD happened within the internal layer, revealing the streamwise spectral
composition of the internal layer to be of energetic large-scale structures (λx = 3δ–8δ)
that came to be because of the upstream FPG, and relatively energetic smaller scales with
λx = 0.5δ–1.5δ. The wall-normal velocity spectrum revealed energetic structures that are
less streamwise-elongated, in the range 0.1δ < λx < 1δ, clearly contained by the local
internal layer edge. The presence of the internal layer within the current APG TBL and
the confinement of stress-producing vortices and large-scale structures within the internal
layer are suggested to cause the atypical APG trends in the production rates of TKE and
uv-RS, and hence the trends in the Reynolds stresses (i.e. increasing outer-scaled inner
peak and decreasing outer-scaled outer peak). As a result of this different bifurcation, it is
recommended to study the flow in terms of regions inside and outside the internal layer,
rather than in terms of the traditional inner and outer regions of a TBL, especially since
the decisive internal layer occupies a significant portion of what would usually be defined
as the outer region.

Although TBLs over pressure gradient sequences have been studied by other
researchers, a summary of which was given in § 1, the present work provides a systematic
study of a range of pressure gradient conditions that yielded a number of useful
observations. The systematic variation of the pressure gradient strength in this study
allowed for the identification of a threshold geometry: a less extreme geometry did
not trigger an internal layer, while a more extreme geometry did, yielding significantly
different behaviour in the APG region. The growth rates of the internal layers were also
observed to change significantly with the applied pressure gradient and were observed to
be consistently larger than is typical in roughness flows. The internal layer’s behaviours,
including its vortices’ population and strength, the production of TKE and its spectral
content, were observed to change with the pressure gradient strength. The observed
changes reflected a strengthened internal layer as the FAPG strength was increased, rather
than simply stronger favourable and adverse effects separately.

The present work suggests a number of questions to be answered in future work
regarding complex pressure gradient TBLs. What parameter controls whether an internal
layer forms? Is it a rate of change of the pressure gradient, and if so, scaled with what
flow parameters? Does the absolute strength of the pressure gradient matter or only its
derivative? Future experiments or simulations that separately vary the rate of change of the
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Figure 12. Statistics as a function of space (x) and overall pressure gradient strength (K̄), scaled by the ZPG
U0 and δ0. (a) Mean streamwise velocity. (b) Streamwise Reynolds stress. (c) Wall-normal Reynolds stress. (d)
Reynolds shear stress. The streamwise location from which the statistics are extracted is indicated above each
panel in red in terms of x/Lx. Stronger pressure gradients or higher K̄ are marked using darker greys. Here
K̄ = 0, 0.25, 0.5, 0.74, 0.96 and 1.2 for the cases shown.

pressure gradient and the maximum strength of the pressure gradient are suggested to help
disentangle these effects. When an internal layer forms, what parameters govern its spatial
growth, including the growth of the internal peaks in the stresses, vortex strength and
production rates? Is it the local APG strength, with the upstream FPG only prescribing the
‘boundary condition’, or a cumulative FPG–APG strength, or something else? Attempts to
collapse the growth rates with different measures of the local and cumulative K variations
were unsuccessful in the present effort, but future efforts will incorporate shear stress
measurements that allow for an improved estimation of β. How are pressure gradient
effects and curvature effects combining in bump flows? The statistics observed in this
study were similar to those observed in bump flows, though the present work did not
include curvature. Future work is encouraged to answer these questions.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.429.
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Appendix. Globally scaled mean and Reynolds stresses

The mean and stresses presented in figure 4 were scaled by the local edge velocity (Ue)
and the local boundary layer thickness (δ), which themselves change in x and with K̄. As
a result, figure 4 presents relative changes in the boundary layer. To depict the physical
changes in the boundary layer and to elucidate if any of the statistical trends noted earlier
are solely due to variations in the scaling parameters, the statistics are scaled using the
free-stream velocity U0 and the free-stream boundary layer thickness (δ0) associated with
the ZPG flow (see table 1) and plotted in figure 12. The movement away from the wall
with K̄ of the first peak in v-RS and uv-RS at x/Lx = 0 and its movement towards the wall
with x for a given K̄ are largely due to the local scaling as they do not change significantly
in figure 12. The overall suppression of stresses at each x with increasing K̄ due to the
increasing upstream FPG influence appears less dramatically under the global scaling.
The internal layer trends in the Reynolds stresses including the formation of knee points
and double-peak structures at the exit of the FPG, and the increase in stresses below the
knee point (first peak magnitude) and decrease above the knee point as the flow evolves in
the local APG appear more dramatically under the global scaling.
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