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Abstract
In this study, we investigate the process of generating single-sentence representations for the purpose of
Dialogue Act (DA) classification, including several aspects of text pre-processing and input representa-
tion which are often overlooked or underreported within the literature, for example, the number of words
to keep in the vocabulary or input sequences. We assess each of these with respect to two DA-labelled
corpora, using a range of supervised models, which represent those most frequently applied to the task.
Additionally, we compare context-free word embedding models with that of transfer learning via pre-
trained language models, including several based on the transformer architecture, such as Bidirectional
Encoder Representations from Transformers (BERT) and XLNET, which have thus far not been widely
explored for the DA classification task. Our findings indicate that these text pre-processing considera-
tions do have a statistically significant effect on classification accuracy. Notably, we found that viable input
sequence lengths, and vocabulary sizes, can be much smaller than is typically used in DA classification
experiments, yielding no significant improvements beyond certain thresholds. We also show that in some
cases the contextual sentence representations generated by language models do not reliably outperform
supervised methods. Though BERT, and its derivative models, do represent a significant improvement
over supervised approaches, and much of the previous work on DA classification.
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1. Introduction
The concept of a Dialogue Act (DA) originated from John Austin’s ‘illocutionary act’ theory
(Austin 1962) and was later developed by John Searle (1969), as a method of defining the seman-
tic content and communicative function of a single utterance of dialogue. The fields of Natural
Language Processing (NLP) and Natural Language Understanding (NLU) have since developed
many applications for the automatic identification, or classification, of DA’s. Most prominently,
within dialogue management systems, they have been used as high-level representations for user
intents, system actions and dialogue state (Griol et al. 2008; Ge and Xu 2015; CuayÁhuitl et al.
2016; Wen et al. 2016; Liu et al. 2018; Firdaus et al. 2020). DA’s have also been applied to spo-
ken language translation (Reithinger et al. 1996; Kumar et al. 2017), team communication in the
domain of robot-assisted disaster response (Anikina and Kruijff-Korbayova 2019) and under-
standing the flow of conversation within therapy sessions (Lee et al. 2019). However, the DA
classification task has yet to reach, or surpass, the human level of performance that has been
achieved for many other NLP tasks and thus remains an open and interesting area of research.

Previous approaches to the DA classification task include support vector machines (SVM)
(Ribeiro et al. 2015; Amanova et al. 2016), and hidden Markov models (HMM) (Stolcke et al.
2000; Surendran and Levow 2006), N-grams (Louwerse and Crossley 2006) and Bayesian networks
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(Keizer 2001; Grau et al. 2004). Though, more recently, performance of deep learning techniques,
often based on recurrent or convolutional architectures, have surpassed that of the more tradi-
tional approaches previously mentioned (Kalchbrenner and Blunsom 2013; Ji et al. 2016; Lee and
Dernoncourt 2016; Papalampidi et al. 2017). Regardless of architectural variations, such neural
network models may be broadly split into two categories, referred to here as single-sentence and
contextual. Single-sentence models take one utterance of dialogue as input and assign a predicted
DA label for that utterance. On the other hand, input for contextual models includes additional
historical or contextual information, for example, indicating a change in speaker, previous dia-
logue utterances or previously predicted DA labels. In some cases, the contextual information
may also include ‘future’ utterances or DA labels, in other words, those that appear after the cur-
rent utterance requiring classification; though, the utility of such future information for real-time
applications such as dialogue systems is questionable. Within DA classification research, it has
been widely shown that including such contextual information yields improved performance over
single-sentence approaches (Lee and Dernoncourt 2016; Liu and Lane 2017; Bothe et al. 2018a;
Ribeiro et al. 2019). The advantage of including contextual information is clear when considering
the nature of dialogue as a sequence of utterances. Often, utterances are not produced indepen-
dently of one another, instead they are produced in response to previous talk. Consider the use
of ‘Okay’ in the following examples. In the first instance, speaker B uses ‘Okay’ in response to a
question. In the second instance, speaker A uses ‘Okay’ as confirmation that a response has been
heard and understood. As such, it may be difficult, or impossible, to determine the communica-
tive intent of a single-dialogue utterance and, therefore, including contextual information results
in superior performance over single-sentence approaches.

1 A: How are you? 2 A: Do you need help with that?
B: Okay B: No thank you.

A: Okay

Consequently, much of the contemporary DA classification research focused on representing
contextual information and related architectures. Yet, both single-sentence and contextual classi-
fication models share some commonalities. Primarily, that is, each input utterance, or utterances,
must first be encoded into a format conducive to classification, most commonly with several feed
forward neural network (FFNN) layers, or further downstream operations, such as combining
additional contextual information (Kalchbrenner and Blunsom 2013; Lee and Dernoncourt 2016;
Ortega and Vu 2017; Papalampidi et al. 2017; Bothe et al. 2018b). In other words, the plain text
input utterances must be converted into a vector representation that ‘encodes’ the semantics of
the given utterance. It is this sentence encoding module which is common to most DA classifi-
cation approaches. However, in our experience, much of the previous work on DA classification
has neglected to examine the impact of input sequence representations on sentence encoding, for
example, the number of words permitted in the vocabulary, the number of tokens within an input
sequence, the selection of pre-trained word embeddings, and so on. Where such considerations
are reported, they are often brief and with little justification as to their efficacy. Further, their
effect on results may be difficult to determine when most work focuses on one, or a small number
of, sentence encoding models. Here, we instead elect to examine factors which may, or may not,
contribute to effective encodings of single-dialogue utterances.

In this study, we conduct a comprehensive investigation of several key components that con-
tribute to the sentence encoding process. The hypothesis being, that if we can determine the
elements which contribute to effective DA classification at the single-sentence level, then they
may also be applied at the contextual level. We analyse the effect of different parameters for input
sequence representations on a number of supervised sentence encoder models, based on a mix-
ture of recurrent and convolutional architectures. Further, given the recent successes of using large
pre-trained language models for transfer learning on a variety of NLP tasks, including those based
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Figure 1. A generic DA classification architecture, including the sentence encoding module (components 1-3), and exam-
ple parameters (Sequence Length, Vocabulary, etc), additional context information (4), dimensionality reduction (5) and
classification (6).

on the Transformer architecture (Vaswani et al. 2017), such as BERT (Devlin et al. 2019) and
GPT2 (Radford et al. 2019), we test a number of such models as sentence encoders for the, as yet
largely unexplored, task of DA classification. This work should also serve as a useful reference for
future research on the DA classification task, by providing some empirical data regarding various
implementation decisions.

In the following section, we provide an overview of the sentence encoding andDA classification
process, with particular focus on the aspects explored within this work, including the different fea-
tures of input sequence representations and pre-trained embeddings, supervised encoder models,
and pre-trained language models. Section 3 describes our experimental set-up, including the two
corpora used for training and evaluation within the study, along with an explanation of the text
pre-processing procedure and selection of training and test data, implementation details of the
supervised and pre-trained language models used throughout the experiments, and our evalua-
tion procedure. In Section 4, we report the results we obtain for our input sequence experiments,
using supervised models, and the language model experiments. Final discussion and conclusions
are drawn in Section 5a.

2. Sentence encoding and DA classification
In this section, we describe the various components of sentence encoding process, with respect to
the DA classification task, and provide details of each aspect investigated in this work. Both single-
sentence and contextual models tend to share a common sentence encoding module. Though
specific implementation details may vary, most may be described with the generic DA classifica-
tion architecture diagram shown in Figure 1. The sentence encoding module encompasses several
components, each of which is examined within this study. In short, the encoding module converts
the plain text input sentences into the vectorised representations necessary for classification or
other downstream tasks, such as concatenation with other contextual data. The following sections
discuss each component of Figure 1 (numbered 1 through 6) in more detail.

2.1 Input sequence processing
The input sequence processing component (1) takes as input a plain text sentence and produces
a tokenised sequence. Generally, this procedure is carried out as part of pre-processing the data
prior to training, or inference. Sequence processing involves several text pre-processing steps and,
as previously mentioned, they are often only briefly reported within the literature, if at all. Where
they are, the selected parameters are rarely justified and therefore appear somewhat arbitrarily

aWe have made all code, models, data and analysis available at: github.com/NathanDuran/Sentence-Encoding-for-DA-
Classification.
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chosen in many cases. Additionally, very few studies have explored the impact that different
parameters may have on the resulting sentence encodings. Here, we discuss three different, in
some cases optional, aspects of the sequence processing component: letter case and punctuation,
vocabulary size, and tokenisation.

2.1.1 Letter case and punctuation
Letter case simply refers to the optional pre-processing step of converting the letters in all words
to lower case, or not, which helps to reduce ‘noise’ within the data. Firstly, by reducing repeated
words in the vocabulary, for example, removing words that are capitalised at the beginning of
a sentence and appear lower-cased elsewhere, and secondly, by removing capitals from names,
abbreviations, and so on. Converting all words to lower case is common practice in many NLP
applications and the same appears true for DA classification (Ji et al. 2016; Kumar et al. 2017; Chen
et al. 2018; Wan et al. 2018), though, it is often not stated whether this step has been carried out.

Whether to remove punctuation, or not, is another optional pre-processing step. It seems
reasonable to assume that, for the DA classification task, some punctuation marks may contain
valuable information which should not be removed. Certainly, an interrogationmark at the end of
a sentence should indicate a high probability that it was a question. For instance, Wan et al. (2018)
removed all punctuation marks except for interrogation, and Kumar et al. (2017) removed only
exclamation marks and commas. On the other hand, Webb and Hepple (2005) removed all punc-
tuation, though none of these studies states why those particular choices were made. However,
Ortega et al. (2019) found that keeping punctuation was beneficial on a similar DA classifica-
tion task using the Meeting Recorder Dialogue Act (MRDA) dataset, and it is therefore worthy of
further investigation.

In addition to case and punctuation, lemmatising words or converting them to their parts
of speech (POS) is a frequently used pre-processing step within NLP applications. However,
previous studies have shown that, whether used as additional features (Kumar et al. 2017), or
replacing words entirely (Ribeiro et al. 2019), they result in an unfavourable effect on perfor-
mance. We therefore chose to focus solely on letter case and punctuation within this study
(see Section 4.1.1).

2.1.2 Vocabulary size
Corpora often contain a large number of unique words within their vocabulary. It is common
practice, within NLP and DA classification tasks, to remove words that appear less frequently
within the corpus. Or in other words, to keep only a certain number – the vocabulary size – of the
most frequent words and consider the rest out-of-vocabulary (OOV), which are often replaced
with a special ‘unknown’ token, such as <unk> (Ji et al. 2016; Wan et al. 2018). Though a vocab-
ulary size is often stated within DA classification studies, it is generally not accompanied with an
explanation of why that value was chosen. For example, the Switchboard corpus contains∼22, 000
unique words (this varies depending on certain pre-processing decisions, see Section 3.1), yet
different studies have elected to use vocabulary sizes in the range of 10,000 to 20,000 words (Ji
et al. 2016; Lee and Dernoncourt 2016; Kumar et al. 2017; Li et al. 2018; Chen et al. 2018), while
Wan et al. (2018) kept only words that appeared more than once within the corpus. To the best
of our knowledge, only one previous study has explored the effect of different vocabulary sizes on
DA classification task. Cerisara et al. (2017) conducted experiments on the Switchboard corpus
using different vocabulary sizes in the range 500 to 10,000. They found that, with their model, the
best performance was achieved with a vocabulary size of between 1,000 and 2,000 words and that
accuracy slightly decreased with larger vocabularies. This indicates that the choice of vocabulary
size may well impact the DA classification task. As such, we evaluate the effect on performance of
a range of vocabulary sizes (see Section 4.1.2).
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2.1.3 Tokenisation
The final stage of preparing the input sequence is that of transforming the plain text sentence
into a fixed length sequence of word or character tokens. Tokenisation at the word level is
the most common approach for DA classification because it enables the mapping of words to
pre-trained embeddings and hence facilitates transfer learning. Though, recently some stud-
ies have also explored character-based language models (Bothe et al. 2018b), or a combination
of character and word embeddings (Ribeiro et al. 2019). In any case, once the text has been
tokenised, it is padded or truncated to a fixed size sequence length, or maximum sequence
length. In cases where the number of tokens is less than the maximum sequence length, extra
‘padding’ tokens, such as <pad>, are used to extend the sequence to the desired size. Input
sequences must be converted to a fixed length because many sentence encoding, and classifica-
tion, models require the size of the input data to be defined before runtime, or before processing
a batch of data, for example, to determine the number of iterations over the input sequence for
recurrent models. The final tokenisation step is to simply map each word, or character, to an
integer representation. In the case of word tokens, this is typically the words index within the
vocabulary.

Choosing a sequence length equal to the number of tokens in the longest sentence in the cor-
pus may result in the majority of sequences consisting predominantly of the padding token, and
hence, increasing the computational effort without adding any useful information. For instance,
the Switchboard corpus has an average of ∼9.6 tokens per utterance, yet the maximum utterance
length is 133 tokens. On the other hand, if an input sequence is too short, the process of trun-
cation could remove information valuable to the encoding and classification process. However,
considerations around appropriate values for input sequence length are rarely discussed within
the literature. To the best of our knowledge, thus far only two studies have explored the impact
of different sequence lengths on the DA classification task. Cerisara et al. (2017) tested different
sequence lengths in the range 5 to 30 on the Switchboard corpus. They found the best perfor-
mance was achieved using 15 to 20 tokens, with further increases not yielding any improvement.
Similarly, Wan et al. (2018), using the same corpus, tested sequence lengths in the range 10 to
80 and achieved their best results with a sequence length of 40, with further increases actually
reducing performance. These results suggest that, as with vocabulary size, the value selected for
maximum sequence length is also worth further investigation. We therefore evaluate the impact
of different sequence lengths on classification results (see Section 4.1.3).

2.2 Embeddings
The embedding component (2) is often the first layer of a DA classification model. Though,
this is typically not the case with many pre-trained language models, where input is simply the
tokenised sentence (see Section 2.3.2). The embedding layer maps each word in the tokenised
input sequences to higher-dimensional vector representations, most frequently with pre-trained
embeddings such as Word2Vec (Mikolov et al. 2013) and GloVe (Pennington et al. 2014).

However, within the literature, a number of studies simply state the type and dimensions of the
embeddings used (Lee and Dernoncourt 2016; Ortega and Vu 2017; Li et al. 2018; Ahmadvand et
al. 2019), while others have explored several different types or dimensions (Cerisara et al. 2017;
Papalampidi et al. 2017). Ribeiro et al. (2019) examined a number of 300-dimensional pre-trained
embeddings:Word2Vec (Mikolov et al. 2013), FastText (Joulin et al. 2017) and Dependency (Levy
and Goldberg 2014), with the latter yielding the best results. In contrast, it appears 200 to 300-
dimensional GloVe embeddings (Pennington et al. 2014) are used more frequently within DA
classification studies (Lee and Dernoncourt 2016; Kumar et al. 2017; Papalampidi et al. 2017;
Chen et al. 2018; Li et al. 2018; Wan et al. 2018). As such, it is difficult to determine whether any
one type of pre-trained embedding, or its dimensionality, is optimal for the DA classification task.
Additionally, it is unclear what impact different embedding and dimensionality choices may have
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on classification results. As an example, according to the results reported by Ribeiro et al. (2019),
the difference between their best- and worst-performing pre-trained embeddings, Dependency
and FastText, respectively, is 0.66%. While the difference between FastText and Word2Vec was
only 0.2%. Therefore, we examine five different pre-trained embeddings and test each at five
different dimensions in the range 100 to 300 (see Section 4.2).

It should be noted that, to the best of our knowledge, no embeddings have been developed
specifically for the DA classification task.Word embeddings are typically trained on large amounts
of text data, for example,Word2Vec was developed using a 1.6 billion word dataset (Mikolov et al.
2013). Thus, developing embeddings for DA classification, either from scratch, or by fine-tuning
existing embeddings, would likely require a very large set of dialogue data. Though this would be
an interesting avenue to pursue, here we chose to focus our experiments on existing embeddings,
as these are the most frequently used, and leave DA-oriented embeddings for future research.

2.3 Encoder models
The encoder model component (3) is, of course, the key aspect of the sentence encoding process.
Here, we discuss sentence encoders in terms of two categories: (i) models that have been trained
in a supervised fashion, which is the predominant approach within DA classification research,
and (ii) those that use a language model – or pre-trained language model – to generate sentence
encodings, an approach which, despite widespread application to many NLP tasks, has thus far
received little attention for DA classification.

2.3.1 Supervised encoders
As previously mentioned, supervised encoder models take as input a sequence of tokens that have
been mapped to higher-dimensional representations via the embedding layer. Input is therefore
an n× dmatrixM, where n is the number of tokens in the input sentence (or maximum sequence
length) and d is the dimension of the embedding. The encoder model itself is then typically based
on either convolutional or recurrent architectures, or a hybrid of the two, as in Ribeiro et al. (2019).
Though, in each case, the purpose is the same, to produce a vectorised representation of the input
sentence that captures, or encodes, its semantic and communicative intent. Note that the shape of
the output vector representation is highly dependent on the model architecture and parameters,
for example, the kernel size and number of filters in convolutional models, or the dimensionality
of the hidden units in recurrent models. However, in both cases, the output is a two-dimensional
matrix, and therefore, typically undergoes some form of dimensionality reduction, as described in
Section 2.5.

Regardless of approach, the goal of convolutional and recurrent architectures is the same, and
they both consider the encoding problem from a different perspective. Broadly, convolutional
models attempt to encode the important features – words or characters within the text – that are
indicative of an utterances DA label. On the other hand, recurrent models focus on the sequential,
temporal relationships between the tokens of the input sequence. Certainly, both paradigms are
motivated by the sound reasoning that the constituent words, and their order within the sentence,
are both key to interpreting its meaning, and hence both have been extensively explored within
the literature. For example, Ahmadvand et al. (2019), Liu and Lane (2017), Ortega and Vu (2017),
Rojas-Barahona et al. (2016), and Kalchbrenner and Blunsom (2013), all use variations of con-
volutional models as sentence encoders, while Li et al. (2018), Papalampidi et al. (2017), Tran et
al. (2017a) and Cerisara et al. (2017), all employed recurrent architectures. Lee and Dernoncourt
(2016) experimented with both convolutional and recurrent sentence encoders on several differ-
ent corpora and found that neither approach was superior in all cases. Ribeiro et al. (2019) tested a
recurrent convolutional neural network (RCNN), based on the work of Lai et al. (2015), and found
that it did not result in any improvement over convolutional or recurrent models. Considering
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this previous work, it is not clear if either paradigm produces optimal sentence encodings for the
DA classification task, and therefore both warrant further investigation. For each aspect explored
within this study: letter case and punctuation, vocabulary size, sequence length and embeddings,
we evaluate a selection of convolutional, recurrent, and hybrid architectures (see Section 3.2.1). In
Section 3.2.2, we also outline variations of, or additions to, some of these models, such as attention
and multiple layers.

2.3.2 Languagemodel encoders
Though the joint-training of language models and classifiers has been successfully applied to DA
classification (Ji et al. 2016; Liu and Lane 2017), due to its recent prevalence within NLP, here we
only discuss the fine-tuning approach. Using this method, a language model is first pre-trained on
large amounts of unlabelled text data, with a language modelling objective, and then fine-tuned for
a particular task. In essence, this form of transfer learning is very similar in concept to the use of
pre-trained word embeddings, the primary difference being, that the language model itself is used
to generate the embeddings and effectively treated as an embedding layer within the classification
model. This method of fine-tuning has proved to be highly effective for many NLP tasks and has
therefore received considerable attention within the literature. Particularly, the contextual embed-
ding language models, such as ELMo (Peters et al. 2018), BERT (Devlin et al. 2019) and many
others (Cer et al. 2018; Henderson et al. 2019; Lan et al. 2019; Yang et al. 2019; Zhang et al. 2020).

However, to the best of our knowledge, only two studies have explored language model fine-
tuning for DA classification. Bothe et al. (2018a); Bothe et al. (2018b) utilised multiplicative long
short-term memory (mLSTM) (Krause et al. 2016), pre-trained as a character language model on
∼80 million Amazon product reviews (Radford et al. 2017), as a sentence encoder. While Ribeiro
et al. (2019) explored the contextual embedding representations generated by ELMo (Peters et al.
2018) and BERT (Devlin et al. 2019). Both studies reported notable results and therefore the fine-
tuning of language models seems a promising direction for further research. In this study, we test
10 different pre-trained language models as sentence encoders and these are based on a variety of
different architectures, including Transformers (Vaswani et al. 2017) and recurrent models (see
Section 3.2.3).

2.4 Contextual data and discourse models
The contextual data and discourse model component (4) incorporates additional historical, or
future, conversational data into the DA classification process. Given the focus of this study is
on encoding single sentences, these aspects are not explored within this work. However, as an
example, contextual information is often included in the form of two or three preceding utter-
ances, and crucially, each is encoded using the same sentence model (Lee and Dernoncourt 2016;
Papalampidi et al. 2017; Liu and Lane 2017; Bothe et al. 2018b; Ahmadvand et al. 2019; Ribeiro
et al. 2019). In addition to surrounding utterances, the use of further speaker, and DA label,
contextual data have also been investigated. For example, conditioning model parameters on a
particular speaker (Kalchbrenner and Blunsom 2013), concatenating change-in-speaker informa-
tion to sequence representations (Liu and Lane 2017), or a summary of all previous speaker turns
(Ribeiro et al. 2019). Similarly, previous DA label information may be included, using either pre-
dicted or ‘gold standard’ DA labels (Kalchbrenner and Blunsom 2013; Liu and Lane 2017; Tran et
al. 2017b; Ahmadvand et al. 2019; Ribeiro et al. 2019).

2.5 Dimensionality reduction
Because the output of both sentence encoder and discourse models tends to be a two-dimensional
matrix, the dimensionality reduction component (5) simply maps the output to a fixed size
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representation suitable for input to the classification model. In the case of additional contextual
data, there may also be a concatenation operation prior to dimensionality reduction. Typically,
this step is performed by either a pooling operation (Liu and Lane 2017; Papalampidi et al. 2017;
Bothe et al. 2018b) or a single feed forward layer (Lee and Dernoncourt 2016; Cerisara et al. 2017;
Ribeiro et al. 2019).

2.6 Classificationmodel
The final classification model component (6) produces a DA label prediction from the input fixed
size sequence representations. Most frequently, this involves a FFNN layer (or sometimes several),
where the number of output units is equal to the number of DA labels. Softmax activation pro-
duces a probability distribution over all possible labels, and the final prediction is considered the
label with the highest probability.

3. Experimental set-up
Here we discuss our experimental set-up, including training and test datasets, the selection of
models and implementation details, and experiment evaluation procedure.

3.1 Corpora
We use two corpora used throughout our experiments, the Switchboard Dialogue Act Corpus
(SwDA) and the Maptask corpus. These corpora were selected primarily due to several contrast-
ing features between them, which allows for some interesting comparisons between two quite
different datasets. Firstly, SwDA contains many more utterances and has a larger vocabulary
than Maptask. Secondly, the conversations within SwDA can also be considered open-domain, or
non-task-oriented, while Maptask is task-oriented, and therefore the type of language used, and
problem domain, is contrasted between the two. Finally, both corpora have been studied previ-
ously which provides performance baselines for comparison. The following provides an overview
of each corpus, such as DA label categories, selection of training and test data, and a description
of some corpus-specific pre-processing steps that were performed.b Table 1 summarises the num-
ber of DA labels, vocabulary size, utterance length, number of utterances in the training, test, and
validation splits for the two corpora.

3.1.1 Switchboard
The Switchboard corpus (Godfrey et al. 1992) consists of telephone conversations between two
participants who did not know each other and were assigned one of 70 topics to discuss. Jurafsky
et al. (1997) later annotated a subset of the Switchboard corpus, using the Discourse Annotation
and Markup System of Labelling (DAMSL) to form the SwDA. The corpus contains 1,155 con-
versations, comprising 205,000 utterances and 44 unique DA labels. During pre-processing, in
some cases, it makes sense to remove or collapse several of the DA label categories. We remove
all utterances marked as Non-verbal, for example, [laughter] or [throat-clearing], as these do not
contain any relevant lexical information (Ribeiro et al. 2019; Stolcke et al. 2000). The Abandoned
and Uninterpretable labels are also merged, since these both represent disruptions to the conver-
sation flow and consist of incomplete or fragmented utterances (Kalchbrenner and Blunsom 2013;
Ribeiro et al. 2019). Some utterances are also marked as Interrupted, indicating that the utterance
was interrupted but continued later in the conversation. All interrupted utterances are concate-
nated with their finishing segment and assigned its corresponding DA label, effectively creating

bFull details of both datasets used within this study, including code, annotation scheme and data, can be found at:
github.com/NathanDuran/Switchboard-Corpus and github.com/NathanDuran/Maptask-Corpus.
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Table 1. Overview of the SwDA and Maptask corpora used throughout this study

Corpus Num classes Vocabulary size Utt Length max (mean) Total utts Train Val Test

SwDA 41 22,301 133 (9.6) 199,740 192,390 3272 4078
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Maptask 12 1797 115 (6.2) 26,743 21,052 2929 2762

full uninterrupted utterances (Webb andHepple 2005; Ribeiro et al. 2019). The resulting set there-
fore contains a total of 41 DA labels, with the removal of non-verbal labels reducing the number
of utterances by ∼2%. Finally, all disfluency and other annotation symbols are removed from the
text.

The 1155 conversations are split into 1115 for the training set and 19 for the test set, as
suggested by Stolcke et al. (2000) and widely used throughout the literature (Kalchbrenner and
Blunsom 2013; Cerisara et al. 2017; Papalampidi et al. 2017). The remaining 21 conversations are
used as the validation set. It should be noted that this training and test split results in a large imbal-
ance between two of the most common labels within the corpus, Statement-non-opinion (sd) and
Statement-opinion (sv). However, to enable comparison with much of the previous work that uses
this corpus, we retain this imbalanced split.

3.1.2 Maptask
The HCRCMaptask corpus (Thompson et al. 1991) contains 128 conversations in a task-oriented
cooperative problem-solving domain. Each conversation involves two participants who were
given a map, one with a route and one without. The task was for the participant without the
route to draw one based on discussion with the participant with the route. The transcribed utter-
ances were annotated with 13 DA labels. However, this is reduced to 12 DA labels by removing
utterances tagged withUncodable, as these are not part of theMaptask coding scheme. As with the
SwDA corpus all disfluency symbols are removed, including incomplete words, for example ‘th–‘.
However, unlike the SwDA corpus, Maptask contains no punctuation, aside from a few excep-
tions, for example, ‘sort of ‘s’ shape’ to describe the shapes on the map. It also contains no capital
letters, and we therefore do not include the Maptask corpus in the letter case and punctuation
experiments.

The authors do not define any training and test data split for the Maptask corpus; we randomly
split the 128 dialogues into 3 parts. The training set comprises 80% of the dialogues (102), and
the test and validation sets 10% each (13), which is similar to proportions used in previous studies
(Tran et al. 2017a; Tran et al. 2017b).

3.2 Models
The following section outlines the selection of sentence encoder models used throughout the
experiments.c These can be separated into two categories: those trained in a fully supervised fash-
ion and those that use a pre-trained language model to generate utterance representations. In both
cases, the default classification model (component 6 described in Section 2) consists of a two-layer
FFNN where the number of nodes in the final layer is equal to the number of labels in the training
corpus. The final layer uses softmax activation to calculate the probability distribution over all
possible labels and we use categorical cross entropy for the loss function. In the following, model
hyperparameters, such as number of filters, kernel size, recurrent units, pool size and type (max

cDue to the large number of models used within our experiments here, we only provide a brief overview. We kindly refer
you to the original publications where appropriate. Full implementation details and parameters relevant to this study can be
found at: github.com/NathanDuran/Sentence-Encoding-for-DA-Classification, and a table of model parameters can be found
in Appendix A.
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or average), were all selected based on results of a Bayes search algorithm exploring a maximum
of 100 parameter combinations, with each run consisting of five epochs. However, in cases where
we use existing published models (i.e. excluding convolutional neural network (CNN), LSTM and
gated recurrent unit (GRU)), we kept all parameters consistent with those reported in the original
publications where possible.d

3.2.1 Supervisedmodels
For the input sequence representation (letter case, punctuation, vocabulary size and sequence
length) and word embeddings experiments, we use a selection of six models based on convo-
lutional and recurrent architectures. The first layer of each model is an embedding layer and
the final layer performs dimensionality reduction; either a pooling operation over the entire
output sequence or outputs are simply flattened to a single-dimensional sequence representa-
tion. Thus, each of the following models encompass the embedding (2), encoder model (3) and
dimensionality reduction (5) components, as described in Section 2.

CNN. The CNN is intended as a simple baseline for convolutional architectures. It consists of
two convolution layers with a max pooling operation after each. We use 64 filters with a kernel
size of 5 for each layer and a pool size of 8.

TextCNN. An implementation of the CNN for text classification proposed by Kim (2014).
It is comprised of five parallel convolution layers with a max pooling operation after each.
Convolutional layers use the same number of filters, 128, but with different kernel sizes in the
range [1, 5]. The use of different kernel sizes is intended to capture the relationships between
words at different positions within the input sentence. For dimensionality reduction, the output
of each pooling operation is concatenated before flattening into a single sequence vector.

DCNN. The dynamic convolutional neural network implements the model proposed by
Kalchbrenner et al. (2014). The DCNN uses a sequence of 3 convolutional layers, each with 64
filters, the first layer uses a kernel size of 7 and the following layers a kernel size of 5. In contrast to
the previous convolutional models, the DCNN uses a dynamic K-max pooling operation after each
convolution, which aims to capture a variable (per-layer) number of the most relevant features.
Finally, dimensionality reduction is simply the flattened output of the last K-max pooling layer.

LSTM and GRU. The LSTM (Hochreiter and Schmidhuber 1997) and GRU (Cho et al. 2014b)
are simple baselines for recurrent architectures. Both models follow the standard implementation
and consist of one LSTM, or GRU, layer with 256 hidden units.We take the output at each timestep
and apply average (LSTM), or max (GRU) pooling for dimensionality reduction.

RCNN. The RCNN is effectively a ‘hybrid’ of recurrent and convolutional paradigms. Our
implementation is based on the model proposed by Lai et al. (2015) and has previously been
applied to DA classification by Ribeiro et al. (2019). The RCNN consists of two recurrent layers,
each with a dimensionality of 256. One processes the sequence forwards and the other in reverse.
The output of these two layers is then concatenated with the original input embedding matrix, in
the format forwards-embeddings-backwards. This concatenation ‘sandwich’ is then passed as input
to a convolutional layer with 64 filters and a kernel size of 1. Finally, a max pooling operation is
performed for dimensionality reduction.

3.2.2 Supervisedmodel variants
Bi-directional and Multi-layer Recurrent Models. In addition to our baseline recurrent models
(LSTM and GRU), we also test their bi-directional and multi-layer variants, both of which have
previously been explored within DA classification studies (Kumar et al. 2017; Bothe et al. 2018a;

dWe used Comet.ml to tune eachmodel. Results can be viewed at: comet.ml/nathanduran/sentence-encoding-for-da-model-
optimisation.
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Chen et al. 2018; Ribeiro et al. 2019). The bi-directional models (Bi-LSTM and Bi-GRU) pro-
cess the input sequence in the forwards and then backwards directions. Each pass generates a
256-dimensional vector (equivalent to the number of hidden units) per timestep, which are then
concatenated to form a single 512-dimensional vector. As with the baseline recurrent models, we
take the output at each timestep and apply max pooling for dimensionality reduction. The multi-
layer models (Deep-LSTM and Deep-GRU) simply stack multiple recurrent layers on top of each
other, with the output for a given layer, at each timestep, becoming the input for the following
layer. We use the same number of hidden units and apply the same max pooling operation as the
other recurrent models.e

Attentional Models. Throughout the DA classification literature, numerous studies have
explored the use of different attentionmechanisms (Shen and Lee 2016; Ortega and Vu 2017; Tran
et al. 2017a; Bothe et al. 2018a; Chen et al. 2018). Though different attention mechanisms have
been applied, in various contexts, we investigate the effect of adding a simple attention mecha-
nism to each of our supervisedmodels. During parameter tuning, we tested both additive attention
(Bahdanau et al. 2015) and multiplicative attention (Luong et al. 2015) and found that in all cases
additive resulted in the best performance. We incorporated the attention mechanism into our
models by inserting an attentional layer between the utterance encoder layer and the dimension-
ality reduction layer. The attention layer takes as input the encoded utterance, and its output is
later concatenated with the original utterance encoding, before being passed to the classification
layers.

3.2.3 Languagemodels
In addition to the supervised models, we test a selection of 10 pre-trained language models as
sentence encoders. Due to the variety of model architectures, training objectives and training
data that were used to generate these language models, we omit them from the input sequence
experiments. Differences in training data, for example, use of punctuation, the vocabulary, and so
on, would make fair comparison between the models difficult. Further, and as previously stated,
the input to these models is typically a tokenised sentence, where each token is mapped to an
integer representation, and does not require the further step of mapping tokens to word embed-
dings. Therefore, we also do not include the languagemodels in our word embedding experiments.
Instead, we use the standard input format and model parameters, defined by the original authors.
The following provides a brief overview of the 10 language models, 4 of which are based on
recurrent, or feed forward, neural networks, and the remaining 6 on transformer architectures
(Vaswani et al. 2017).

NNLM The Neural Network Language Model (Bengio et al. 2003).
mLSTM Character-based multiplicative long short-term memory (mLSTM) language model

proposed by Krause et al. (2016), and applied to DA classification by Bothe et al.
(2018ab).

ELMo Embeddings from Language Models (Peters et al. 2018).
USE The Universal Sentence Encoder (Cer et al. 2018).

BERT Bidirectional Encoder Representations from Transformers (Devlin et al. 2019). We
use the BERT-base version, we also tested the BERT-Large model but found it did
not result in any significant improvements. This also allows us to maintain a similar
number of layers and parameters as other transformermodels we tested, for example,

eDue to promising results reported in previous studies (Kumar et al. 2017; Chen et al. 2018), we also tested several other
variants, including the use of conditional random fields (CRF) as an alternative classification model. However, these resulted
in significantly worse performance and are therefore omitted from this study.

https://doi.org/10.1017/S1351324921000310 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000310


Sentence encoding for DA classification 805

RoBERTa. We also tried fine-tuning different numbers of transformer layers and
found the best results were achieved with all 12 transformer blocks.

RoBERTa A Robustly Optimised BERT Pretraining Approach (Liu et al. 2019).
ConveRT Conversational Representations from Transformers (Henderson et al. 2019).
XLNET (Yang et al. 2019).
GPT-2 Generative Pretrained Transformer 2 (Radford et al. 2019).

DialoGPT The Dialogue Generative Pre-trained Transformer (Zhang et al. 2020).

3.3 Evaluation procedure
Models were trained for 10 epochs, using mini-batches of 32 sentences. Evaluation was performed
on the validation set every 500 or 100 batches for SwDA and Maptask, respectively. These values
allow for several evaluations per-epoch and account for the difference in the number of utterances
between the two datasets.

Typically, DA classification studies evaluate performance using the accuracy metric and so to
allow comparison with previous work, we also use accuracy to evaluate our models. In order to
account for the effects of random initialisation and non-deterministic nature of the learning algo-
rithms, in the next section, results reported are the average (μ), and standard deviation (σ ), of the
accuracy obtained by training and testing the model for 10 runs. Results for the validation set are
the final validation accuracy, that is, the validation accuracy achieved at the end of 10 epochs. To
obtain results on the test set, we first load the model weights from the point at which validation
loss was lowest during training, before applying it to the test set. Therefore, results for the test set
were obtained using the model that achieved the best performance on the validation set during
training.

Within much of the previous DA classification literature, results reported for different models
and parameter combinations often amount to very small differences in performance, usually in
the region of 1–2% accuracy or less. Yet, even where results are the average over multiple runs,
it is difficult to draw firm conclusions from such small differences. Thus, in order to determine
if the reported mean accuracies are indeed significant, or not, we perform additional hypothesis
testing. However, it is acknowledged that applying null hypothesis significance testing (NHST)
can be problematic in the context of machine learning problems (Salzberg 1997; Dietterich 1998;
Bouckaert 2003), and that the lack of independent sampling when using the same training and
test data split may lead to an increased probability of type I errors. With this in mind, the follow-
ing outlines our approach to significance testing, similar to that of Fiok et al. (2020) and based
on the recommendations of DemŠar (2006). For cases in which the values for only one pair of
parameters are compared, we use the Wilcoxon signed-rank (WSR) test, a non-parametric alter-
native to a dependent t-test, that makes fewer assumptions about the distribution of the data, and
for which outliers have less effect. In cases where the values for multiple pairs of parameters are
compared, we use a repeated measures analysis of variance (RM ANOVA). We test distributions
with the Shapiro–Wilk test for normality and conclude that in most cases the two distributions
were normal, though this is considered less important when using a balanced design with an
equal number of samples, as in our case. A further more important assumption is sphericity, a
property similar to the homogeneity of variance in standard ANOVA. We applied Mauchly’s test
of sphericity and found that in all cases this assumption was met. Where the results of an RM
ANOVA reveal a significant overall effect, we perform a further Tukey’s honest significant dif-
ference (Tukey’s HSD) post hoc analysis in order to determine the factors contributing to the
observed effect. Throughout the analysis, we used a significance level of α = 0.05 and conduct
power analysis to ensure power ≥ .80.

In addition to the NHSTs, wherever we make direct comparisons between two or more classi-
fiers, we also employ the Bayesian signed-rank (BSR) test (Benavoli et al. 2017). The BSR test was
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introduced by Benavoli et al. (2017), specifically to avoid ‘the pitfalls of black and white thinking’
that accompany NHST, by analysing the likelihood that observations are significantly different.
For example, for any two classifiers, A and B, we are given P(A> B), P(A== B) and P(B>A).
Thus, we are able to make a more nuanced interpretation of results than would be possible with p-
values alone. Further, it does not require the same independence, or distribution, assumptions that
many NHSTs do and is therefore an entirely alternative, yet complimentary, method of evaluating
the differences between two classifiers. We report a result as significant, or not, only if the BSR test
and the NHST independently reach the same conclusion. In such cases, we report the p-value and
the most relevant probability produced by BSR test, allowing the reader to draw conclusions about
the extent of the significance of the result. By additionally calculating probabilities via the BSR, we
hope to alleviate some of the concerns surrounding the potential issues of NHST discussed earlier,
and in so doing, establish more confidence in our reported conclusions.

4. Results and discussion
In this section, we present the results and analysis for each of our sentence encoding experiments.
Section 4.1 begins with the input sequence representations, before discussing the results obtained
on the selection of word embeddings in Section 4.2. Sections 4.3 and 4.4 discuss results for our
supervised model variants (multi-layer, bi-directional and attention). Finally, Sections 4.5 and 4.6
report final results for the selection of supervised models and language models, respectively.

For each of the input sequence and word embedding experiments, we kept all parameters fixed
at a default value and only changed the parameter relevant to the given experiment. For example,
when testing different vocabulary sizes, only the parameter that determined the number of words
to keep in the vocabulary during text pre-processing was changed, all other parameters (letter
case, use of punctuation, maximum sequence length and word embeddings) remained fixed. By
default, we lower-cased all words, kept all punctuation marks and used 50-dimensional GloVe
embeddings. For the SwDA corpus, the vocabulary size was set at 10,000 words with a maxi-
mum sequence length of 128 tokens, and for the Maptask corpus the vocabulary size was 1,700
words with a maximum sequence length of 115. Additionally, for all supervised models, word
embeddings were fine-tuned alongside the model during training.

These default values were chosen so as not to restrict the amount of information available to
themodel while testing other parameters. For example, having an arbitrarily small sequence length
while testing different vocabulary sizes and vice versa. Further, these values represent the upper
bound of values to be tested, and are at, or near, the maximum possible value for their respective
datasets. The exception being the SwDA default vocabulary size, which is less than half that of the
full vocabulary. However, as discussed in 2.1.2, the typical range used for this corpus is 10,000 to
20,000 words, and Cerisara et al. (2017) achieved their best results with vocabulary sizes much less
than 10,000 words. While exploring sequence lengths, and vocabulary sizes, we began with small
values and gradually increased until we were satisfied that further increases would not result in
further improvements.

All accuracy values reported within Sections 4.1 to 4.4 are those obtained on the validation set,
and only validation accuracy was used to determine the best parameters for each model. Where
we report final results for the supervised models (4.5) and language models (4.6), we show results
obtained on the validation and test sets.

4.1 Input sequence representations
In the following sections, we report our findings for each of the sequence representation experi-
ments, that is, letter case and punctuation, vocabulary size and maximum sequence lengths. Due
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Table 2. Validation accuracy for the letter case and punctuation experiments

Punct No punct Mixed case Lower case

Model μ σ μ σ μ σ μ σ

CNN 74.46 0.23 73.49 0.24 74.45 0.23 74.73 0.19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TextCNN 75.61 0.25 74.64 0.16 74.77 0.20 75.33 0.23

DCNN 75.02 0.12 73.96 0.18 74.13 0.20 74.54 0.19

RCNN 74.06 0.45 73.37 0.26 74.13 0.32 74.46 0.29

LSTM 75.25 0.18 74.34 0.21 74.84 0.15 75.24 0.20

GRU 73.70 0.24 72.91 0.33 74.28 0.40 74.26 0.17

to differences in pre-training data, vocabulary, and so on, these were only carried out with the
selection of supervised models, and not the language models.

4.1.1 Letter case and punctuation
Here we present the results from both the letter case and punctuation experiments, that is, dur-
ing pre-processing of the text, whether to convert all mixed-case letters to lower-case letters, and
whether to keep, or remove, all punctuation marks. As mentioned in Section 3.1, the Maptask
corpus does not contain any words with capital letters or punctuation marks (apart from rare
non-grammatical cases), and it was therefore not included in the letter case and punctuation
experiments. Results for these two parameters, obtained on the SwDA corpus, are shown in
Table 2.

Regarding the use of punctuation, it can be seen that keeping punctuation marks results in an
improvement in accuracy for all models, with a mean increase of 0.9%. Further, WSR and BSR
tests comparing the punctuation and no-punctuation groups for each model confirm that this
difference is statistically significant in all cases.

Similarly, with the exception of the GRUmodel, lower-casing all letters also improves accuracy,
though to a lesser degree, with a mean increase of 0.3%. This is also statistically significant when
comparing the mixed-case and lower-case groups. For the GRU, the difference between these
two groups is just 0.02%, which is also not significant (p= 0.9, P(punct > no−punct)= 0.45), and
therefore this parameter appears inconsequential for this model.

These results confirm some of the assumptions discussed in 2.1.1 and the results of Ortega
et al. (2019). Firstly, that certain punctuation marks may serve as strong indicators for the utter-
ances DA, for example, an interrogation mark indicating a question. Table 3 shows averaged,
per-label, F1 scores for the best-performing model (TextCNN), on the SwDA test set. We can
see that, when punctuation is retained, F1 scores for all question-type DA labels is improved,
apart from Declarative Wh-Question (qwd), which appears only once, and was not predicted.
Though, collectively, the question-type labels only constitute 5.5% of all labels, and as such, this
represents a minimal overall improvement. For the three most common DA labels, Statement-
non-opinion (sd), Acknowledge/backchannel (b), and Statement-opinion (sv), which collectively
make up 68.64% of all DA labels, the F1 score differs by +0.59%, +1.02% and −2.81%, respec-
tively. This pattern is also repeated for most of the remaining labels, where small improvements
are mitigated by negative changes elsewhere, resulting in the small overall accuracy increase
that we have observed. This indicates that (i) punctuation marks are beneficial in more circum-
stances than simply a question-type DA and interrogation mark relationship, and (ii) including
punctuation can also reduce accuracy for specific label types. Secondly, that lower-casing words
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Table 3. TextCNN averaged F1 scores for the three most frequent labels (sd, b and sv), and all question-type
labels (Tag-Question does not appear), in the SwDA test set.

Dialogue Act Label Count (%) Punct No punct

Statement-non-opinion sd 1317 (32.3%) 79.93 79.34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Acknowledge (Backchannel) b 764 (18.73%) 83.55 82.53
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Statement-opinion sv 718 (17.61%) 62.43 65.24
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes-No-Question qy 84 (2.06%) 73.49 71.43
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wh-Question qw 55 (1.35%) 71.92 67.24
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Declarative Yes-No-Question qyd 36 (0.88%) 23.94 21.62
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Backchannel in Question Form bh 21 (0.51%) 64.64 50.21
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Open-Question qo 16 (0.39%) 73.21 70.05
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rhetorical-Question qh 21 (0.29%) 35.06 32.75
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Declarative Wh-Question qwd 1 (0.02%) 0.0 0.0

reduces unnecessary repetition in the vocabulary, which in turnmay improve learned associations
between word occurrence and DA label.

4.1.2 Vocabulary size
For each of the vocabulary size experiments, only the most frequently occurring words, up to the
current vocabulary size, were kept within the text. Less frequent words were considered OOV
and replaced with the <unk> token. We test 16 different values in the range [500, 8000] with
increments of 500, and [100, 1600] with increments of 100, for SwDA and Maptask, respectively.
As shown in Table 4, with the exception of the GRU applied to the SwDA, the best performance
was consistently achieved using a smaller vocabulary than the largest value tested.

Figure 2 displays Maptask results for the full range of vocabulary sizes and models. Vertical
lines indicate the average frequency of word occurrence for a given range, for example, the 200–
300 most frequent words appear ∼71 times within the Maptask training data. For both SwDA
and Maptask, increasing vocabulary sizes steadily improves accuracy up to ∼5k, or ∼500, words
respectively, beyond which further increases yield little to no improvement.

This observation noris supported by RM ANOVA followed by Tukey’s HSD post hoc analysis
comparing all vocabulary size combinations, which shows that, once a threshold is reached further
increase of vocabulary size does not result in a statistically significant difference in performance.
For Maptask, the threshold is 400 words for all models, and for SwDA 2.5k words; except for
the DCNN, where the threshold is higher, at 4k words. If we explore these thresholds in terms
of frequency of word occurrences, the most frequent 2.5k and 400 words account for 95.9% and
94.7% of all words in the respective SwDA andMaptask training data. The remaining less-frequent
words appear at most 22.5 or 28.3 times, within the training data, typically much less.

These results suggest that words which appear below a certain frequency within the data do
not contribute to overall performance, and that word frequency is correlated with the observed
performance thresholds. Either because of their sparsity within the data, or because they are not
meaningfully related to any DA. On the SwDA data, the 2.5k threshold appears to coincide with
the optimal 1–2k word vocabulary reported by Cerisara et al. (2017). Though, apart from the
CNN, we did not observe any degradation in performance from increasing vocabulary size further.
Certainly, it does not appear that using large vocabularies, typically 10k or 20k words for SwDA
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Table 4. Vocabulary size which produced the best validation accuracy for eachmodel on the SwDA and Maptask
data

SwDA Maptask

Model Vocab size μ σ Vocab size μ σ

CNN 2500 74.50 0.24 500 57.85 0.18
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TextCNN 5500 75.61 0.25 200 56.60 0.33
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DCNN 7500 75.15 0.13 600 56.08 0.32
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RCNN 7500 74.36 0.49 1100 58.28 0.20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSTM 7000 75.25 0.18 800 55.88 0.38
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU 8000 73.89 0.36 1200 58.87 0.24

Figure 2. Maptask validation accuracy for all supervised models with different vocabulary sizes. Vertical lines are the mean
word occurrence, per-vocabulary range (up to 100 words the mean frequency= 1268, and for 100 to 200 words the mean
frequency= 162).

(Ji et al. 2016; Lee and Dernoncourt 2016; Kumar et al. 2017; Chen et al. 2018; Li et al. 2018),
is necessary or beneficial for the DA classification task. While larger vocabularies do not create
significant additional storage or computational requirements, it may be more efficient to remove
very infrequently occurring words. Thus, removing a large number of words from the vocabulary
which do not contribute to model performance.
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Table 5. Input sequence length which produced the best validation accuracy for each model on the
SwDA and Maptask data

SwDA Maptask

Model Seq length μ σ Seq length μ σ

CNN 45 74.43 0.17 25 57.49 0.26
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TextCNN 25 75.63 0.24 40 56.40 0.33
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DCNN 30 75.10 0.23 25 56.14 0.24
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RCNN 40 74.50 0.28 25 58.13 0.26
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSTM 25 75.35 0.16 10 57.98 0.26
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU 25 73.94 0.27 30 58.68 0.25

4.1.3 Sequence length
To explore the effect of varying the input sequence lengths, all utterances were truncated, or
padded, to a fixed number of word tokens before training. Sequences are padded with a <pad>
token up to the current maximum sequence length. For both SwDA and Maptask, we test values
in the range [5, 50], in increments of 5. Table 5 shows the sequence length which produced the
best performance for each model. Notably, in all cases, the best validation accuracy was obtained
using a sequence length that is shorter than the largest value tested, which in turn is less than half
of the longest utterances in both corpora 133 and 115 words for SwDA and Maptask, respectively.

Figure 3 shows SwDA results for the full range of sequence lengths and models. Vertical lines
indicate the cumulative sum of utterances, up to a given length, within the training data. It can
be observed that, increasing the number of tokens steadily improves performance up to a point,
beyond which we see no further improvement. On both SwDA and Maptask performance levels
off at sequence lengths of ∼25 tokens.

Again, these observations are supported by RM ANOVA followed by Tukey’s HSD post hoc
analysis comparing all sequence length combinations, which shows that for SwDA there is no
significant difference in performance for sequence lengths greater than 25 tokens, and forMaptask
the threshold is 15 tokens. Examining these thresholds in terms of the frequency of utterances
within the training data, 96.5% of all utterances in SwDA are <=25 words, while for Maptask
92.6% are <=15 words. This is also clearly reflected in the cumulative sum of utterance lengths as
shown in Figure 3. The values closely match the shape of the accuracy curves, steadily increasing
before starting to level off at the 25 or 15 token thresholds.

Our results, and the stated thresholds, for both datasets strongly support the work of Cerisara
et al. (2017) who found that 15–20 tokens were optimal on the SwDA data. Wan et al. (2018)
also reported their best result was achieved using sequence lengths of 40, which coincides with
the sequence lengths that produced the best (though not statistically significant) results for some
of our models. Additionally, our thresholds for both datasets and the results reported by Cerisara
et al. (2017) can be considered in terms of the average number of words in an English sentence.
According to Cutts (2013) and Dubay (2004), the average number of words is 15–20 per sentence.
While Deveci (2019), in a survey of research articles, found the average to be 24.2 words. Thus, it
should perhaps not be surprising to find that a significant proportion of utterances in our datasets
are of similar or smaller, lengths.

Certainly, it seems that, similar to word occurrences, utterances above a certain length appear
so infrequently that they do not contribute to overall performance. For example, in the SwDA
training data, the number of utterances longer than 50 tokens is 342 (0.18%), and for Maptask it
is just 11 (0.05%). Therefore, padding sequences up to the maximum utterance length does not
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Figure 3. SwDA validation accuracy for all supervised models with different sequence lengths. Vertical lines are the
cumulative sum of utterances up to a given length.

produce any benefit, and in some cases, it may actually reduce performance (Cho et al. 2014a).
Additionally, padding sequences result in a significant increase in storage and computational
effort. Instead, appropriate values should be chosen based on the distribution of utterance lengths
within the data, and where possible, padding mini-batches according to the longest utterance
within the batch.

4.1.4 Input sequences comparison
The vocabulary size and sequence length experiments were conducted while keeping all other
parameters fixed at their default values. This leads to the possibility that using both smaller vocab-
ularies and shorter sequence lengths, in combination, may result in too much information loss
and harm performance. To explore this hypothesis, we conducted further experiments with three
combinations of ‘small’, ’medium’ and ‘large’ vocabulary sizes and sequence lengths. For SwDA,
we used vocabularies of 2.5k, 5k and 10k words, and for Maptask 400, 800 and 1.7k words. Each of
these was combinedwith a respective sequence length of 25, 50 and 128 (SwDA), or 115 (Maptask).
We can see from Table 6 that in most cases models achieved higher accuracy with small vocabular-
ies and sequence lengths. RMANOVA followed by Tukey’s HSD post hoc analysis reveals that, for
the SwDA corpus, there is no significant difference between the groups for any model. Indeed, for
the twomodels which achieved higher accuracy with the large group, RCNN and LSTM, the differ-
ence between the small and large groupsmean accuracies is just 0.26% and 0.21%, respectively. For
Maptask, analysis shows only three models with statistically significant results, CNN, DCNN and
LSTM, each of which obtain higher accuracy with the small or medium group. Again, for the two
models which favoured the large group, TextCNN and RCNN, the difference between the small
and large groups mean accuracies is 0.09% and 0.25%, respectively. Thus, we can conclude that
reducing both vocabulary size and sequence length does not negatively impact performance. In
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Table 6. Vocabulary size and sequence length groupwhich produced the best validation accuracy for eachmodel
on the SwDA and Maptask data

SwDA Maptask

Model Vocab Seq len μ σ Vocab Seq len μ σ

CNN 5000 50 74.86 0.24 400 25 57.72 0.23
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TextCNN 2500 25 75.41 0.09 1700 115 56.33 0.28
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DCNN 5000 50 74.68 0.24 800 50 56.11 0.26
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RCNN 10,000 128 74.51 0.17 1700 115 58.05 0.23
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSTM 10,000 128 75.35 0.15 400 25 57.47 0.25
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU 5000 50 74.37 0.17 800 50 58.59 0.31

Table 7. Embedding type and dimension which produced the best validation accuracy for each model on the
SwDA and Maptask data

SwDA Maptask

Model Embedding Dim μ σ Embedding Dim μ σ

CNN Numberbatch 100 74.59 0.16 FastText 300 57.88 0.20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TextCNN Numberbatch 300 76.01 0.12 FastText 300 58.97 0.24
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DCNN FastText 200 75.66 0.15 FastText 250 57.37 0.31
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RCNN FastText 200 75.06 0.27 Dependency 100 59.45 0.24
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSTM GloVe 300 75.57 0.21 GloVe 300 57.93 0.28
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU FastText 100 74.87 0.28 Dependency 200 59.46 0.23

fact, the only cases where changing a combination of these parameters made a statistical difference
is for those models which favoured smaller vocabularies and sequence lengths.

4.2 Word embeddings
Throughout our word embeddings experiments, we test five different pre-trained word embed-
dings; Word2Vec (Mikolov et al. 2013), trained on 100 billion words of Google News data, GloVe
(Pennington et al. 2014), trained on 840 billion tokens of the Common Crawl dataset, FastText
(Joulin et al. 2017) and Dependency (Levy and Goldberg 2014), which were both trained on
Wikipedia data and Numberbatch (Speer et al. 2016), which combines data from ConceptNet,
word2vec, GloVe and OpenSubtitles. Each of these is tested at five different dimensions in the
range [100, 300], at increments of 50. Table 7 shows the combination of embedding type and
dimension which produced the best accuracy for each model. It can be seen that there is no
clearly optimal embedding type and dimension combination. Instead, it seems to be dependent
on a particular task, or model, in most cases. Though, FastText does more consistently – in 50% of
cases – improve performance. It is also worth noting thatWord2Vec frequently resulted in poorer
accuracy and therefore does not appear in Table 7 at all.

https://doi.org/10.1017/S1351324921000310 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000310


Sentence encoding for DA classification 813

Figure 4. The DCNNmodel’s SwDA validation accuracies for all embedding type and dimension combinations.

We analyse these results further by conducting a two-way RM ANOVA comparing all embed-
ding type and dimension combinations. Across all models, and both datasets, we see no statis-
tically significant difference between different embedding type and dimension groups. However,
with the exception of the RCNN applied to the SwDA data (p= 0.054), in all cases we observe
a statistically significant difference when comparing only the embedding types. To illustrate this
observation, Figure 4 shows the results obtained on the SwDA data with the DCNN model. We
can see that FastText and GloVe resulted in a clear improvement in performance over the remain-
ing embedding types, and this is also true for the DCNN and LSTM applied to the Maptask data.
Interestingly, the optimal embedding type and dimension for these twomodels is consistent across
the two datasets, FastText 200–250 for the DCNN and GloVe 300 for the LSTM. For the remain-
ing four models this is not the case, and it seems the selection of embedding type and dimension
has a negligible impact on the final accuracy. As we observed in Section 2.2, in most cases the
differences between embedding type and dimension is very small, and in our experiments, not
statistically significant. However, for some models determining an optimal embedding type is
more impactful than simply testing different dimensionalities of a single arbitrarily chosen embed-
ding type. Additionally, Word2vec consistently underperformed on all models, and both datasets,
which suggests it is not suitable for this task, a conclusion that was also reached by Cerisara et al.
(2017). Instead, we suggest using FastText or GloVe in the first instance as these are the only two
embeddings that resulted in a significant performance increase in our experiments.

4.3 Multi-layer and Bi-directional models
For both of our recurrent models, we also experiment with increasing the number of ‘stacked’
layers and bi-directional versions, as described in Section 3.2.2. Table 8 shows our results for 1, 2
and 3-layer LSTM and GRU models on both corpora. Starting with the LSTMmodels, we can see
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Table 8. Validation accuracy for 1, 2 and 3-layer recurrent models on
the SwDA and Maptask data

SwDA Maptask

Model μ σ μ σ

LSTM 1-lyr 75.76 0.16 58.15 0.15
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSTM 2-lyr 75.40 0.14 58.30 0.17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSTM 3-lyr 75.37 0.20 58.10 0.24
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU 1-lyr 74.80 0.16 58.49 0.36
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU 2-lyr 75.32 0.18 57.96 0.35
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU 3-lyr 75.09 0.19 57.48 0.28

that for the SwDA data the single-layer LSTM outperforms the 2- and 3-layer variants, and this
is statistically significant in both cases (p< .001, P(1-lyr > 2/3-lyr)> 0.99). On Maptask the 2-
layer LSTM yields a small, but non-significant improvement (p= 0.13, P(1-lyr > 2-lyr)> 0.009).
For the GRU models the results are inverted, with the 2-layer and 1-layer GRU resulting in
better performance on SwDA and Maptask, respectively. However, in both cases, the differ-
ences between the GRU models is statistically significant (p< .003, P(2-lyr > 1-lyr)= 1, and
P(1-lyr > 2-lyr)> 0.99). Our results for the LSTM models support those reported by Kumar
et al. (2017) and others (Papalampidi et al. 2017; Ribeiro et al. 2019), who also found that
increasing the number of layers did not lead to an improvement in performance.

Regarding the difference we observed between the LSTM and GRU models, we speculate that
this is likely due to the difference in the number of parameters between them. The single-layer
LSTM has ∼2.7 million parameters, while the GRU has ∼1.1 million. Thus, the GRU benefitted
more from an increased number of parameters when applied to the larger SwDA dataset, while
the same factor may have led to overfitting on the smaller Maptask data.

When comparing the Bi-LSTM and Bi-GRU to their unidirectional equivalents, the only
case where we observed an improvement is with the Bi-GRU applied to Maptask. However,
it resulted in small increase of only 0.02% accuracy, which is unsurprisingly, not significant
(p= 0.76, P(Bi−GRU >GRU)= 0.64). Bi-directional models have been employed at both the
context/discourse level (Kumar et al. 2017; Chen et al. 2018), and for sentence encoding (Bothe
et al. 2018a; Li et al. 2018). However, for the latter task it seems bi-directionality, at least in
isolation, has no benefit.

4.4 Attentional models
For each of our supervised models, we also investigate the addition of a simple attention mech-
anism. During parameter tuning, we found additive attention (Bahdanau et al. 2015), resulted
in the best performance. However, our experimental results indicate that only a few models
show an improvement, and in most cases attention was detrimental to performance. The CNN-
Attn improved on both SwDA (0.21%) and Maptask (0.45%), though this is only significant for
the Maptask data (p= 0.006, P(CNN−attn> CNN)= 1). The GRU-Attn improved on SwDA by
0.19%, which was shown to be statistically significant (p< 0.03, P(GRU−attn>GRU)> 0.99),
and the TextCNN-Attn improved on Maptask by just 0.01%. As with bi-directional recurrent
models, attention mechanisms are frequently combined at both the context/discourse and sen-
tence encoding level (Shen and Lee 2016; Tran et al. 2017a; Tran et al. 2017b; Bothe et al. 2018a;
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Table 9. Test set accuracy for each of the supervised models on the SwDA and
Maptask data

SwDA Maptask

Model μ σ Model μ σ

CNN-Attn 72.14 0.70 CNN-Attn 59.68 0.36
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TextCNN 73.36 0.34 TextCNN-Attn 60.29 0.26
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DCNN 72.87 0.53 DCNN 59.96 0.58
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RCNN 72.44 0.41 RCNN 60.43 0.62
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSTM 1lyr 73.06 0.37 LSTM 2lyr 59.94 0.68
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GRU 2lyr 72.78 0.37 Bi-GRU 61.17 0.69

Li et al. 2018). While most of these attention mechanisms are unique implementations, and there-
fore not directly comparable to our experiments, it does seem that the benefit of using standard
attention mechanisms for sentence encoding should be accompanied by appropriate testing to
establish its true impact on performance.

4.5 Supervisedmodels
Here we present the final test set results for all of our supervised models. Where a variant of a
model improved upon its base type that is shown instead, even if the difference was not statistically
significant. In each case, the model was trained and tested using the parameters (Vocabulary size,
Sequence length, etc) determined by our previous experiments. Table 9 shows results for both the
SwDA and Maptask data. The TextCNN performs well on both datasets, outperforming the other
convolutional models. For the recurrent models, the results are a little more variable. The LSTM
achieves higher test accuracy and F1 score than the GRU on the SwDA, while for Maptask the
reverse is true and by a larger margin.

Rigorous comparison with previous work is challenging due to differences in text pre-
processing and other parameters. Additionally, most recent studies do not report results for
single-sentence classification, that is, DA classification without context/discourse information.
Nevertheless, it seems these results are on the high end of what might be expected for single-
sentence DA classification. Papalampidi et al. (2017) included salient key words as extra features in
their experiment and report test set accuracy of 73.8% (though it is not clear if this result is the sin-
gle best run, or an average of several), and Bothe et al. (2018b) reported 73.96% using the mLSTM
language model. Yet, our TextCNN and single-layer LSTM attain similar accuracies with only
pre-trained word embeddings. Our best models also outperform all of the other single-sentence
results we were able to find within the literature Shen and Lee (2016); Cerisara et al. (2017) and
Lee and Dernoncourt (2016), who report 70.4%, 69.3% and 67%, respectively. They are also com-
petative with, or higher than, several studies which also include context or discourse information
(Kalchbrenner and Blunsom 2013; Shen and Lee 2016; Lee and Dernoncourt 2016; Ortega and
Vu 2017; Cerisara et al. 2017), though they are far from the best contemporary approaches in
that regard. However, these results do indicate that we may be at, or near, the limit of what these
kinds of standard model architectures can attain for single-sentence classification. The difference
between the best- andworst-performingmodel on the SwDA test set is just 1.22%, and forMaptask
it is 1.49%. Though, small differences in accuracy are perhaps more noteworthy on the DA classifi-
cation task than other classification problems. Of the studies directly comparable to ours (models
that do not consider surrounding sentences, and that use the same training and test datasets), the
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Table 10. Validation set accuracy and test set accuracy for each of the pre-trained languagemodels on the SwDA
and Maptask data

SwDA Maptask

Validation Test Validation Test

Model μ σ μ σ μ σ μ σ

BERT 76.87 0.24 76.07 0.42 61.12 0.44 62.91 0.32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RoBERTa 78.17 0.33 76.22 0.56 61.18 0.40 62.63 0.24
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GPT2 77.47 0.44 75.16 0.62 60.18 0.28 61.04 0.98
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DialoGPT 77.82 0.44 75.30 0.37 57.04 1.83 56.70 1.85
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XLNet 78.15 0.46 75.88 0.45 61.21 0.51 61.61 0.78
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ConveRT 76.54 0.22 74.31 0.34 58.16 0.21 60.94 0.63
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ELMo 76.00 0.20 73.19 0.53 58.34 0.21 60.44 0.35
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

USE 76.20 0.15 73.51 0.38 59.35 0.22 60.67 0.56
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mLSTM 75.78 0.25 73.48 0.61 58.50 0.27 60.79 0.63
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NNLM 73.44 0.07 70.12 0.26 52.44 0.18 56.65 0.24

difference between the lowest, 67% (Lee and Dernoncourt 2016), and highest, 73.96% (Bothe et al.
2018b), is just 6.96%. Further, the results of Bothe et al. (2018b) represent only a 2.96% increase
over those reported by Stolcke et al. (2000), nearly two decades earlier. Thus, while some reported
increases are small, parameters that produce consistent improvements, such as keeping punctua-
tion, are meaningful for this problem. This supports the need for more sophisticated methods of
sentence encoding, such as that of contextual language models.

4.6 Languagemodels
All 10 language models were trained with the same training parameters, and default values for
vocabulary size, sequence length, letter case and punctuation, as outlined in Section 4. Results for
the pre-trained language models applied to the SwDa and Maptask data are shown in Table 10.
Starting with the SwDA corpus, the models based on transformer architectures all resulted in an
improvement in accuracy over our best-performing supervised model, TextCNN. Ranging from
+0.95% with ConveRT to +2.86% for RoBERTA, and in all cases this is statistically significant
(p< 0.001, P(LM > TextCNN)> 0.99). The remaining models show either negligible improve-
ments or, for ELMo and NNLM, lower test set accuracy. Both BERT and RoBERTa reach test set
accuracies that outperform many of the contextual models from previous studies, for example,
Papalampidi et al. (2017) and Tran et al. (2017a). They also begin to approach some of the current
best contextual models, such as those reported by Bothe et al. (2018a), 77.42%, Li et al. (2018),
78.3% and Ribeiro et al. (2019), 79.11%.f

On the Maptask corpus, the language models fared much worse. Only three managed to
improve upon our best supervised model, Bi-GRU, and in most cases were only marginally bet-
ter than the 2nd and 3rd best. Again though, BERT and RoBERTa improve upon the supervised

fSeveral studies have reported higher accuracies than these (Chen et al. 2018; Ribeiro et al. 2019); however, they also include
future utterances or ‘gold-standard’ labels as context information and we have therefore omitted them.
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model by +1.74%, and +1.46%, respectively (p< 0.001, P(LM > Bi-GRU)> 0.99). Here compar-
ison with previous work is more difficult as the Maptask corpus is less studied. Still, both models
are comparable with the 63.3% accuracy, that is also achieved with a contextual model (Tran et al.
2017b). The relatively poor results for the Maptask data is somewhat surprising. For some of the
transformer-based models, this may be due to the smaller dataset, and the comparatively larger
gains in performance on the SwDA corpus would seem to support that assumption. However, it
does contradict the ‘few-shot-learning’, task-specific fine-tuning, paradigm that has led tomuch of
the success of these models (Wang et al. 2020). Nevertheless, both BERT and RoBERTa achieve a
significant and consistent improvement on both corpora. Thus, we can conclude that – despite an
increase in computational effort, training time and storage requirements – the contextual sentence
representations are superior to those of supervised models and pre-trained word embeddings
(Fiok et al. 2020).

5. Conclusion
This work has explored numerous factors which may affect the task of sentence encoding for the
purpose of DA classification. We first considered various aspects of text pre-processing and repre-
sentation, which are often overlooked or underreported within the literature, such as whether to
keep or remove punctuation, selecting vocabulary size, input sequence length and word embed-
dings. Each of these was assessed on the SwDA and Maptask corpora, using a selection of six
supervised models, that are intended to be representative of the common architectures applied
to DA classification task. Finally, we also applied a selection of 10 pre-trained language models,
including transformer-based contextual language models, such as BERT and XLNET, and draw
comparisons between the supervised approaches. To the best of our knowledge, this is also the first
time most of these comparatively new language models have been applied to the DA classification
problem.

Our findings indicate that, for each of the text pre-processing parameters we investigate, select-
ing the right values can have a small but statistically significant effect on final classification
accuracy.

Firstly, converting all words to lower case and keeping all punctuation always improve accuracy
when compared to the alternative options, though lower-casing is less impactful. Interestingly,
keeping punctuation appears beneficial for several of the most common DA labels within the
SwDA corpus, even those that are not a type of question, where intuitively one might expect an
interrogation mark to strongly correlate with a question type DA label. Unfortunately, this benefit
is partially mitigated by the negative impact keeping punctuation has for several other label types.

Considering the selection of vocabulary size, we found that using smaller vocabularies was ben-
eficial in most cases. Certainly, our results show that the number of words, for the best-performing
models, was 1

4 to 3
4 of the largest vocabulary size tested, which equates to around 1/10th of the

corpora’s full vocabulary. Additionally, increasing vocabulary sizes results in diminishing, or detri-
mental, returns in performance. For the SwDA, beyond the threshold of 2.5k words, most models
showed no statistically significant improvement in accuracy, while on theMaptask data the thresh-
old is 400 words. These values are much lower than those typically used in most DA classification
studies (where such parameters are reported), for example, 10k or 20k words for SwDA (Ji et al.
2016; Lee and Dernoncourt 2016; Li et al. 2018; Kumar et al. 2017; Chen et al. 2018). Instead we
recommend using smaller vocabularies to prune out highly infrequent words which are unlikely
to be relevant to the DA classification task and to reduce noise within the data.

Similarly, for input sequence lengths, we showed that beyond a certain threshold using longer
sequences has no significant impact on classification accuracy. For SwDA, the threshold is 25
words, and for Maptask 15. These thresholds, and the optimal sequence lengths for all mod-
els, on both datasets, were shorter than the maximum sequence length we tested (50 tokens),
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which in turn is <50% of the longest utterances in either corpora. Thus, we conclude that padding
sequences to lengths nearer that of the longest utterances in the data is a tremendous waste of
computational effort and storage. We also found that calculating the cumulative frequency of
utterance lengths within the data produced a reasonable approximation of the resulting accuracy
curves within our experiments. When the cumulative frequency began to level off, so too did the
model’s accuracy. This technique could be used to select a viable sequence length whichminimises
both information loss (through truncation) and the number of unnecessary padding tokens. We
leave further investigation of this observation for future work. It should also be noted that when
using smaller vocabularies and sequence lengths in combination, we observed no significant dif-
ference when compared to larger valued combinations. Certainly, in most cases, including the
best-performing models, higher accuracies were achieved when using a combination of smaller
values.

Results for our word embedding experiments were perhaps less conclusive. Of the pre-trained
embeddings we tested, none was shown to be clearly optimal across both datasets and models.
Though FastText embeddings, with dimensions in the range [200, 300], did result in the highest
validation accuracies in 50% of cases. It seems that the selection of embedding is highly depen-
dent on both model and data, though the overall impact of this choice is often negligible. This is
supported by our statistical analysis which showed that, when comparing all embedding type and
dimension combinations, we only observed a statistically significant difference in performance
when comparing different embedding types. Thus, while choice of embedding may result in a
small (and likely statistically non-significant) effect on performance, the selection of embedding
type tends to be more impactful than the dimension.

For each of our six supervised models, we also experimented with some architectural varia-
tions that are frequently adopted within classification studies. With the recurrent models (LSTM
and GRU), we tried both bi-directionality and increasing the number of layers. In only a few cases,
these resulted in a small, but not significant, improvement. We also tried adding an attention layer
to all six models. Again, in only a few cases did this result in any accuracy improvement. Though
in two cases this was shown to be statistically significant; the GRU-Attn applied to the SwDA
data, and the CNN-Attn applied to Maptask. It is conceded that the effect of these architectural
variations may have a greater impact with regard to contextual DA classification models, rather
than the single-sentence approach explored here. However, despite how frequently bi-directional,
multi-layer and attentional models are applied to DA classification (Bothe et al. 2018a; Chen et al.
2018; Li et al. 2018), they are rarely accompanied by appropriate ablation studies to determine help
quantify the true impact such additions have on overall performance. Test set accuracy achieved
by our best-performing models (TextCNN and LSTM) on the SwDA data is in most cases much
higher than, or equivalent to, results reported by previous single-sentence classification studies.
We were not able to find any results for non-contextual DA classification for the Maptask cor-
pus. However, comparing our results for the supervised and language models on this corpus, we
suspect the same would be true here. These results were also obtained using standardmodel archi-
tectures, with smaller vocabularies and input sequence lengths than are typically used, and without
any additional feature engineering.

Results from our language model experiments are somewhat mixed. None of the non-
transformer-based models was able to achieve a statistically significant improvement on either
dataset, in many cases it was lower than our supervised models. However, on the SwDA data, each
of the transformer-based contextual language models show a significant improvement over the
supervised approach. Notably, both BERT and RoBERTa achieve test set accuracies of 76.07% and
76.22%, an increase of +2.71% and +2.86%, respectively, when compared to our best-performing
supervised model, TextCNN. These values surpass the reported accuracies for much of the pre-
vious DA classification approaches which also consider discourse/contextual features. However,
on the Maptask data, the transformer-based models fared less well. Only BERT and RoBERTa
obtained a significant improvement in test set accuracy over the best-performing supervised
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model, Bi-GRU. Here, we see a less dramatic improvement of 1.74% and 1.46%, respectively.
Thus, we can conclude that the contextual sentence representations produced by BERT-typemod-
els are a significant improvement over those produced by our other fine-tuned language models
or supervised models.

Throughout this work, we have shown that the text pre-processing parameters we investigated
should not be arbitrarily chosen, because they can produce a notable effect on model perfor-
mance. Particularly, instead of using large vocabularies and sequence lengths, where it becomes
computationally wasteful, it is often beneficial to use smaller values. Additionally, the optimal val-
ues we found for these two parameters are much smaller than those typically used. We hope this
work can be used as a point of reference for future research when considering these aspects, and
that each of them might be worthy of further investigation. Regarding the selection of models, we
found that performance was often inconsistent when applying the same, or similar, architecture to
different datasets. Most notably, the use of bi-directional or multi-layered recurrent architecture,
or the addition of attention layers – which are so frequently applied to DA classification–often
did not yield any improvement over their simpler baseline version. These inconsistencies suggest
that these architectural additions should be accompanied by appropriate ablation experiments
to determine their true impact on performance. And further, applying a single model, or small
variations thereof, to a single dataset is not enough to draw firm conclusions on its generalisable
performance. This is similarly true for the selection of language models we tested. Where, even
amongst the transformer-based models, on the smaller, sparser, Maptask data some models failed
to improve upon our best-performing supervised model. However, on both datasets, BERT and
RoBERTa represent a significant improvement in sentence encoding for DA classification and are
therefore the current best choice for applying to this task.
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A. Model parameters

Table A.1. Parameters for the (base) supervised and language models

Dim Optimiser Trainable

Model Encoder Reduction Classifier (α) Params

CNN Filters: 64 Kernel Size: 5 Max Pool
Size: 8

Nodes: 224
Dropout: 0.27

Adam
(0.002)

294,905



TextCNN Filters: 128 Kernel Size:
[1, 2, 3, 4, 5]

Max Pool
Size: 8

Nodes: 192
Dropout: 0.1

Adagrad
(0.02)

2,357,625



DCNN Filters: 64 Kernel Size: [7, 5] K-max Nodes: 128
Dropout: 0.1

Adagrad
(0.02)

1,677,129



RCNN Units: 256 Dropout: 0.2
Filters: 64

Max Nodes: 128
Dropout: 0.02

RMSprop
(0.001)

2,497,225



LSTM Units: 256 Dropout: 0.2 Average Nodes: 128
Dropout: 0.02

RMSprop
(0.001)

2,709,577



GRU Units: 256 Dropout: 0.2 Max Nodes: 128
Dropout: 0.02

RMSprop
(0.001)

1,113,129



BERT Units: 768 Layers: 12 Average Nodes: 256
Dropout: 0.05

Adagrad
(0.0015)

85,261,865



RoBERTa Units: 768 Layers: 12 Average Nodes: 256
Dropout: 0.05

Adam
(2× 10−5)

124,853,033
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GPT2 Units: 768 Layers: 12 Average Nodes: 256
Dropout: 0.02

Adam
(2× 10−5)

124,647,209

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DialoGPT Units: 768 Layers: 12 Average Nodes: 256
Dropout: 0.02

Adam
(2× 10−5)

124,647,209
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Table A.1. Continued

Dim Optimiser Trainable

Model Encoder Reduction Classifier (α) Params

XLNet Units: 768 Layers: 12 Average Nodes: 256
Dropout: 0.02

Adam
(2× 10−5)

116,925,737



ConveRT Units: 512 Layers: 2 NA Nodes: 256
Dropout: 0.02

Adam
(0.001)

272,937



ELMo Units: 1024 Average Nodes: 256
Dropout: 0.01

Adagrad
(0.04)

272,941



USE Units: 512 NA Nodes: 256
Dropout: 0.02

Adam
(0.001)

141,865

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mLSTM Units: 4096 Max Chars: 64 Average Nodes: 128
Dropout: 0.02

Adam
(0.001)

529,705



NNLM Units: 128 NA Nodes: 256
Dropout: 0.02

Adam
(0.0001)

124,686,249

Cite this article: Duran N, Battle S and Smith J (2023). Sentence encoding for Dialogue Act classification. Natural Language
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