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Abstract

The vertical rise of a round plume of light fluid through a surrounding heavier fluid is
considered. An inviscid model is analysed in which the boundary of the plume is taken
to be a sharp interface. An efficient spectral method is used to solve this nonlinear free-
boundary problem, and shows that the plume narrows as it rises. A generalized condition
is also introduced at the boundary, and allows the ambient fluid to be entrained into the
rising plume. In this case, the fluid plume first narrows then widens as it rises. These
features are confirmed by an asymptotic analysis. A viscous model of the same situation
is also proposed, based on a Boussinesq approximation. It qualitatively confirms the
widening of the plume due to entrainment of the ambient fluid, but also shows the
presence of vortex rings around the interface of the rising plume.
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1. Introduction

In a plume, a stream of light fluid rises through an ambient fluid of greater density.
There is an extremely extensive literature on plumes and jets (or fountains), and they
have applications to a wide variety of situations. The review by Woods [33] describes a
range of natural processes in which turbulent buoyant plumes occur, including volcanic
eruptions. They are also of importance in a number of astrophysical situations, and
Reynolds et al. [24] present numerical calculations of bipolar plumes generated on
galactic length scales. A remarkable example of plumes occurs from volcanic vents
deep on the ocean floor; these “black smokers” are discussed by Wilcock [32] and are
often associated with communities of thermophilic bacteria [23].
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[2] Inviscid and viscous models of axisymmetric fluid jets or plumes 229

Possibly the simplest mathematical models of rising plumes involve inviscid fluids
with a sharp free surface or interface. Such a model was proposed by Geer and
Strikwerda [13], although they considered a plume falling downwards under gravity;
the plume speeds up and narrows as it falls, and the authors analysed the flow with a
perturbation technique based on the narrowness of the plume. Their model allowed
for plumes of arbitrary cross section, and is essentially equivalent to an inviscid
plume of light fluid rising through a heavier fluid under reduced gravity, due to its
natural buoyancy. Tuck [28] likewise considered an inviscid jet, which was annular
in cross section and could be directed either upwards or downwards. Since the jet
was denser than the surrounding fluid, when directed upwards it became a fountain,
and under gravity it rose to a limiting height dictated by the fluid velocity at the
nozzle.

Planar inviscid fluid jets have also been studied, and an analysis in a similar spirit
to Tuck’s [28] work was carried out by Borgas and Tuck [4] assuming a slender
two-dimensional jet. Christodoulides and Dias [7] used complex-variable theory and
conformal mapping methods to solve for the shape of a vertically directed planar
fountain that strikes a horizontal plate before spreading laterally and then falling
back down under gravity. (The corresponding axisymmetric flow, involving a “water
bell” beneath a horizontal plate, has been investigated theoretically and confirmed
in a series of elegant experiments by Button et al. [5].) Similar methods to those
of Christodoulides and Dias [7] were employed by Hocking and Forbes [14] in an
analysis of a planar buoyant plume that rises vertically before spreading horizontally
across an upper ceiling; plumes of this type occur in building fires. Their solutions
were independent of time, and consequently only existed for flow speeds at the
nozzle above some threshold minimum speed, and at that minimum configuration
the plume interface formed a stagnation point at the nozzle itself. Recently, Forbes
and Hocking [12] considered a similar planar inviscid plume, and allowed the fluid
to be emitted either vertically or at an angle from the nozzle at the bottom of the
fluid layer. Their paper was concerned with time-dependent effects in the plume,
and showed that when oriented vertically, the unsteady inviscid interface tended
closely to the steady profile predicted by a slender-plume asymptotic theory, as time
increased. However, when the plume entered the fluid layer at any other angle, it was
unstable, and consequently no steady-state configuration was achieved, even though
the asymptotic analysis predicted such a possible outcome. Numerically, it was found
that the nonvertical plume ultimately developed points of very high curvature on the
plume interface, and these were responsible for the failure of the numerical solution
method. It was suggested that the interface develops curvature singularities within
finite time, similar to those predicted by Moore [20] in the evolution of the Kelvin–
Helmholtz instability. Forbes and Hocking [12] also included viscous effects in the
same problem, and found that there was then no qualitative difference between vertical
and nonvertical planar plumes, since neither converged to a steady-state configuration
as time increased, but rather each was fundamentally unsteady due to the presence of
entrainment vortices formed along the interface.
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In nature, all plumes are of course affected by viscosity, and the flow is in fact often
turbulent. This poses a severe problem for computer modelling of such phenomena.
Kaminski et al. [17] considered an axisymmetric turbulent plume and developed a
system of equations governing certain bulk averaged turbulent quantities, and these
were used to quantify turbulent entrainment in experimental studies of a negatively
buoyant plume. Plumes of this type occur in outflows from volcanos. Scase et al. [25]
used a large-eddy turbulent code to simulate plumes in which the momentum strength
is increased rapidly, and a truly large-scale computational study of a fully developed
three-dimensional plume was undertaken by Plourde et al. [22], using direct numerical
simulation with grid sizes of the order of the Kolmogorov length scale of the turbulence
itself. Lin and Armfield [18] similarly used direct numerical simulation, although
for a plume that is axisymmetric, for which the Boussinesq approximation has been
made, and in the transition region between purely laminar and fully turbulent flow
conditions. Nevertheless, simulating turbulent plumes using averaged momentum
equations with a “closure” model for the turbulence is not without difficulty, and Bhat
and Krothapalli [3] argued that the results obtained are very sensitive to the form of
the closure assumption chosen. In a recent investigation of four integral models of
turbulent plumes, Scase and Hewitt [26] similarly observed that none of the models
are entirely adequate, in part due to ill-conditioning associated with the unbounded
growth of small-wavelength disturbances.

In the “classical” plume model of Morton et al. [21], hereafter referred to as MTT,
the flow is regarded as fully turbulent, and the Reynolds number is effectively taken
to be infinite in the governing equations. The outflow nozzle is approximated to be a
point source, so that similarity arguments can be applied to the spreading plume. A
Boussinesq approximation is also made, in which local variations in the fluid density
are taken to be small in comparison to the mean density. Crucial to this theory
is an entrainment assumption; it makes the hypothesis that the radial and vertical
components of the fluid velocity, u and w, are in some sense statistical averages of
the fluctuating turbulent quantities, and that there is a mean radial component u of
fluid motion at the edge of the plume that is proportional to the vertical speed w within
the plume. At the edge, there is thus a relationship of the form

u = αw, (1.1)

in which α is an entrainment coefficient, assumed constant. This assumption (1.1) is
discussed further by Turner [29, 30], who argues that the numerical value of α is of
the order of 0.1, although it depends on the assumed profile of the axial component
w, and so has different values for a Gaussian or a “top-hat” profile. Further detailed
discussion of the model (1.1) is given in review articles by List [19] and Hunt and
van den Bremer [15], who indicate the success of the MTT entrainment model in
describing turbulent plumes. Hunt and Kaye [16] additionally classify turbulent
plumes as “lazy”, “pure” or “forced”, depending on a combination of their source
volume flux, momentum flux and buoyancy flux, and they likewise conclude that
the MTT assumption (1.1) works well for “lazy” plumes, which have only weak
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momentum flux. In that case, they find that the plume narrows as it leaves the nozzle,
before eventually widening as a result of entrainment of the ambient fluid into the
plume. Consequently, the lazy plume exhibits a minimum radius at some height above
the nozzle.

The purpose of the present paper is to study the time-dependent evolution of an
axisymmetric plume or jet. Following Lin and Armfield [18], we do not focus on the
turbulent regime, but rather address the transition region in which plume speeds and
Reynolds numbers lie between laminar and turbulent behaviour. To begin, a purely
inviscid solution is developed, following a similar philosophy to that of Tuck [28].
Laplace’s equation for a velocity potential is solved within the plume, subject to
nonlinear boundary conditions at the plume interface. We also propose a modification
to the traditional kinematic boundary condition that allows for entrainment of the outer
ambient fluid into the plume, while essentially retaining an inviscid formulation of
the problem. This is done using a generalized condition based on the entrainment
approximation (1.1) of MTT [21]; however, there is no assumption of turbulent
behaviour generally within the fluid, and the condition only holds on the interface.
This is described in Section 2. The justification for this new nonturbulent entrainment
condition is based on the observation that in a number of viscous interfacial flow
problems, such as the recent study of the Rayleigh–Taylor instability by Forbes [10]
and the analysis of the Kelvin–Helmholtz instability by Chen and Forbes [6], it is
observed that the vorticity is essentially zero throughout the fluid, except in a narrow
layer near the interface. Consequently, the fluid behaves as if it were inviscid,
except near the interface, at which entrainment can occur. Nevertheless, this is an
approximation, and cannot generate vorticity beyond the interface. This unsteady
inviscid problem is formulated using the spectral method of Forbes et al. [11] in
Section 3, for the conventional plume as well as for the case in which entrainment
occurs. An asymptotic analysis is presented for both cases in Section 4.

Similarly to the case of the planar plume studied by Forbes and Hocking [12],
we examine the effect of viscosity in the present situation, using a Boussinesq
approximation, and compare it qualitatively with the results of the inviscid models.
The formulation and its spectral solution are outlined in Section 5, and the results are
discussed in Section 6. A discussion in Section 7 concludes the paper.

2. The inviscid model

Consider an ideal fluid of density ρ2 contained within a horizontal layer. A
cylindrical coordinate system is located with its origin at the centre of the nozzle and its
z-axis pointing vertically, opposing the direction of the gravitational acceleration −gez.
The fluid is bounded below at z = 0 and above at z = H. A circular nozzle of radius A
is centred at r = 0 and emits a source fluid of lighter density ρ1 < ρ2. At the nozzle,
the velocity vector of the source fluid is oriented purely vertically with magnitude V .
It rises under positive buoyancy through the heavier ambient fluid, and for simplicity
is assumed to be absorbed into a permeable material at the upper boundary z = H.
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F 1. A schematic diagram of the dimensional flow for the inviscid plume, showing the two fluids
separated by an interface.

The plume is assumed to remain axisymmetric, so that there is no azimuthal velocity
component and no dependence on the angular coordinate θ. The velocity vector within
the plume is expressed as q1 = u1er + w1ez and has components u1 and w1 in the radial
and axial directions. A sketch of the flow configuration in these dimensional variables
is given in Figure 1.

Nondimensional variables are introduced forthwith, and unless otherwise specified
are used from now on. All lengths are scaled with respect to the radius of the nozzle
A, and velocities are scaled with respect to the speed V of the source fluid. Time is
measured relative to the quantity A/V and pressure relative to ρ1gA. This inviscid
problem is thus dependent upon the dimensionless parameters

h =
H
A
, D =

ρ2

ρ1
, F =

V
√

gA
. (2.1)

The constant h is the nondimensional plume height, D is the density ratio (D > 1), and
F is the Froude number which gives a measure of the fluid speed at the nozzle.

Inviscid fluids are not capable of supporting internal shear stress, and so the
outer ambient fluid is assumed to be motionless, with velocity q2 = 0. The pressure
in the ambient fluid is therefore hydrostatic, with P2 = pA − Dz, in which pA is a
dimensionless reference pressure on the nozzle, at location (r, z) = (1, 0). The inner
source fluid flows irrotationally, and so a velocity potential Φ1 may be defined there,
in terms of which the velocity vector can be written q1 = ∇Φ1. The source fluid is
separated from the outer ambient fluid by an interface r = R(z, t) that emerges from the
location (r, z) = (1, 0) at the nozzle.
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As both fluids are incompressible, the velocity potential Φ1 for the moving inner
fluid satisfies Laplace’s equation

1
r
∂

∂r

(
r
∂Φ1

∂r

)
+
∂2Φ1

∂z2
= 0 in 0 < r < R(z, t), 0 < z < h. (2.2)

On the bottom z = 0, the vertical velocity component w satisfies the boundary condition

w(r, 0, t) =

1 if 0 < r < 1

0 if r > 1.
(2.3)

At the top of the fluid region, on the plane z = h, the plume is assumed to be absorbed
vertically into the surface, for simplicity. This might correspond to a permeable
boundary, such as a horsehair mat, being present at the upper surface. This is
represented by the condition

∂w1

∂z

∣∣∣∣∣
z=h

= 0. (2.4)

These conditions (2.3) and (2.4) allow the solution to be developed using a spectral
technique, as is discussed later. In their model of a planar plume, Hocking and
Forbes [14] assumed a rigid upper boundary at z = h, and a similar condition could
be considered here, too. Condition (2.4) has been adopted for simplicity, however, as
it avoids the additional complication of a horizontal outflow along the upper boundary.

There is also a kinematic condition to be satisfied on the interface r = R(z, t). This
normally states that the there can be no flow normal to the interface, so that q1 · n = 0
there. Here n denotes the unit normal vector at the surface of the plume. As explained
in Section 1, we also wish to mimic the effect of nonturbulent entrainment of the
ambient fluid into the moving plume, by allowing flow normal to the interface, with
speed proportional to the tangential component of the fluid within the plume. This is
based on the MTT model (1.1) for turbulent fluid [21], but here is only taken to apply
locally at the interface. We assume that q1 · n = k|q1 · τ|, in which τ represents the
unit vector tangential to the interface. The constant k is the nonturbulent entrainment
coefficient, and plays an analogous role to the turbulent constant α in equation (1.1).
In this approximation, it is assumed that the proportion k of ambient fluid entrained
is sufficiently small that the changes to the density within the plume can be ignored.
Thus

DH/Dt
‖∇H‖

= k|q1 · τ| on r = R(z, t), (2.5)

where the equation of the interface is written asH(r, z, t) = r − R(z, t) = 0. Evaluating
equation (2.5) leads to

∂R
∂t

= u1 − w1
∂R
∂z

+ k
∣∣∣∣∣u1

∂R
∂z

+ w1

∣∣∣∣∣ on r = R(z, t). (2.6)

Notice that, when k = 0, the conventional nonentraining kinematic boundary condition
is recovered. The work of Turner [29, 30] and Kaminski et al. [17] suggests that
reasonable values of k lie in the approximate interval 0.07 < k < 0.16.

https://doi.org/10.1017/S1446181112000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181112000156


234 N. A. Letchford et al. [7]

There is also a dynamic condition to be imposed at the interface between the two
fluids. It states that the pressures must be equal there, and from Bernoulli’s equation
in each fluid [2], this gives

∂Φ1

∂t
+

1
2

(u2
1 + w2

1) +
1 − D

F2
z =

1
2

(2.7)

on the interface r = R(z, t).

3. Solution method for the inviscid plume

The time-dependent nonlinear inviscid problem in Section 2 is solved using the
method proposed by Forbes et al. [11], which is similar to the spectral approach of
Faltinsen et al. [8]. This technique was used by Forbes and Hocking [12] to model
a planar plume, in the inviscid case, and the present problem is an extension of that
work to axisymmetric geometry. Here, the velocity potential for the inner source fluid
is given by

Φ1(r, z, t) = z + C0(t) +

N∑
n=1

Cn(t)
I0(αnr)
I0(αn)

cos(αnz), (3.1)

in which

αn =
2n − 1

2h
. (3.2)

This form (3.1) with constants (3.2) satisfies Laplace’s equation (2.2), the lower
boundary condition (2.3) and the top boundary condition (2.4). The corresponding
streamfunction is expressed as

ψ(r, z, t) =
1
2

r −
N∑

n=1

Cn(t)
I1(αnr)
I0(αn)

sin(αnz). (3.3)

In expressions (3.1) and (3.3), the functions I0 and I1 are the modified Bessel
functions of the first kind, of orders zero and one, respectively [1, p. 374]. For steady
flow, it may be shown that the product rψ is constant along a streamline in cylindrical
coordinates. The interface R is represented by the Fourier series

R(z, t) = 1 +

N∑
n=1

Bn(t) sin(αnz). (3.4)

The three Fourier representations (3.1), (3.3) and (3.4) all involve a finite number N of
terms, but become exact as N→∞.

The two remaining boundary conditions (2.6) and (2.7) on the interface are used
to solve for the coefficients C0(t), Cn(t) and Bn(t). Following Forbes et al. [11],
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the radial and vertical velocity components are first evaluated directly at the free
surface r = R(z, t), to give

U1(z, t) =

N∑
n=1

αnCn(t)
I1(αnR)
I0(αn)

cos(αnz),

W1(z, t) = 1 −
N∑

n=1

αnCn(t)
I0(αnR)
I0(αn)

sin(αnz),

and these are used directly in the kinematic and dynamic boundary conditions.
The kinematic condition (2.6) is spectrally decomposed into its Fourier components

by multiplying by the basis functions sin(α`z), ` = 1, 2, . . . , N, and integrating over
the interval 0 < z < h. This yields a system of ordinary differential equations for the
coefficients B` in the form

B′`(t) =
2
h

∫ h

0
[J1 + K1] sin(α`z) dz, ` = 1, 2, . . . , N. (3.5)

In (3.5) it has been convenient to define the intermediate quantities

J1 = U1 −W1
∂R
∂z
, K1 = k

∣∣∣∣∣U1
∂R
∂z

+ W1

∣∣∣∣∣, (3.6)

where k is the nonturbulent entrainment coefficient.
A similar procedure is applied to the dynamic condition (2.7). The zeroth-order

Fourier mode is obtained by integrating this boundary condition over the interval
0 < z < h, and gives the result

hC0(t) +

N∑
n=1

F0nC′n(t) =
h
2

+
(D − 1)h2

2F2
−

1
2

G0. (3.7)

The higher-order Fourier decomposition of the dynamic condition is likewise derived
by multiplying equation (2.7) by the basis functions cos(α`z), ` = 1, 2, . . . , N, and
integrating over 0 < z < h. After a little algebra, this produces the further system of
ordinary differential equations

−
cos(`π)
α`

C′0(t) +

N∑
n=1

F`nC′n(t)

= −
cos(`π)

2α`
−

(D − 1)h2

F2

(h cos(`π)
α`

+
1

α2
`

)
−

1
2

G`, ` = 1, 2, . . . , N. (3.8)

In equations (3.7) and (3.8) it has proved convenient to define further intermediate
expressions

F`n(t) =

∫ h

0

I0(αnR)
I0(αn)

cos(α`z) cos(αnz) dz,

G`(t) =

∫ h

0
(U2

1 + W2
1 ) cos(α`z) dz, ` = 0, 1, . . . , N. (3.9)
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The system of equations (3.5)–(3.8) represents a set of 2N + 1 differential equations
that are integrated forward in time using the classical fourth-order Runge–Kutta
method. At each step in the integration, it is necessary to solve a matrix system
of size (N + 1) × (N + 1) for the coefficients C0,C1, . . . ,CN using equations (3.7)
and (3.8). The integrals involved in equation (3.5) and the intermediate quantities (3.9)
are evaluated numerically using composite trapezoidal rule quadrature.

4. Asymptotic solution for the inviscid plume

In this section, an asymptotic solution to the inviscid system of equations in
Section 2 is developed. The approximation is similar to classical shallow-water
theory, as outlined by Stoker [27]. The plume is regarded as “slender”, so that the
pressure within it is approximately hydrostatic and only varies with height, according
to the formula p1 ≈ PA − Dz, in which PA represents the dimensionless pressure at
(r, z) = (1, 0), at the edge of the nozzle on the tank bottom. In the outer ambient fluid,
this hydrostatic relation holds exactly. As a consequence of this approximation, the
vertical velocity component w1 is taken to be independent of the radial coordinate r,
and the radial component u1 is small in comparison. The vertical component of Euler’s
momentum equation becomes approximately

∂w1

∂t
+ w1

∂w1

∂z
≈

D − 1
F2

. (4.1)

The kinematic boundary condition (2.6) in this theory becomes

u1 ≈
∂R
∂t

+ w1
∂R
∂z
− kw1 on r = R(z, t). (4.2)

The equation of mass conservation, div q = 0, is integrated over the plume radius
0 < r < R(z, t), and when the approximate condition (4.2) is employed, a second
approximate equation is obtained, in the form

∂

∂t

(1
2

R2
)

+
∂

∂z

(1
2

R2w1

)
− kRw1 ≈ 0, (4.3)

in which k is again the nonturbulent entrainment coefficient.
It is straightforward to obtain a steady-state solution to these asymptotic equations

(4.1) and (4.3). The steady upward velocity component is at once found to be

w1 ≈

√
1 +

2(D − 1)z
F2

. (4.4)

Essentially this result is given by Geer and Strikwerda [13] and Tuck [28], although in
variables that have been scaled differently than those used here.

Combining equations (4.3) and (4.4) yields a first-order linear differential equation
for the steady interface profile R(z). When there is no entrainment, the plume radius is
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found to decrease with height according to the relation

R(z) ≈
[
1 +

2(D − 1)z
F2

]−1/4

, (4.5)

as is to be expected from conservation of mass and the fact that the vertical speed (4.4)
increases with height. However, when entrainment is allowed, so that k , 0 in the
present nonturbulent inviscid approximation (2.6), the asymptotic solution for the
steady plume radius is derived in the form

R(z) ≈
2kF2

5(D − 1)

[
1 +

2(D − 1)z
F2

]
+

(
1 −

2kF2

5(D − 1)

)[
1 +

2(D − 1)z
F2

]−1/4

. (4.6)

In this entraining case, equation (4.6) shows that the interface radius first decreases
with height z near the nozzle at z = 0 for sufficiently small entrainment coefficient
k < (D − 1)/(2F2). Eventually, however, the plume radius increases with height
according to the behaviour R(z) ∼ (4/5)kz as z→∞, due to the additional fluid volume
entrained by the rising plume. Thus, for small entrainment, there is a height at which
the plume radius is at a minimum. This result is qualitatively similar to that obtained
in the fully turbulent case by Hunt and Kaye [16].

It is, in fact, possible to solve the unsteady nonlinear equations (4.1) and (4.3)
exactly, for suitable initial conditions, using the method of characteristics, at least
in the nonentraining case k = 0. The results are not presented here, but they show that
the unsteady solution evolves to the steady solution (4.4), (4.5) by means of a pulse
moving up the plume. These features are also seen in the fully nonlinear inviscid
solution described in Section 3, and indicate that the steady-state asymptotic solution
is stable in this approximate (inviscid) theory.

5. The viscous Boussinesq model

In this section, viscous effects on the plume are included, using a Boussinesq
approximation to the full Navier–Stokes equations of viscous flow. This is based on
the similar approach taken by Farrow and Hocking [9] to study the withdrawal of
a two-layer fluid from a tank. The behaviour of the viscous plume is considerably
more complicated than the purely inviscid case, particularly because the viscous fluid
is capable of generating its own vorticity. As a result, ambient fluid will always be
entrained into the plume, and in such a way as to involve rotational motion of the fluid.

Under the Boussinesq approximation, the density is regarded as a single continuous
variable that may vary rapidly, yet smoothly, from the source fluid to the surrounding
ambient fluid. Returning briefly to dimensional variables, the density can be expressed
as ρ(r, z, t) = ρ2 + ρ̄(r, z, t). Here ρ2 is the density of the ambient fluid far from the
plume, and is assumed to be constant. The perturbation density ρ̄ is assumed to be
small in comparison with ρ2, and the density ratio of the outer fluid to the inner fluid,
D = ρ2/ρ1, is taken to be slightly larger than 1. It is further assumed that the velocity
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of the fluid can also be represented by a single vector function that varies smoothly
from the source to the ambient fluid.

The problem is nondimensionalized with respect to the same variables as in
Section 2, using the radius of the nozzle A as the reference length and the nozzle
speed V as the reference speed. Time is scaled with respect to the quantity A/V and ρ2

is taken as the reference density. The Boussinesq approximation makes the assumption
that the continuity equation can effectively be “split” into an incompressible part,

1
r
∂

∂r
(ru) +

∂w
∂z

= 0, (5.1)

and a separate transport equation for the density perturbation,

∂ρ̄

∂t
+ u

∂ρ̄

∂r
+ w

∂ρ̄

∂z
= σ

[1
r
∂

∂r

(
r
∂ρ̄

∂r

)
+
∂2ρ̄

∂z2

]
. (5.2)

This second equation (5.2) can alternatively be derived from an energy equation, so
that ρ̄ may be regarded as a perturbation to the ambient temperature [18]. Here the
constant σ is a diffusion coefficient for density, or alternatively is the inverse of the
product of the Reynolds number and Prandtl number if ρ̄ is taken to be temperature.

Since the flow is rotational, a velocity potential can no longer be defined, as was
possible for the inviscid case in Section 3. However, equation (5.1) nevertheless
permits a streamfunction Ψ to be defined through the relations

u = −
∂Ψ

∂z
, w =

1
r
∂

∂r
(rΨ). (5.3)

It is convenient to introduce vorticity, which is defined as the curl of the velocity vector
q, and only has a single component ζ in the azimuthal coordinate. This gives

ζ =
∂u
∂z
−
∂w
∂r

= −∇2Ψ. (5.4)

An equation for the vorticity ζ is obtained in the usual manner, by taking the curl of
the Navier–Stokes equations of viscous fluid flow, and incorporating the Boussinesq
approximation of a small perturbation density ρ̄. This results in

∂ζ

∂t
+ u

∂ζ

∂r
+ w

∂ζ

∂z
−

uζ
r

=
1

DF2

∂ρ̄

∂r
+

1
D Re

(
∇2ζ −

ζ

r2

)
, (5.5)

which is related to the vorticity equation given by Batchelor [2, p. 267]. The first
term on the right-hand side of equation (5.5) is the rate of change of vorticity due to
buoyancy, and is sometimes referred to as the baroclinic component [31, p. 166]. In
this equation, the Froude number F and density ratio D are as given in (2.1), and the
constant Re = ρ1AV/µ is the Reynolds number for the flow, in which µ is the dynamic
viscosity of the fluid.

In this viscous Boussinesq approximation, the density changes continuously in the
fluid, and so the sharp interface in Section 2 is replaced with a diffuse interfacial zone
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of rapid but smooth change. In addition, it is necessary in the numerical solution to
impose an impenetrable wall at some radius r = β, sufficiently far from the plume. The
boundary layers on the bottom z = 0 and the artificial wall at r = β are assumed to be
thin, and so are ignored in this approximation, following Farrow and Hocking [9]. The
vertical velocity component w is still assumed to obey the bottom condition (2.3), and
the density perturbation along the bottom boundary has the form

ρ̄(r, 0, t) =

−(D − 1) if 0 < r < β

0 if r > β,
(5.6)

corresponding to the two different fluids within the plume and outside it. The
appropriate boundary condition on the vertical boundary at r = β is

u = 0 and ζ = 0,

since this artificial wall is impenetrable. Tangential slip is permitted at this outer
boundary, since the boundary layer there is ignored, and consequently the vorticity
is assumed to be zero.

It is convenient to represent the streamfunction and the density perturbations as
sums of steady (time independent) terms and unsteady functions, according to the
expressions

ρ̄(r, z, t) = ρ̄S (r) + ρ̄U(r, z, t), Ψ(r, z, t) = ΨS (r) + ΨU(r, z, t). (5.7)

The steady component ρ̄S of the density perturbation must satisfy the bottom condition
(5.6) for the density, and so it is required that the unsteady component ρ̄U there
should be zero, from (5.7). Equation (5.6) for the steady component of the density
perturbation is represented by the Fourier series expression

ρ̄S (r) =

M∑
m=1

Cm,0J0(γmr), (5.8)

truncated after the Mth Fourier mode, in which the coefficients are

Ck,0 = −(D − 1)
2J1(γk)

γkβ2J0( j1,k)2
. (5.9)

In (5.8) and (5.9), the constants j1,k, k = 1, . . . , M, represent the first M nonzero roots
of the first-kind Bessel function J1 of order one, consistently with the notation of
Abramowitz and Stegun [1, p. 370], and it is also convenient to define the related
constants γk = j1,k/β. Similarly, the steady component of the vertical velocity w must
satisfy the boundary condition (2.3), and therefore has the form

wS (r) =

1 if 0 < r < 1

0 if r > 1,
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which is expressed using the Fourier series

wS (r) =

M∑
m=1

Bm,0J0(γmr) (5.10)

with the coefficients

Bk,0 =
2J1(γk)

γkβ2J0( j1,k)2
. (5.11)

Using the streamfunction relations (5.3), the vertical velocity (5.10) can be integrated
to give the steady component of the streamfunction,

ΨS (r) =

M∑
m=1

1
γm

Bm,0J1(γmr).

It is now necessary to express the time-dependent portions of the flow variables by
the Fourier series

ΨU(r, z, t) =

M∑
m=1

N∑
n=1

Bm,n(t)J1(γmr) sin(αnz), (5.12)

ρ̄U(r, z, t) =

M∑
m=1

N∑
n=1

Cm,n(t)J0(γmr) sin(αnz) +

N∑
n=1

C0,n(t) sin(αnz), (5.13)

where the αn are the constants defined in equation (3.2). It follows from (5.4) that the
vorticity has the form

ζ(r, z, t) =

M∑
m=1

N∑
n=1

Am,nBm,n(t)J1(γmr) sin(αnz) +

M∑
m=1

γmBm,0J1(γmr), (5.14)

in which the steady-state coefficients Bm,0 are as defined in equation (5.11), and the
remaining constants are

Am,n = γ2
m + α2

n.

These Fourier series (5.12)–(5.14) are now substituted into the governing equations of
motion, (5.2) and (5.5), to determine the unknown coefficients Bm,n(t) and Cm,n(t).
The equations are spectrally decomposed by multiplying by the basis functions
and integrating over the computational domain 0 < r < β, 0 < z < h. Applying this
procedure to the vorticity equation (5.5) produces the system of differential equations

B′k,`(t) = −
4

hβ2J2( j1,k)2Ak,`

∫ β

0

∫ h

0
G(r, z, t) sin (α`z)rJ1(γkr) dz dr

−
2γk

hα`DF2Ak,`
Ck,0 −

γk

DF2Ak,`
Ck,`(t)

−
2γ3

k

hα`D Re Ak,`
Bk,0 −

Ak,`

D Re
Bk,`(t), (5.15)
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in which G(r, z, t) = u∂ζ/∂r + w∂ζ/∂z − uζ/r and the steady-state coefficients Ck,0 are
as given in equation (5.9). The density transport equation (5.2) is likewise subjected
to a similar Fourier analysis, which produces two more sets of differential equations,

C′k,`(t) = −
4

hβ2J0( j1,k)2

∫ h

0

∫ β

0

(
u
∂ρ̄

∂r
+ w

∂ρ̄

∂z

)
sin(α`z)rJ0(γkr) dr dz

−
2σγ2

k

α`h
Ck,0 − σAk,`Ck,`(t), (5.16)

C′0,`(t) = −
4

hβ2

∫ h

0

∫ β

0

(
u
∂ρ̄

∂r
+ w

∂ρ̄

∂z

)
sin(α`z)r dr dz − σα2

`C0,`(t). (5.17)

This system (5.15)–(5.17) represents (2M + 1)N ordinary differential equations for
the (2M + 1)N Fourier coefficients Bm,n(t), Cm,n(t) and C0,n(t). These differential
equations are integrated forward in time using the classical fourth-order Runge–Kutta
method. The integrals expressed in each of these equations are evaluated using
composite trapezoidal rule quadrature. The numerical solutions are generally started
from the steady-state components of the flow, expressions (5.8) and (5.10), and this
requires the initial conditions to be Bm,n(0) = 0, Cm,n(0) = 0 and C0,n(0) = 0. We have
also experimented with initial conditions taken from the steady asymptotic solutions
derived in Section 4. Accurate solutions have been obtained here with M = N = 20,
giving an overall system of (2M + 1)N = 820 ordinary differential equations for the
Fourier coefficients, to be integrated forward in time. The double integrals in these
expressions have been evaluated over a grid of 101 × 201 mesh points.

6. Results

In this section, some results of our numerical computations are illustrated both for
the inviscid and the viscous (Boussinesq) plumes. The solutions shown are typical of
the formation and evolution of the plume over time, for a wide variety of the physical
parameters. For ease of reference, the solutions presented in this section all assume
a plume height h = 20. The numerical quadratures were performed with 201 equally
spaced points along the z-axis.

Figure 2 presents a comparison of the nonlinear inviscid solutions, computed
with the spectral method described in Section 3, with the results of the steady
asymptotic solution. In each diagram, interface profiles are shown for the three
different dimensionless times t = 5, 20 and 35. The plume was started from a vertical
jet with initial radius R = 1 and unit vertical speed everywhere. As time progresses,
a constriction wave moves up the plume, similar to the predictions of the unsteady
asymptotic theory. Thus, at the early time t = 5, much of the initial interface profile
is still visible, but eventually the interface is drawn into a shape that narrows as the
height z is increased, since Figure 2 does not involve entrainment (k = 0). Also shown
is the steady-state asymptotic plume radius calculated from equation (4.5), sketched
with a dashed line. The density ratio is taken to be D = 1.05. In Figure 2(a) the
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(a)

(b)

F 2. Comparison of two inviscid nonentraining (k = 0) plume profiles at the three different times
t = 5, 20 and 35, with the asymptotic solution (dashed lines). Results are shown for a plume height h = 20
and density ratio D = 1.05, for Froude numbers (a) F = 0.5 and (b) F = 1.

Froude number is F = 0.5, representing a relatively slow outflow from the nozzle, and
it can be seen that the nonlinear unsteady interface converges slowly to the asymptotic
result, as time increases. In the process, it generates a number of small-amplitude
unsteady waves, and these continue to move up the plume for some considerable time.
For the higher Froude number case F = 1 illustrated in Figure 2(b), convergence to a
steady-state configuration is much more rapid, and by dimensionless time t = 35 the
interface is almost coincident with the asymptotic prediction (4.5). This demonstrates
that these round plumes are stable when directed vertically, within the assumptions
of the inviscid model, and that the asymptotic solution of Section 4 provides a good
approximation to the eventual steady state.
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t
t

t

t

(a)

(b)

F 3. Comparison of two inviscid entraining plume profiles at the two different times t = 5 and t = 20,
with the asymptotic solution (dashed lines). Results are shown for entrainment coefficient k = 0.1, plume
height h = 20 and density ratio D = 1.05, for Froude numbers (a) F = 0.5 and (b) F = 1.

In Figure 3, nonlinear inviscid solutions at different times are again presented,
although now for a nonturbulent entraining plume with entrainment coefficient k = 0.1.
Solutions with a variety of different values for k have been studied, and all are
qualitatively similar to those shown in Figure 3. In addition, the prediction (4.6) for the
steady-state interface obtained from the asymptotic solution is also shown, sketched
using dashed lines. Two sets of results are shown, for Froude numbers F = 0.5 and
F = 1 in Figures 3(a) and 3(b), respectively. The nonlinear inviscid interface is shown
at the two different times t = 5 and 20 in each plot, and the solution was again started
from a uniform upward flow in a plume of initial radius R = 1. Once again, it may
be seen that the plume begins to develop as a constriction wave that moves upwards
with time, although entrainment of the ambient fluid in this case eventually causes
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F 4. Streamlines for the inviscid entraining plume at time t = 20, for Froude number F = 0.5 and
h = 20, D = 1.05. The entrainment coefficient is k = 0.1, and the interface is also shown, as in Figure 3(a).
The steady asymptotic approximation is shown with a dashed line.

the plume to widen with height, and at later times a series of small unsteady waves
propagate upwards.

In the absence of entrainment in the inviscid model, there is no flow normal to
the interface, at least once steady state has been achieved. By an examination of
the continuity equation (5.1), it may be shown that, for steady flow, the contours
of the function rΨ are streamlines, directed tangentially to the fluid velocity vector.
Consequently, when the streamlines are plotted for the nonentraining inviscid plume
at steady state, they are all parallel to the interface r = R, since no fluid can cross
that boundary. By contrast, in the entraining case, when streamlines are plotted as
contours of the function rΨ, they are no longer parallel to the interface at steady state,
as a consequence of the approximate nonturbulent entrainment boundary condition
developed in equation (2.6). This is illustrated in Figure 4. Here the entrainment coef-
ficient is k = 0.1 and the Froude number is F = 0.5, as in Figure 3(a), and the solution
is displayed at time t = 20. The interface and its asymptotic approximation (4.6) at
steady state are shown, as previously. In addition, the streamlines within the plume
are displayed, and they highlight the way in which the outer ambient fluid is entrained
in through the boundary and then moves almost vertically within the plume. Similar
results are obtained with a variety of values of the entrainment coefficient k, although
it is observed that, for k sufficiently large, the curvature at the interface may become
large at certain points, and the numerical scheme then fails to continue to larger times.
In those cases, it appears that the inviscid interface might form a finite-time curvature
singularity similar to that discovered by Moore [20] and encountered under some
circumstances for planar plumes by Forbes and Hocking [12].

The rise of a viscous plume is shown in Figure 5. This solution was started from
a plume of unit width, with unit vertical motion in its interior, and allowed to evolve
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F 5. Solutions for a viscous plume at the three different times t = 5, 10 and 15, with Reynolds
number Re = 1000 and Froude number F = 1. The density ratio is D = 1.05 and the diffusion coefficient is
σ = 10−3. This solution was started from uniform flow in a plume of unit width, and results are presented
as contours of (a) rΨ (the streamlines), (b) density ρ̄ and (c) vorticity ζ.
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forward in time using the algorithm of Section 5. The Reynolds number was taken to
be Re = 1000, and the Froude number F = 1. Streamlines are shown in Figure 5(a) at
the three times t = 5, 10 and 15. Initially, no vortices are present in the flow, but as
time progresses, an entrainment vortex is formed, and may be seen in the solution at
time t = 10 at about height z = 4. Similar behaviour was observed for the planar plume
by Forbes and Hocking [12]. At the later time t = 15, further entrainment vortices are
formed in the interfacial zone near the plume, but at about this time the presence of the
“artificial” wall at r = β begins to exert an influence, so that results beyond this time
are not considered.

Density contours for this same plume are presented in Figure 5(b), at the same three
times. At early times there is a clear interfacial zone with a rapid but smooth change of
density, at about radius r ≈ 1, consistently with the Boussinesq approximation, but as
time progresses, entrainment vortices are generated and the effect of mixing becomes
evident. Figure 5(c) shows contours of the vorticity at these three times, and confirms
that, at early times, the flow is essentially irrotational almost everywhere, except in the
narrow region of the interfacial zone, where vorticity is generated by viscous shear. At
the later time t = 15, the interfacial zone breaks down through viscous diffusion and
convection, so that substantial mixing takes place.

As a means of assessing the effect of viscous entrainment, the streamlines are shown
in Figure 6, for the same parameters as in Figure 5 but at the time t = 12. Vortex
generation is evident at several sites up the plume. Overlaid on this figure is the
asymptotic solution (4.5) in the case of no entrainment (k = 0), for the same Froude
number F = 1 and density ratio D = 1.05. In the absence of entrainment, equation (4.4)
predicts that the fluid in the plume continues to move faster as it rises, so that, by
conservation of mass, the plume necessarily becomes increasingly narrow with height
z, as can be seen in Figure 6. By including a small degree of inviscid entrainment,
k > 0, it is possible to make the overall shape of the asymptotic plume conform a little
more closely to the viscous result, at certain times, but it is nevertheless clear that there
is no real equivalence between the approximate nonturbulent entrainment modelled by
equation (2.6) and the more complex processes of vortex generation at the interface
that occur in the genuinely viscous case.

To reinforce the fact that this is an axisymmetric plume in three dimensions, as
opposed to the planar geometry considered by Forbes and Hocking [12], the density
contour ρ̄ = −0.02 in the interfacial zone has been extracted and rotated about the z-
axis. This gives an indication of the actual plume shape, and is presented in Figure 7,
for the same time t = 12 as in Figure 6. The effect of plume constriction due to the
presence of entrainment vortices is evident, and there are even overhanging sections
along the interface. The plume widens again near the top, due to viscous entrainment
of the ambient fluid.

7. Conclusion

This paper has considered the evolution of an axisymmetric vertical plume in a
fully nonlinear inviscid model of the phenomenon. Attention has been focused on
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F 6. Streamlines for the viscous plume in Figure 5, with Reynolds number Re = 1000, at time t = 12.
The dashed line indicates the asymptotic interface in the nonentraining case k = 0.
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F 7. The density contour ρ̄ = −0.02 for the viscous plume in Figure 5, with Reynolds number
Re = 1000, at time t = 12.
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the approximate transitional parameter region F ∼ 1 and 200 < Re < 1000, rather than
the fully turbulent situation modelled in the “classical” MTT plume theory [21]. The
results of Forbes and Hocking [12] for inviscid planar plumes have been generalized
to the case of a round plume directed vertically, and it has been established that, within
the assumptions of inviscid theory, the plume is stable and converges to a steady-
state profile for large times. That profile is accurately predicted by an asymptotic
theory based on an assumption that the inviscid plume is slender. For completeness,
surface-tension effects were also included in these inviscid results, originally as a
means of regularizing the numerically computed plume profiles if these had proven
to be unstable, as was the case for planar plumes directed nonvertically in the work of
Forbes and Hocking [12]. However, as instability was not a feature of the vertical
axisymmetric inviscid plumes encountered here, the inclusion of surface tension
proved to be unnecessary and it had a negligible effect on the plume shapes.

An approximate entrainment model was also proposed for these transitional,
nonturbulent plumes, adapted from the classical MTT plume model [21] in the
turbulent case. The underlying premise is that the vortex sheet present at the interface
of the fluid plume is responsible for entraining some of the outer ambient fluid with
a velocity normal to the interface that is proportional to the tangential speed of the
fluid within the plume. This approximate entrainment condition in equation (2.6)
generalizes the classical kinematic condition which requires no fluid flow normal to
the free surface, and can be implemented within an otherwise inviscid flow model.
The asymptotic slender-plume theory was again applied to this situation, and the
prediction (4.6) it makes for the interface shape is qualitatively in agreement with
profiles in the paper by Hunt and Kaye [16], for example. In addition, the nonlinear
numerical results for this case confirm that these predicted interface profiles are stable
within the assumptions of inviscid theory, for these vertical plumes.

Viscous solutions have also been computed, under the Boussinesq approximation,
again extending the similar calculations of Forbes and Hocking [12] for planar plumes
to this axisymmetric three-dimensional geometry. A full spectral method has been
used since it has the advantage over finite-difference techniques, such as that used
by Chen and Forbes [6], that the Poisson equation (5.4) for the streamfunction is
solved trivially, without the need for iteration. The viscous results are coarsely in
agreement with the predictions of the inviscid entrainment model (2.6) developed here;
when entrainment coefficients of the order k ≈ 0.1 are chosen, both the viscous and
inviscid cases suggest an overall widening of the plume as height from the inlet nozzle
increases. Nevertheless, our inviscid entrainment model has only limited capacity to
mimic true viscous entrainment, for these transitional plumes. This is because the
approximate condition (2.6) contains no mechanism for the generation of vorticity at
the interface, whereas in the true viscous case there are vortices formed at several
locations up the plume. We have experimented with viscous plumes started from
several different initial configurations, but all develop axisymmetric vortices ringing
the round plume, at various different heights.

Obtaining the viscous solutions presented in this paper represents a significant
computational exercise. Nevertheless, it is possible to extend these results to cases
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in which the plume rises at an angle, although that would destroy the axisymmetric
geometry assumed here, so incurring a far greater computational cost. In the planar
case, Forbes and Hocking [12] found that nonvertical plumes were subject to a type of
lateral instability, and it is likely that a similar phenomenon occurs in the fully three-
dimensional case also. It is of interest to know in more detail how the jet or plume
develops from its initial injection at the nozzle, and this will be considered in future
work.
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