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Abstract. Damped Lyman-α (DLA) and sub-DLA quasar absorption lines provide powerful
probes of the evolution of metals, gas, and stars in galaxies. One major obstacle in trying to
understand the evolution of DLAs and sub-DLAs has been the small number of metallicity
measurements at z < 1.5, an epoch spanning ∼ 70% of the cosmic history. In recent surveys
with the Hubble Space Telescope and Multiple Mirror Telescope, we have doubled the DLA Zn
sample at z < 1.5. Combining our results with those at higher redshifts from the literature, we
find that the global mean metallicity of DLAs does not rise to the Solar value at low redshifts.
These surprising results appear to contradict the near-Solar mean metallicity observed for nearby
(z ≈ 0) galaxies and the predictions of cosmic chemical evolution models based on the global
star formation history. Finally, we discuss direct constraints on the star formation rates (SFRs)
in the absorber galaxies from our deep Fabry-Perot Ly-α imaging study and other emission-line
studies in the literature. A large fraction of the observed heavy-element quasar absorbers at
0 < z < 3.4 appear to have SFRs substantially below the global mean SFR, consistent with the
low metallicities observed in the spectroscopic studies.

1. Introduction
Heavy-element quasar absorption systems probe galaxies at various epochs, selected

independent of their luminosities. The damped Ly-alpha absorbers (DLAs; log NHI >
20.3) and sub-DLAs (19.0 < log NHI < 20.3) constitute a large fraction of H I in galaxies
(e.g. Wolfe et al. 1995; Peroux et al. 2003), and provide the best existing probes of
the chemical composition of galaxies over ∼ 90% of the cosmic history. They should thus
provide important clues to the history of metal production and star formation in galaxies.
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2. Evolution of metallicity
Most cosmic chemical evolution models predict the global mean interstellar metallicity

of galaxies to rise with time, from low values at high redshifts to Solar or near-Solar
values at z = 0 (e.g. Pei & Fall 1995; Malaney & Chaboyer 1996; Pei, Fall & Hauser
1999; Somerville et al. 2001). This rise in metallicity at low redshifts is driven by the
high global star formation rate (SFR) at z � 1.5 implied by galaxy imaging surveys such
as the Canada-France Redshift Survey (CFRS) and the Hubble Deep Field (HDF). (see
e.g. Lilly et al. 1996; Madau et al. 1996). Indeed, the mass-weighted mean metallicity of
nearby galaxies is also near-Solar (e.g. Kulkarni & Fall 2002). Do the DLA data show
the predicted rise in the global mean metallicity with decreasing redshift?

We adopt Zn as our primary metallicity indicator because (a) Zn tracks Fe closely,
to within ∼ ±0.1 dex in the Galactic halo and disk stars for [Fe/H] � −3; (b) Zn is
relatively undepleted on interstellar dust grains; and (c) the Zn II λλ2026, 2062 lines in
DLAs often lie outside the Lyman-α forest and are usually unsaturated. In the absence of
selection effects, the quantity ΩISM

metals/ΩISM
gas is equal to the NHI-weighted mean metallicity

Z in a sample of DLAs, where Z/Z� = [ΣN(Zn II)i/ΣN(H I)i ]/(Zn/H)� (e.g. Lanzetta
et al. 1995; Kulkarni & Fall 2002). There has been considerable debate about whether
or not this quantity Z rises with decreasing redshift. Based on 57 Zn measurements at
0.4 < z < 3.4, Kulkarni & Fall (2002) found the slope of the metallicity-redshift relation
to be −0.26 ± 0.10, consistent at the ≈ 2 − 3σ level with both the predicted rates
of evolution (−0.25 to −0.61), and with no evolution. Prochaska et al. (2003) reached
similar conclusions (slope −0.25±0.07) for 0.5 < z < 4.7, combining Zn, Fe, Si, S, O, and
X-ray absorption measurements in 121 DLAs. The main reason for the debate about this
issue is the small number of measurements available, especially at z < 1.5. Space-based
ultraviolet (UV) measurements are needed to access the H I Ly-α lines at z < 1.6 and
the Zn II lines at z < 0.6. Furthermore, for 0.6 < z < 1.5, the Zn II lines lie in the
blue region, where most spectrographs have relatively low sensitivity. To improve this
situation, we have recently started to expand the DLA abundance samples at z < 1.5,
using the Multiple Mirror Telescope (MMT) and the Hubble Space Telescope (HST).

2.1. Abundance measurements for DLAs at z < 1.5
The low-z end is important to clarify the overall shape of the metallicity-redshift relation
and to understand the relation of DLAs to present-day galaxies. To constrain the low-z
end better, we carried out HST STIS observations of 4 DLAs with 0.09 < z < 0.52 and
20.3 < log NHI < 21.3 (Kulkarni et al. 2005a). 5-10 orbits were spent per object with
the STIS G230M/NUV-MAMA or G230MB/CCD configurations at spectral resolutions
of 10,400-14,300. The data were reduced using the IRAF and STSDAS/CALSTIS pack-
ages. Column densities were estimated by fitting the line profiles and verified using the
apparent optical depth method. Three of the four DLAs in our sample, where we could
put meaningful constraints on the Zn abundance, have Zn/H below 10-20 % Solar.

To expand the DLA Zn samples in the intermediate-redshift range, we have been
carrying out a spectroscopic survey of DLAs with 0.6 < z < 1.5 using the MMT blue
channel spectrograph. Despite the modest resolution (∼ 75 km s−1) of this instrument,
we have been able to detect lines of Zn, Cr, Fe, Mn, Ni, Ti, etc. because of the high S/N
in our spectra. Some of the data from this ongoing survey are described by Khare et al.
(2004). The Zn abundances for the DLAs in this sample were found to be 3-32 % Solar.

2.2. Implications for the global metallicity-redshift relation
Our HST and MMT data have so far doubled the DLA Zn sample at z < 1.5 and
tripled the sample at z < 1. Fig. 1 shows the logarithm of the NHI-weighted mean Zn
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Figure 1. Global metallicity-redshift relation for DLAs from 87 measurements, based on our
HST and MMT data and the literature. The circles show the logarithm of the N (H I)-weighted
mean Zn metallicity relative to the Solar value. The filled circles in the left and right panels
show the results with the Zn upper limits treated as detections and zeros respectively. The
unfilled circles in the right panel show the results using information from other elements in those
cases where only limits rather than detections are available for Zn. The solid, short-dashed,
and dot-dashed curves show respectively the “true” mean metallicity (not corrected for dust
obscuration) expected in the cosmic chemical evolution models of Pei et al. (1999), Somerville
et al. (2001), and Malaney & Chaboyer (1996).

metallicity as a function of redshift, for the sample of 87 DLAs, based on our HST and
MMT results so far and the values available in the literature (see Kulkarni et al. 2005a
and references therein). Horizontal bars for each bin show the range of DLA redshifts
within that bin. The vertical error bars show the 1 σ uncertainties in the NHI-weighted
mean metallicities, and include both the measurement uncertainty and the sampling
uncertainty. The left panel shows the “maximum-limits” case, where the Zn upper limits
are treated as detections. The filled circles in the right panel show the “minimum-limits”
case with the Zn limits treated as zeros. The unfilled circles in the right panel show the
modified minimum-limits sample, using other elements to constrain the metallicities in
cases of Zn limits. The slopes of the metallicity-redshift relation in the range 0.09 <
z < 3.90 for these three cases are −0.18 ± 0.06, −0.22 ± 0.08, and −0.23 ± 0.06. The
corresponding estimates of the z = 0 intercept of the metallicity-redshift relation are
−0.74 ± 0.15, −0.75 ± 0.18, and −0.71 ± 0.13 respectively. Clearly, the global mean
metallicity of DLAs does not seem to rise up to the Solar value at low redshifts, and
shows at best a slow evolution at a rate of ≈ 0.2 dex or less per unit redshift. This result
appears to contradict the predictions from most cosmic chemical evolution models and
the global star formation history. We return to the implications of this in section 4.

3. Evolution of star formation rates
Another important quantity necessary to study the evolution of an absorber galaxy

is its SFR. The SFR can be estimated from emission lines such as Ly-α, H-α, [O II],
or [O III] seen commonly in star-forming regions. Searches for low-z DLAs have often
imaged, and sometimes spectroscopically confirmed the absorbing galaxies (e.g. Yanny
et al. 1990; Le Brun et al. 1997; Chen et al. 2005). However, this has been much more
difficult at high redshifts. There have been a few detections of Ly-α emission in high-
z quasar absorber fields (e.g. Lowenthal et al. 1991; Francis et al. 1996; Roche et al.
2000). However, most other attempts to detect Ly-α emission from high-z intervening
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Figure 2. APO images of the field of Q0216+080 in B band (left) and in narrow-band centred
on Ly-α emission at z = 2.2931 before (centre) and after (right) continuum subtraction.

(zabs < zem ) DLAs have produced either non-detections or weak detections. Most of
the few confirmed Ly-α detections in high-redshift DLAs have been for absorbers with
zabs ≈ zem , which may differ from the cosmologically more interesting general population
of DLAs with zabs < zem . Several attempts to detect DLAs in H-α have either yielded
non-detections or detected companions separated by large angular distances from the
quasars, rather than objects close to quasar sight-lines.

We have been carrying out a narrow-band Fabry-Perot (FP) imaging survey of quasar
absorber fields at the Apache Point Observatory 3.5 meter telescope (Kulkarni et al.
2005b). The blue and vis-broad etalons in the Goddard Space Flight Center (GSFC)
Fabry Perot (FP) imaging system have optimum sensitivity and resolution in the wave-
length range ∼ 4000 − 5000 Å. We therefore restricted our search to the redshift range
2.3 < z < 3.1. We searched the York et al. (1991) catalogue of heavy-element quasar
absorbers for absorbers with (i) 2.3 < zabs < 3.1, (ii) zabs < zem − 0.6 to avoid absorbers
possibly associated with the quasars, and (iii) with well-detected mixed-ionisation lines
(Si II, Al II, or O I in addition to C IV and/or Si IV). Six such absorbers, including 2
DLAs, were finally observed.

The observations were carried out during 9 runs between October 2000 and May 2004
at the 3.5 meter Apache Point Observatory (APO) telescope. Total integration times
were 320-600 minutes per field, making these among the deepest images ever taken for
quasar absorber fields. Data reduction was carried out using standard IRAF tasks. Figs.
2a and 2b show the reduced broad-band and narrow-band images of one of our fields,
Q0216+080, which is known to have a DLA at z = 2.2931. The stripes at the borders
of some images are an artifact of the co-adding of the dithered images. The quasar is
considerably dimmer in the narrow-band image because of the presence of the foreground
DLA. Fig. 2c shows the continuum-subtracted image, obtained by aligning the images
spatially, and adjusting the scaling factor so as to minimise variance in the central portion
of the subtracted image. All of the objects in the narrow-band images disappeared almost
completely after subtraction of the continuum. The slight residuals left at the positions
of some stars are because of the difficulty in matching the point spread functions (PSFs)
perfectly in the broad-band and narrow-band images. No significant Ly-α emission was
detected from any object in this or any of the other quasar absorber fields in our sample.
To estimate the limits on the Ly-α fluxes for the absorbers in these fields, we used
our observations of the field of the radio galaxy 53w002 with known Ly-α emitters at
z = 2.39 (Pascarelle et al. 1996), and observations of a standard star. Based on this,
the 3σ observed-frame Ly-α flux sensitivity reached in our images is in the range of
1.9 − 5.4 × 10−17 erg s−1 cm−2, implying 3σ SFR limits of 0.8-2.4 M� yr−1.
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Figure 3. Measurements of star formation rates (in M� yr−1) for confirmed or candidate objects
in quasar absorber fields, from emission line searches. Data points are from our APO FP survey,
our previous NICMOS imaging (Kulkarni et al. 2000, 2001), and other literature (Kulkarni
et al. 2005b, and references therein). The curves show the calculations of Bunker et al. (1999)
for the predicted cross-section-weighted SFR in the large-disk and hierarchical scenarios.

The lack of Ly-α emitters in our fields, while surprising, does not contradict the space
density of Ly-α emitters seen in other studies at similar redshifts (e.g. Stiavelli et al.
2001; Palunas et al. 2004). Both these studies found several LAEs, but were much larger
in field of view and redshift depth than our study. The field of Stiavelli et al. was a
non-absorber field. The field of Palunas et al. does show some sub-DLAs, but is known
to be a filament with higher density than a typical field region.

Fig. 3 plots our APO FP SFR limits with our earlier NICMOS results at z ∼ 1.9
(Kulkarni et al. 2000, 2001), and the results of other emission line searches in quasar
absorbers (see references in Kulkarni et al. 2005b). All data points have been converted
to a common cosmological model with Ωm = 0.3, ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1.
The majority of the data in Fig. 3 are for DLAs. We note, however, that many of the
H-α and Ly-α candidates have not yet been spectroscopically confirmed. Furthermore,
many of the H-α points are for objects at large angular separations from the quasar. Our
APO FP limits are among the tightest existing constraints on SFRs in absorption-selected
galaxies, but are clearly consistent with many other measurements. The solid curve shows
the LD5 calculation of Bunker et al. for the predicted cross-section-weighted SFR based
on the closed-box Pei & Fall (1995) model, for large proto-spirals (with space density
equal to that of local spirals) for q0 = 0.5 and H0 = 70 km s−1 Mpc−1. The dashed curve
shows their H5 prediction for the hierarchical hypothesis (with a higher absorber space
density in the past). Clearly, a large fraction of the observed SFR values fall below the
prediction of the large-disk scenario, and several lie even below the hierarchical prediction.
Even though the predicted SFRs for Ωm = 0.3 and ΩΛ = 0.7 would be somewhat lower,
a large fraction of the absorbers would still have SFRs below the LD5 predictions.

4. Conclusions
Our results on both metallicities and SFRs appear to suggest that the history of metal

production and star formation may have been quite different in DLAs than in the general
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galaxy population. Is this an effect of small number statistics? Or is this a selection effect
caused by the fact that the more metal-rich and more vigorously star-forming DLAs
are also likely to be dustier and may thus be under-represented in flux-limited samples
of quasars? Or are the star-forming regions in DLAs compact and at small angular
separations from the quasars, so that they get lost in the quasar point spread function
(PSF)? Clearly, it is necessary to expand the DLA metallicity samples at z < 1.5 to
better understand the metallicity evolution. Such studies, together with high-resolution
optical/IR imaging and spectroscopic confirmation of the absorbing galaxies will help to
understand the overall role of DLAs in the big picture of galaxy evolution.
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