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Analysis of the wear mechanisms of the boriding drill tip 
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The manufacturing industry requires drill bits that can withstand the severe working conditions (wear 

and high temperatures) encountered during a drilling operation on 7075-T6 aluminum alloy; and at the 

same time meet the quality requirements (burr height and width and diameter error) requested by their 

customers. Based on the BP4.55M-1985 standard, it has been established that the types of normal (gradual) 

wear of a twist drill can be classified according to the zone they affect: wear on the rake face and flank 

wear; for measurement purposes, the following types of wear are present in the latter zone: i) maximum 

wear width, VBmax, ii) corner wear width, VBc, iii) chisel edge wear width, VBcl, and iv) margin wear, 

VBmg [1]. 

A commercial twist drill with the following geometric characteristics was used in this study: 7/32 in 

diameter, 130° tip angle, 35° helix angle, two flutes, and straight shank. The drill bit substrate was AISI 

M2 steel with the following chemical composition: 0.85% C, 3.96% Cr, 5.76% W, 5.09% Mo, 2.06% V, 

0.45% Co, 0.42% Ni, 0.37% Si, 0.29% Mn, 0.019% S, 0.013% P and 80.73% Fe. The drill bit was 

subjected to thermochemical boriding treatment to modify its surface and obtain high protection against 

wear and corrosion [2] [3]. The boriding conditions were: temperature of 900°C, 6 hours of exposure, 

conventional furnace without controlled atmosphere and reused rehydrated paste [4] [5]. 

In a three-axis Vertical Machining Center (VMC) with Computerized Numerical Control (CNC), 

GUSS&ROCH, model VMC-640; a wear test was performed, which consisted of manufacturing non-

through holes with the borided drill bit, on a 7075-T6 aluminum alloy plate, which had the following 

dimensions: 4.0 x 8.0 x 0.5 in. The following machining regime was used: cutting speed: 73.23 m/min, 

feed rate: 0.089 mm/rev and depth of cut: 12.5 mm. A semi-synthetic soluble cutting fluid was used for 

lubrication and dissipation of heat generated at the borided drill bit/work material interface. The flooding 

method was used to apply the cutting fluid. 

After the manufacture of 1050 non-through holes and 35.75 minutes of work [6], it was observed that 

the chips generated were fan-shaped. In addition, the angle of the borided drill tip showed the following 

variation: from 130° 03' to 132° 01'. 

A JEOL model JSM-IT100 Scanning Electron Microscope (SEM) was used to analyze the wear 

mechanisms at the tip of the borided drill bit after the drilling operation. The EDS (Energy Dispersing 

Spectroscopy) technique was applied to quantitatively determine the presence of alloying elements of the 

working piece (Al 7075-T6), on the surface of the borided drill bit. 
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Figure 1 shows the corner of one of the cutting edges of the borided drill bit after the wear test. This 

area is the farthest from the center of the drill bit, and rotates at the rated cutting speed. Figure 1a highlights 

the built-up edge formation (BUE); the corner wear width (VBc) has an average value of 33.92 μm. 

This adhesion of workpiece material (Al 7075-T6) virtually eliminates contact between the borided 

drill bit and the workpiece [1]; such material becomes unstable with each chip-forming cycle, with a high 

probability of becoming dislodged and embedded in the drill bit body, as can be seen in the area bounded 

by the red line, which contributes to abrasive wear. Figure 1b shows the EDS spectrum performed on the 

surface of the cutting edge corner of the borided drill bit; and Figure 1c shows the results of the EDS 

analysis, highlighting the presence of aluminum and zinc, magnesium and copper, alloying chemical 

elements of the working material (Al 7075-T6). 

Figure 2 shows the chisel edge of the borided drill bit after the wear test. In this area of the drill bit, 

the cutting speed is practically zero, the chisel edge pushes the material, not cuts it; therefore, it is said 

that drilling combines the cutting operation with the extrusion operation [7]. Figure 2a shows that there is 

material transfer in the chisel edge area. Figure 2b shows the EDS spectrum obtained when analyzing that 

area of the borided drill bit and Figure 2c shows the results of the EDS analysis, where the presence of 

aluminum and the alloying chemical elements such as magnesium, chromium and zinc stand out; which 

confirms that there is adhesion of the working material (Al 7075-T6) in the chisel edge of the borided drill 

bit. 

 
Figure 1. Figure 1 Corner of one of the cutting edges of the borided drill bit after manufacturing 1050 non-

through holes, a) Built-Up Edge formation (BUE), presence of abrasive wear and corner wear width 

(VBc), b ) EDS spectrum, and c) quantification of the alloying chemical elements of the working material 

(Al 7075-T6). 
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Figure 2. Figure 2 Chisel edge of the borided drill bit after manufacturing 1050 non-through holes, a) 

bonded material in that area, b) EDS spectrum, and c) quantification of the alloying chemical elements of 

the working material (Al 7075-T6) 
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