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Abstract
This paper investigates the separation property in binary phase-segregation processes modelled by Cahn-Hilliard
type equations with constant mobility, singular entropy densities and different particle interactions. Under general
assumptions on the entropy potential, we prove the strict separation property in both two and three-space dimen-
sions. Namely, in 2D, we notably extend the minimal assumptions on the potential adopted so far in the literature,
by only requiring a mild growth condition of its first derivative near the singular points ±1, without any point-
wise additional assumption on its second derivative. For all cases, we provide a compact proof using De Giorgi’s
iterations. In 3D, we also extend the validity of the asymptotic strict separation property to the case of fractional
Cahn-Hilliard equation, as well as show the validity of the separation when the initial datum is close to an ‘energy
minimizer’. Our framework offers insights into statistical factors like particle interactions, entropy choices and
correlations governing separation, with broad applicability.

1. Introduction

During various scientific investigations, we frequently come across phase segregation or separation phe-
nomena in a range of materials, spanning from simple binary mixtures to complex systems [12, 31]. To
comprehensively understand these phenomena, one must adopt a versatile approach based on a diverse
array of experiments, each underpinned by a unique set of statistical assumptions. By introducing varia-
tions in particle interactions and mixing entropy functions, we scrutinise how these assumptions impact
phase segregation. Essential to this study is the concept of free energy, as the driving force for the sep-
aration of two or more phases. The Helmhotz-free energy1 of a system is the sum of its internal energy
Eint, related to a Hamiltonian operation Hint, the product of its mixing entropy2 e (φ) := −F (φ) and
temperature3 θ > 0, and a quadratic function related to demixing effects. Order parameter phase seg-
regation is a type of phase segregation that is characterised by the emergence of an order parameter.
For binary mixtures of two components, A and B, the order parameter φ := cA − cB ∈ [−1, 1] is the

1In the absence of any external fields, such as electric and magnetic fields.
2The entropy is by definition a strictly concave function.
3We scale θ to be the unit in what follows.
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difference in concentrations cA, cB ∈ [0, 1] of the two components in the two phases. The difference in
the free energy

E (φ) = Eint (φ) − θe (φ) − α0

2
φ2, α0 > min

s∈(−1,1)
F

′′
(s) > 0, (1.1)

between the mixed and segregated states is what drives the process of phase-segregation (or separation).
We recall that the energy involved in phase segregation of a mixture of two metals can be significantly
large,4 when the number of atoms in a typical sample is considered. As one possible approach to design
and control these processes, we employ the classical formulation of the transport equation5 that ensures
mass conservation within the system, i.e.,

∂tφ + ∇ ·J = 0, in � × (0, T), φ (0, x) = φ0, in �, (1.2)

where � is a smooth bounded domain in R
d, d ∈ {1, 2, 3}, and T > 0 determines duration of the

experiment. The mass conservation means∫
�

φ (t) dx =
∫

�

φ0dx,

for all t ∈ (0, T). The flux J is directly proportional6 to the gradient of the chemical potential μ, which
flows from regions of high chemical potential to regions of low chemical potential, provided that

J · n = 0, on ∂� × (0, T). (1.3)

In particular, μ = δE (φ) /δφ, is a measure of the change in total energy of the system when the order
parameter is changed by a small amount. When designing physically justified models of segregation-
separation processes, it is important to take into account the factors that affect the strict separation of the
binary components. Overall, both the chemical potential and the free energy (1.1) provide versatile tools
that can be used to study binary phase transitions or segregation processes from a variety of perspectives.
In particular, the chemical potential is in balance between three competing factors in (1.1):

μ = Hint (φ) + F
′
(φ) − α0φ, in � × (0, T). (1.4)

The Hamiltonian Hint = δEint (φ) /δφ represents the total particle interactions in the system. Generally,
the type of particle interactions determines the strength and range of the forces that drive segregation
and separation. The entropy density function (−F

′
) measures the rate of mixing of particles in a system

and favours state where the particles are well-mixed. The linear function (−α0φ) describes the tendency
of particles to separate into different phases and favours state where the particles are separated. The
parameter α0 is a measure of the strength of the demixing effect. The larger the value of α0, the stronger
the demixing effect and the greater the tendency of the particles to separate into different phases. On
the other hand, the geometry of the system � can also affect the flow of the binary components and the
rate of segregation. Lattice gas models are simple models that can be used to model phase segregation
in binary mixtures [12]. In a lattice gas model, the particles are located on a lattice of sites and the
particle interactions are modelled by the operation Hint through a potential between them. In this work,
we directly link the Hamiltonian Hint to several critical formulations:

(a) The classical (Neumann) Laplace operator. This essentially promotes states in which particles
undergo rapid changes communicating with near site neighbours at short range. In simpler terms,
the model favours state where particles move in a seemingly random and well-mixed way within the
lattice, occurring at temperatures exceeding a certain critical threshold. The Laplace operator plays
a pivotal role in steering and promoting this particle motion behaviour, while the internal energy
Eint encapsulates the dynamics of interfacial regions that change gradually by penalising gradients.

4It has been estimated that the energy required for phase separation is of the order of 1 eV per atom [31].
5This assumption is specific to our current work. It’s worth noting that other transport equations with nonlocal characteristics,

which describe anomalous transport processes, are also applicable, as highlighted by [19].
6J = −m∇μ, for some positive constant mobility factor m.
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This foundational assumption draws inspiration from the pioneering work of Cahn and Hilliard [6]
in the late 1950s. Indeed, given that

�(s) = F(s) − α0

2
s2, ∀s ∈ [ − 1, 1],

with α0 > α, the free energy reads in this case

EL (φ) =
∫

�

1

2
|∇φ|2 + �(φ) dx

(b) A spectrally defined fractional Laplace operator (−	N)
s , for s ∈ (0, 1). This operator is inti-

mately tied to Levy processes (or distributions) and is used in modelling systems with long-range
particle jumps, allowing for stronger correlations between particle motions (see [20]). In a lattice
gas model incorporating a fractional Laplace operator, particles tend to favour movement to more
distant sites, considering the long-range correlations between them. This results in several alter-
ations in particle motion behaviour. Notably, particles are prone to diffuse over extended distances
and exhibit a propensity to assemble into clusters of similar particles, and this mechanism can give
rise to intricate and complex phase structures. Additionally, it can lead to a deceleration in the
phase-segregation process. In this case, the free energy also reads

ESF(φ) =
∫

�

1

2
| (−	N)

s/2
φ|2 + �(φ)dx.

(c) Convolutions with a symmetric, integrable kernel J, representing a microscopic potential that
characterises how particle forces act between different particles. This Hamiltonian exerts a sub-
stantial influence on particle motion by accounting for both short-range and long-range effects in
particle interactions. One of its crucial implications is the emergence of long-range correlations
between particles. This occurs because the convolution operation considers interactions among all
particles, not solely those immediately adjacent. Essentially, this model facilitates the application of
sampling distributions7 by convolving multiple probability distributions of particle motions. This
concept is rooted in the research of Giacomin and Lebowitz [13], focusing on a nonlocal vari-
ant of the Cahn-Hilliard equation proposed in the late 1990s. In this case, the free energy reads
as follows:

ENL(φ) := 1

4

∫
�

∫
�

J(x − y) (φ(y) − φ(x))2 dxdy

+
∫

�

F(φ(x)) − (J ∗ 1) (x)

2
φ2(x)dx.

In our exploration of a wide array of phase-segregation processes, it is crucial to consider an equally
broad spectrum of entropy functions that fall under the umbrella of nonextensive statistical mechanics
(NSM) [32], a framework that extends the well-established Boltzmann-Gibbs (BG) statistical mechan-
ics, especially when BG is inadequate. While BG is commonly used for weakly interacting systems, like
those in case (a), it lacks a robust foundation, particularly for strongly interacting systems with strong
particle correlations and non-exponential behaviour as seen often in cases (b)–(c). NSM, on the other
hand, has proven to be a potent tool for studying phase segregation in binary materials. It has demon-
strated remarkable accuracy in reproducing experimental results, even when the BG framework falls
short [32]. An example of an NSM candidate is Tsallis’ entropy, denoted as (−Fq), which deviates8

from BG for any q > 0, q �= 1, but converges to the standard BG entropy when q = 1 (see Figure 1):

Fq(x) := −gq(1 + x) − gq(1 − x), gq (x) := x ln{q} (1/x) .

7Employed in Monte Carlo simulations.
8Here, ln{q} (·) denotes the q-logarithm so that ln{1} (·) = ln (·) , see Section 6.
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Figure 1. Plots of Tsallis’ and Boltzmann-Gibbs entropy potentials, and their singular behaviour of
derivatives.

The choice of the index q ∈ (0, 1] may significantly depend on the system’s correlations. Additionally,
our approach allows for asymmetric entropy potentials across the phase domain [−1, 1], enabling the
modelling of systems favouring segregation or differing densities between phases (such as oil and water,
by favouring the state where the oil is on top of the water). Indeed, our framework and the corresponding
assumptions allow also for double-well potentials � (φ) = F (φ) − (α0/2) φ2, with varying well depths
that control system behaviour. In particular, deeper wells make it more likely for the system to reside in
the deeper well, enhancing stability.

All these considerations are valuable for modelling phase behaviour and designing phase-separation
processes. Our proposed framework helps us fathom the intricate interplay of statistical factors and
parameters, offering insights valuable to a broad audience of applied scientists. It not only deepens our
understanding of phase segregation but also guides research and applications across multiple disciplines,
from materials science to biotechnology.

In this study, we aim at strongly emphasising the vital importance of preserving the strict separation
of binary chemical components during segregation processes. This property,

|φ (x, t)| ≤ 1 − δ0, (x, t) ∈ � × (0, T) , for some δ0 ∈ (0, 1) , (1.5)

is crucial for ensuring product purity, preventing undesired by-products and maintaining control over the
final product’s properties (in particular, with respect to elaborating on quantitative estimates for δ0; see
also below). Industries such as pharmaceuticals, food production and electronics rely on this property to
guarantee product quality and safety. Efficient phase-separation techniques and enhanced product qual-
ity stem from the strict adherence to (1.5). For instance, in pharmaceutical production, it is imperative
to strictly separate the active ingredient from other components to maintain the drug’s purity and effec-
tiveness. Similarly, in food production, separating different ingredients prevents cross-contamination
and ensures product safety. In electronic device manufacturing (of semiconductors), distinct material
separation is critical to achieving the desired electrical properties (see, e.g., [17, 31]). Moreover, gran-
ular understanding of the degree of separation δ0’s dependence on various control factors during phase
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segregation is key to controlling the final product’s properties. It’s crucial in designing physically jus-
tified models, considering factors like particle interactions, mixing entropy, temperature and system
geometry. On the other hand, the strict separation property holds a crucial role within the segregation
model, serving as a fundamental mathematical property. It enables the development of Gevrey regularity
in solutions, which, in turn, is an indispensable component in formulating and designing well-defined
optimisation problems related to segregation processes. These encompass not only optimal control but
also a range of related issues (e.g., [1, 6–9, 13, 14–25, 27–29] and references therein).

The main goal of this work is then to establish minimal assumptions on the entropy density function,
which ensure the validity of the strict separation property. Indeed, while this property is already well-
established under stronger assumptions on the entropy (−F) (see, for instance, [14, 15, 28, 29]), here we
propose a different proof method (completely new for the cases (a)-(b), a refinement for the case (c)).
Namely, we solely rely on the balance equation for the chemical potential in (1.4), capitalising on its
inherent Sobolev regularity. This is coupled with the application of a ‘microscopic’ De Giorgi-type argu-
ment. Thanks to our new proofs, our analysis in two-dimensional bounded domains now accommodates
a broader range of entropy functions than previously available in the literature. Specifically, for cases
(a) and (b) as described earlier, the least restrictive assumption on the entropy potential F involves the
following growth condition (as seen in [15]): there exists C
 > 0 such that

F′′(s) ≤ C
eC
|F′(s)|υ , ∀s ∈ (−1, 1) , for some υ ∈ [1, 2), (1.6)

In the case (c), a less demanding assumption, even in three dimensions, was first proposed in [29],
introducing a requirement on the second derivative of the function F as well. However, for the first time
in the two-dimensional framework, we propose a more general set of assumptions (refer to equation (2.3)
below) that does not involve any further assumption on F′′, as in (1.6), apart from its strict positivity (as
shown in (1.1)). It solely requires a mild growth condition of F′ near the singular points ±1. For a more
detailed discussion on this topic, please see Remark 2.1 below. In conclusion, we also offer insights into
all previously discussed cases (a)–(c) within the context of three-dimensional space, highlighting certain
mathematical limitations encountered when applying De Giorgi’s scheme. Furthermore, by means of a
new proof based again upon De Giorgi’s iterations, we extend prior findings (see, e.g., [1]) concerning
the 3D asymptotic separation property of the local Cahn-Hilliard equation (a) to the fractional Cahn-
Hilliard equation (b), specifically when the fractional range s falls within 1/4 and 1. Additionally, we
provide insights into the separation property in the vicinity of ‘energy minimizers’ for this problem
within the same fractional range.

The paper’s structure is as follows. In Section 2, we introduce the fractional operator As
N and state

general assumptions on potential F. Section 3 provides a concise proof of the separation property in
the local case (associated with case (a) in two space dimensions). In Section 4, we introduce a new
method to derive the separation property for the nonlocal problem associated with case (c) in two space
dimensions. Section 5 presents a comprehensive analysis of the spectral-fractional Cahn-Hilliard equa-
tion in dimension two, while the essential mathematical tools used to prove the strict separation property
are detailed in the Appendix. Section 6 provides a discussion of cases (a)–(c) within the framework of
three-dimensional bounded domains, also accounting for the validity of the asymptotic strict separation
property. In the final Section 7, we solidify the high impact of our extended framework and underscore
the minimal set of assumptions needed to establish the essential separation property in a variety of
physical applications.

2. Mathematical setting
2.1. Functional framework

Let � be a smooth bounded domain in R
d, where d = 2 or d = 3. We denote Sobolev spaces as Wk,p(�),

where k ∈N and 1 ≤ p ≤ ∞, equipped with the norm ‖ · ‖Wk,p(�). The Hilbert space Wk,2(�) is represented
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as Hk(�), and its norm is ‖ · ‖Hk(�). Additionally, we use Hs(�), where s > 0 and s �∈N, to denote standard
fractional Sobolev spaces with the norm ‖ · ‖Hs(�). For convenience, we define the following spaces:

H = L2(�), V = H1(�), V2 = {v ∈ H2(�): ∂nv = 0 on ∂�}.
Furthermore, when dealing with vector spaces, X denotes a space of vectors with d components belong-
ing to X. We use (·, ·) to represent the inner product in H and ‖ · ‖ for the corresponding induced norm.
In V , we use (·, ·)V and ‖ · ‖V for the inner product and its induced norm. The integral mean of a function
f is denoted as:

f :=
∫

�
f (x)dx

|�| ,

where |�| represents the d-dimensional Lebesgue measure of the set �. We also define the following
spaces:

H0 = {v ∈ H:f = 0}, V0 = {v ∈ V:f = 0}, V ′
0 = {v ∈ V ′: |�|−1 〈f , 1〉 = 0},

equipped with the norms of H, V and V ′. The Laplace operator A0
N :V0 → V ′

0, defined by < A0
Nu, v >=

(∇u, ∇v), forms an isomorphism. We denote by N its inverse map, and we set ‖f ‖∗ := ‖∇N f ‖, which
serves as a norm on V ′

0 equivalent to the standard one. Furthermore, we have:

‖f − f‖2
∗ + |f |2

as a norm in V ′, which is equivalent to the canonical one. We consider A0
N as an unbounded operator in

H0, with domainD(A0
N) := H0 ∩ V2, corresponding to the Laplace operator with homogeneous Neumann

boundary conditions. It is standard to notice that the operator A0
N is selfadjoint on H0 with compact

inverse. Therefore, by spectral theory, there exists a sequence of real and positive eigenvalues of A0
N , βj,

j ∈N, such that βj ↗ ∞ as j → ∞. The corresponding eigenvectors wj ∈D(A0
N) solve A0

Nwj = βjwj, and
form an orthonormal basis of H0. We thus have the following spectral decomposition:

u =
∞∑

j=1

(u, wj)wj, ∀u ∈ H0, and A0
Nv =

∞∑
j=1

βj(u, wj)wj, ∀v ∈D(A0
N).

By considering the constant function w0 ≡ 1 and the related eigenvalue β0 = 0, we can construct an
orthonormal basis of H, such that, for any u ∈ H, u = ∑∞

j=0 (u, wj)wj, and define the extended operator
AN :D(AN) ⊂ H → H, where D(AN) = V2, and

ANv =
∞∑

j=0

βj(u, vj)wj, ∀v ∈D(AN).

The operator AN is no longer a one-to-one operator. We can now introduce the positive fractional powers
of order s ∈ (0, 1) of AN as

As
Nu :=

N∑
j=0

βs
j (u, wj)wj, ∀u ∈D(As

N),

where

D(As
N) := {u ∈ H : As

Nu ∈ H0}.
For any s > 0, the domain D(As

N) is a Hilbert space associated with the inner product and norm

(u, v)s := (u, v) + (As
Nu, As

Nv), ‖u‖2
s := ‖u‖2 + ‖As

Nu‖2,

respectively. We recall the following 2D Sobolev-Gagliardo-Nirenberg-type inequalities (see, e.g.,
[2, Ch. 9], [3]):

‖u‖Lp(�) ≤ K1
√

p‖u‖ 2
p ‖u‖1− 2

p
V , ∀ u ∈ V , ∀p ∈ [2, ∞), (2.1)
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‖u‖Lp(�) ≤ K2(p, s)‖u‖ 2
ps − 1

s +1‖u‖ 1
s − 2

ps

s/2 , ∀ u ∈D(A
s
2
N ), s ∈ (0, 1), ∀p ∈

[
2,

2

1 − s

)
. (2.2)

Here, the constant K1 is independent of p, while the constant K2(p, s) may depend on s and p.

2.2. Assumptions on the entropy function

When � ⊂R
2, the only assumptions we require on the singular entropy function (−F) are the following:

1. F ∈ C([−1, 1]) ∩ C2(−1, 1) satisfies

lim
s→−1

F′(s) = −∞, lim
s→1

F′(s) = +∞, F′′(s) ≥ α> 0, ∀ s ∈ (−1, 1).

We extend F(s) = +∞ for any s /∈ [ − 1, 1]. Without loss of generality, F(0) = 0 and F′(0) = 0. In
particular, this means that F(s) ≥ 0 for any s ∈ [ − 1, 1].

2. As δ → 0+, we assume, for some β > 1/2,

1

F′(1 − 2δ)
= O

(
1

| ln (δ)|β
)

,
1

|F′(−1 + 2δ)| = O

(
1

| ln (δ)|β
)

. (2.3)

As anticipated in the Introduction, we then define:

�(s) = F(s) − α0

2
s2, ∀s ∈ [−1, 1], (2.4)

with α0 > α.

Remark 2.1. As observed in the Introduction, note that we do not make any assumption9 about the
pointwise relations between F′ and F′′, as in [15]. In fact, even the extra assumption (2) does not include
F′′, as the results seem to depend primarily on the first derivative of the entropy (−F). This somewhat
contradicts the conjecture proposed in the Introduction of [14], which claims that the crucial role in
the validity of the separation property belongs to the second derivative of the entropy and not to the
first. Here we show that in the local, nonlocal and fractional Cahn-Hilliard equations, only an assump-
tion on F′ near the pure phases ±1 is required in 2D. This assumption naturally pertains only to F′

near the endpoints and avoids any pointwise hypothesis. This is not surprising, since a similar assump-
tion, not relying on F′′ but rather only on F′, also works in the proof of the separation property in the
case of the conserved Allen-Cahn equation (see [16, 25]). Clearly, assumptions (1)–(2) are satisfied
by the logarithmic entropy and by all other continuous entropies (including the Tsallis’ entropy Fq, q
∈ (0, 1)) that exhibit stronger singularities in their derivatives at the endpoints (see [15, Appendices],
for other examples). Given that β > 1/2, these assumptions also accommodate entropy densities with
milder singularities than the logarithmic potential density.

Remark 2.2. We want to emphasise that, in greater generality, the potential F does not necessarily need
to be symmetric with respect to s = 0, as long as condition (2) is satisfied.

3. The separation property for the local Cahn-Hilliard equation

In this section, we consider the local Cahn-Hilliard equation:⎧⎪⎪⎨⎪⎪⎩
∂tφ − 	μ = 0, in � × (0, ∞),

μ = � ′(φ) − 	φ, in � × (0, ∞),

∂nφ = ∂nμ = 0, on ∂� × (0, ∞).

(3.1)

9In particular, the growth condition F′′(s) � eC
|F′(s)|υ , for all s ∈ (−1, 1) , for some υ ∈ [1, 2) is now removed.
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First, we review a well-established result regarding the well-posedness of the local Cahn-Hilliard equa-
tion for a sufficiently smooth bounded domain � ⊂R

d, where d = 2, 3. The proof of this result can be
found in various references, such as [1, 8, 15, 23, 28]. In particular, the crucial estimate (3.6), which is
central to our new proof, is presented in [15, (25)]. We state the following theorem:

Theorem 3.1. Assuming that (1) holds and that φ0 ∈ V ∩ L∞(�) such that ‖φ0‖L∞ ≤ 1 and |φ0| = m < 1,
then there exists a unique weak solution to (3.1). This solution satisfies the following properties for any
T > 0:

φ ∈ L∞(� × (0, T)):for all t > 0, almost everywhere in �,

φ ∈ L∞(0, T;V) ∩ L2(0, T;V2) ∩ H1(0, T;V ′),

μ ∈ L2(0, T;V), F′(φ) ∈ L2(0, T;Lp(�)), for all p ∈ [2, ∞) if d = 2, or p = 6 if d = 3,

satisfying the following equations:
〈∂tφ, v〉V ′ ,V + (∇μ, ∇v) = 0, for all v ∈ V , almost everywhere in (0, T), (3.2)

μ = � ′(φ) − 	φ, almost everywhere in � × (0, T), (3.3)
and φ(·, 0) = φ0( · ) in �. Moreover, for any τ > 0:

sup
t≥τ

‖∂tφ(t)‖V ′ + sup
t≥τ

‖∂tφ‖L2(t,t+1,V) ≤ C0√
τ

, (3.4)

sup
t≥τ

‖μ(t)‖V + sup
t≥τ

‖φ(t)‖W2,r (�) ≤ C0√
τ

, for all r ∈ [2, ∞) if d = 2, or r = 6 if d = 3, (3.5)

‖F′(φ)‖L∞(τ ,t;Lp(�)) + ‖μ‖L∞(τ ,t;Lp(�)) ≤ C1(τ )
√

p, for all t ≥ τ , for all p ∈ [2, ∞) if d = 2, (3.6)

‖F′(φ)‖L∞(τ ,t;L6(�)) + ‖μ‖L∞(τ ,t;L6(�)) ≤ C2(τ ), for all t ≥ τ , if d = 3, (3.7)

‖μ‖L2(t,t+1,V2) ≤ C3(τ ), for all t ≥ τ . (3.8)
Here, the positive constant C0 depends only on the energy

EL(φ0) :=
∫

�

1

2
|∇φ0|2 + �(φ0(x)) dx,

as well as the domain �, φ0 and the other parameters of the system. The constants C1 = C1(τ ),
C2 = C2(τ ) and C3 = C3(τ ) also depend on τ .

Remark 3.2. It is worth noting that for d = 2, φ satisfies the continuity property:

φ ∈ C([0, ∞);H
3
2 (�)) ↪→ C(� × [τ , ∞)),

as mentioned in [24, Remark 3.11].

We now introduce a new approach to establish the instantaneous strict separation property. While this
property is already well-established under stronger assumptions on the entropy potential F (as mentioned
in the Introduction, e.g., in [28]), we propose a different proof method based on De Giorgi’s iterations
applied to the elliptic equation (3.1)2. This approach allows us to relax the assumptions on the entropy
function. Our main result is stated in the following theorem, which we prove immediately after.

Theorem 3.3. Consider a sufficiently smooth bounded domain � ⊂R
2. Assume that assumptions

(1)–(2) hold for the entropy potential F. Also, assume that φ0 ∈ V ∩ L∞(�) with ‖φ0‖L∞ ≤ 1 and
|φ0| = m < 1. Then, for any τ > 0, there exists δ ∈ (0, 1), depending on τ , �, m, the initial energy EL(φ0),
and the parameters of the system, such that the unique weak solution to problem (3.1) satisfies:

|φ(x, t)| ≤ 1 − δ, for all (x, t) ∈ � × [τ , +∞), (3.9)
which means that the instantaneous strict separation property from the pure phases ±1 holds.
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Remark 3.4. The proof of Theorem 3.3 provides us with a direct and explicit way to estimate the
separation scale δ in (3.9) in relation to the physical scales inherent to the problem.

Proof of Theorem 3.3. We start by observing that all the assumptions of Theorem 3.1 are satisfied, and
therefore, this theorem applies to the solution (φ, μ) under consideration. Our proof is based on applying
De Giorgi’s iteration scheme to the equation for the chemical potential μ, which is given by (3.3). Let
us begin by fixing τ > 0 and δ ∈ (0, 1) (we will choose its value later). We introduce the sequence:

kn = 1 − δ − δ

2n
, ∀n ≥ 0, (3.10)

where:

1 − 2δ < kn < kn+1 < 1 − δ, ∀n ≥ 1, kn → 1 − δ as n → ∞. (3.11)

Next, we define:

φn(x, t) = (φ − kn)+, (3.12)

and, for any n ≥ 0, we introduce the set:

An(t) = {x ∈ �:φ(x, t) − kn ≥ 0}, ∀t ∈ [τ , ∞).

Clearly, we have:

An+1(t) ⊆ An(t), ∀n ≥ 0, ∀t ∈ [τ , ∞).

In conclusion, we define:

zn(t) =
∫

An(t)

1dx, ∀n ≥ 0.

Now, let us fix t ∈ [τ , ∞) (from now on, we will not repeat the dependence on t). For any n ≥ 0, we
consider the test function v = φn, multiply equation (3.3) by v and integrate over �. After an integration
by parts, taking into account the boundary conditions, we obtain:

‖∇φn‖2 +
∫

�

F′(φ)φndx = α0

∫
�

φφndx +
∫

�

μφndx,

for any t ∈ [τ , ∞). Here, we used the identity:∫
An

∇φ · ∇φndx = ‖∇φn‖2. (3.13)

For any x ∈ An(t), it holds:

F′(φ(x, t)) = F′(kn) + F′′(c(x, t))(φ(x, t) − kn), (3.14)

with c(x, t) ∈ [kn, φ(x, t)]. Therefore, considering that kn > 1 − 2δ and, by (1), F′′(c(x, t)) ≥ α for any
x ∈ An(t) and t ≥ τ , we can write:∫

�

F′(φ)φndx =
∫

An(t)

F′(φ)φndx

≥ F′(kn)
∫

�

φndx + α

∫
�

φ2
ndx

≥ F′(1 − 2δ)
∫

�

φndx + α

∫
�

φ2
ndx. (3.15)

Furthermore, we have:

α0

∫
�

φφndx ≤ α0

∫
�

φndx, (3.16)
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and by (3.6) and Hölder’s inequality, recalling that 0 ≤ φn ≤ 2δ:∫
�

μφndx =
∫

An

μφndx

≤ ‖φn‖L∞(�)‖μ‖Lp(�)

(∫
An

1dx

)1− 1
p

≤ 2δ‖μ‖Lp(�)z
1− 1

p
n , for p ≥ 2. (3.17)

To summarise, we have:

‖∇φn‖2 + (F′(1 − 2δ) − α0)
∫

�

φndx + α

∫
�

φ2
ndx ≤ C(τ )δ

√
pz

1− 1
p

n , for p ≥ 2. (3.18)

Clearly, by choosing δ sufficiently small, we ensure that, as per assumption (1), F′(1 − 2δ) > α0.
Moreover, for any t ∈ [τ , ∞) and for any x ∈ An+1(t), we can observe:

φn(x, t) = φ(x, t) −
[

1 − δ − δ

2n

]
= φ(x, t) −

[
1 − δ − δ

2n+1

]
︸ ︷︷ ︸

φn+1(x,t)≥0

+δ

[
1

2n
− 1

2n+1

]
≥ δ

2n+1
, (3.19)

which implies: ∫
�

|φn|3dx ≥
∫

An+1(t)

|φn|3dx ≥
(

δ

2n+1

)3 ∫
An+1(t)

1dx =
(

δ

2n+1

)3

zn+1.

Applying Hölder’s inequality, we get:(
δ

2n+1

)3

zn+1 ≤
∫

�

|φn|3dx

=
∫

An(t)

|φn|3dx ≤
(∫

�

|φn|4dx

) 3
4
(∫

An(t)

1dx

) 1
4

. (3.20)

Utilising Sobolev-Gagliardo-Nirenberg’s inequality (2.1) with p = 4, and taking into account (3.18), we
can write: ∫

�

|φn|4dx ≤ 4(K1)2‖φn‖2
V‖φn‖2

≤ 4(K1)2
(‖φn‖2 + ‖∇φn‖2

) ‖φn‖2

≤ 4(K1)2(C(τ )δ
√

pz
1− 1

p
n + C(τ )δ

√
pz

1− 1
p

n )C(τ )δ
√

pz
1− 1

p
n

≤ 4(K1)2C(τ )δ2pz
2− 2

p
n ≤ K(τ )δ2pz

2− 2
p

n ,

where we have selected an equivalent norm on V . Here, the constants C(τ ) and K(τ ) denote generic
constants that may vary from line to line. Returning to (3.20), we immediately obtain:(

δ

2n+1

)3

zn+1 ≤
(∫

�

|φn|4dx

) 3
4

z
1
4
n

≤ K(τ )
3
4 δ

3
2 p

3
4 z

7
4 − 3

2p
n , (3.21)
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where we have chosen and fixed a generic value of p > 2. In conclusion, we obtain:

zn+1 ≤ 23n+3δ− 3
2 K(τ )

3
4 p

3
4 z

7
4 − 3

2p
n . (3.22)

Thus, we can apply Lemma A.1. In particular, we have b = 23 > 1, C = 23δ− 3
2 K(τ )

3
4 p

3
4 > 0 and

ε = 3
4
− 3

2p
= 3

4
p−2

p
, which allows us to conclude that zn → 0, as long as:

z0 ≤ C− 4p
3(p−2) b

− 16p2

9(p−2)2 ,

or, by combining some constants:

z0 ≤ δ
2p

p−2

2
4p

p−2 + 16p2

3(p−2)2 K(τ )
p

p−2 p
p

p−2

:= C(τ )
δ

2p
p−2

p
p

p−2
, (3.23)

where the constant C can be made independent of p > 2 if we fix p sufficiently large. We are left with
one final estimate: thanks to (2.3), recalling that F′ is monotone in a neighbourhood of +1, we infer that
for any q ≥ 2 and δ > 0 sufficiently small:

z0 =
∫

A0(t)

1dx ≤
∫

{x∈�: φ(x,t)≥1−2δ}
1dx

≤
∫

A0(t)

|F′(φ)|q

F′(1 − 2δ)q
dx ≤

∫
�

|F′(φ)|qdx

F′(1 − 2δ)q

≤ C1(τ )q(
√

q)q

F′(1 − 2δ)q
.

If we ensure that:

C1(τ )q(
√

q)q

F′(1 − 2δ)q
≤ C(τ )

δ
2p

p−2

p
p

p−2
,

then (3.23) holds. This can be obtained as follows: let us first recall that by assumption (2), there exists
CF > 0 such that, for δ sufficiently small:

1

F′(1 − 2δ)
≤ CF

| ln (δ)|β .

We now make the crucial step: we fix δ = e−q for q ≥ 2 sufficiently large. Then:

C1(τ )q(
√

q)q

F′(1 − 2δ)q
≤ C1(τ )qCq

F(
√

q)q

| ln (δ)|βq
= C1(τ )qCq

F(
√

q)q

qβq
= C1(τ )qCq

F

qq(β− 1
2 )

. (3.24)

The condition (3.24), with this choice of δ, is thus ensured if:

C1(τ )qCq
F

qq(β− 1
2 )

≤ C(τ )
e− 2qp

p−2

p
p

p−2
,

or:
p

p
p−2

C(τ )
≤ C1(τ )−qC−q

F e− 2qp
p−2 qq(β− 1

2 ). (3.25)

However, we have:

C1(τ )−qC−q
F e− 2qp

p−2 qq(β− 1
2 ) → +∞ as q → ∞.

Indeed, since β > 1
2
, it holds, for any a1 > 0 fixed, as q → ∞:

e−a1q(C1(τ )CF)−qqq(β− 1
2 ) = e−a1q−q ln (C1(τ )CF )+(β− 1

2 )q ln (q) → ∞.
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Therefore, by choosing q sufficiently large, corresponding to a sufficiently small δ = e−q, we can ensure
(3.25), and thus (3.24), obtaining that zn → 0 as n → ∞. Passing to the limit in zn as n → ∞, we have
shown that, for any t ≥ τ :

‖(φ(t) − (1 − δ))+‖L∞(�) = 0,

since, as n → ∞:

zn(t) → |{x ∈ �:φ(x, t) ≥ 1 − δ}| ,

and zn(t) → 0 as n → ∞, for any fixed t ≥ τ . It is clear from (3.25) that δ depends on τ but not on the
specific t ≥ τ , so that the uniform strict separation holds. We now repeat exactly the same argument,
thanks to the essential assumption (2.3), for the case (φ − (−1 + δ))− (using φn(t) = (φ(t) + kn)− and
testing (3.3) by v = −φn). We can then choose the minimum between the δ obtained in the two cases. In
the end, recalling the space-time continuity of φ (see Remark 3.2), we conclude that there exists δ(τ ) > 0
(whose dependencies are seen in (3.25)) such that:

−1 + δ ≤ φ(x, t) ≤ 1 − δ, in � × [τ , ∞).

The proof is thus concluded.

4. The separation property for the nonlocal Cahn-Hilliard equation

In this section, we investigate the nonlocal Cahn-Hilliard equation:⎧⎪⎪⎨⎪⎪⎩
∂tφ − 	μ = 0, in � × (0, ∞),

μ = F′(φ) − J ∗ φ, in � × (0, ∞),

∂nμ = 0, on ∂� × (0, ∞),

(4.1)

where J is a suitably regular kernel. Specifically, we assume that � ⊂R
d, where d = 2, 3, is a sufficiently

smooth bounded domain, and we require that:

(J) J ∈ W1,1
loc (Rd), d = 2, 3, with J(x) = J(−x).

We now present a well-known theorem, the proof of which can be found in references such as [14]
and [9] (for additional references, see [29, Remark 3.4]).

Theorem 4.1. Under the assumptions that F satisfies (1), J satisfies (J) and that φ0 ∈ L∞(�) with
‖φ0‖L∞ ≤ 1 and |φ0| = m < 1, there exists a unique weak solution to (4.1). This solution satisfies the
following properties for any T > 0:

φ ∈ L∞(� × (0, T)): for all t > 0, |φ(t)| < 1 almost everywhere in �,

φ ∈ L2(0, T;V) ∩ H1(0, T;H),

μ ∈ L2(0, T;V), F′(φ) ∈ L2(0, T;V),

subject to the following equations:

〈∂tφ, v〉V ′ ,V + (∇μ, ∇v) = 0 for all v ∈ V , almost everywhere in (0, T), (4.2)

μ = F′(φ) − J ∗ φ almost everywhere in � × (0, T), (4.3)

and with the initial condition φ(·, 0) = φ0( · ) in �. Moreover, for any τ > 0, the following estimates
hold:

sup
t≥τ

‖∂tφ(t)‖V ′ + sup
t≥τ

‖∂tφ‖L2(t,t+1,H) ≤ C4√
τ

, (4.4)
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sup
t≥τ

‖μ(t)‖V + sup
t≥τ

‖φ(t)‖V ≤ C4√
τ

, (4.5)

‖F′(φ)‖L∞(τ ,t;V) + ‖μ‖L2(t,t+1,V2) ≤ C5(τ ), for all t ≥ τ , (4.6)

where the positive constant C4 depends solely on the initial energy

ENL(φ0) := 1

4

∫
�

∫
�

J(x − y) (φ0(y) − φ0(x))2 dxdy

+
∫

�

F(φ0(x)) − (J ∗ 1) (x)

2
φ2

0 (x) dx,

φ0, � and the system’s parameters. The constant C5(τ ) also depends on τ .

Remark 4.2. For two-dimensional domains, according to (2.1) and (4.6), it can be readily observed
that, for any τ > 0, the following inequality holds:

‖F′(φ)‖L∞(τ ,∞;Lp(�)) ≤ C6(τ )
√

p, (4.7)

where C6(τ ) depends on K1 and C5(τ ) (also see [15, (34)]). Note that in this context the double-well
potential is

� (φ) = F (φ) − α0 (x)

2
φ2, α0 (x) := (J ∗ 1) (x)

while the internal energy reads

Eint (φ0) = 1

4

∫
�

∫
�

J(x − y) (φ0(y) − φ0(x))2 dxdy.

Our objective now is to establish the instantaneous strict separation property with minimal assump-
tions. As outlined in the Introduction, the validity of the instantaneous strict separation property for the
nonlocal Cahn-Hilliard equation was initially proven in 2D in [14] (and later in [15] with a more relaxed
set of assumptions), and in 3D (with proof applicable to 2D as well) in [29] (also see the subsequent
work [21] ). As previously mentioned, we present a simplified set of assumptions for the two-dimensional
case. Specifically, we only require the additional assumption (2), which is significantly weaker than the
assumptions in the aforementioned works. In particular, we have the following theorem.

Theorem 4.3. Let � ⊂R
2 be a smooth bounded domain, and assume that conditions (1)–(2) hold for

the entropy potential F, along with assumption (J) for the kernel. Suppose φ0 ∈ L∞(�) with ‖φ0‖L∞ ≤ 1
and |φ0| = m < 1. Then, for any τ > 0, there exists δ ∈ (0, 1), depending on τ , �, m, the initial energy
ENL(φ0) and the system’s parameters, such that the unique weak solution to problem (4.1) satisfies

|φ(x, t)| ≤ 1 − δ, for almost every (x, t) ∈ � × (τ , +∞).

We point out that Remark 3.4 holds also in this case.

Proof of Theorem 4.3. The proof of this theorem closely follows the approach taken in [15, Theorem
4.1] and [29, Theorem 4.3]. Therefore, we will primarily emphasise the key distinctions while omitting
some of the finer details. Our proof relies on a De Giorgi’s iteration scheme. Let us begin by selecting
τ > 0 and choosing an arbitrary τ̃ > 0 such that it satisfies the condition:

2τ̃ + τ

2
≤ τ , (4.8)

For example, we can set τ̃ := τ

4
, making it a function solely of τ . Next, we fix T > 0 in a way that ensures

T − 3τ̃ ≥ τ

2
. One possible choice is to start with T = 3τ̃ + τ

2
. Now, we introduce a parameter δ ∈ (0, 1)

(to be determined later). We define the sequence kn as in (3.10), recalling that it satisfies:

1 − 2δ < kn < kn+1 < 1 − δ, ∀n ≥ 1, kn → 1 − δ as n → ∞, (4.9)

https://doi.org/10.1017/S0956792524000196 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000196


14 C. G. Gal and A. Poiatti

Additionally, we define a sequence of times as follows:{
t−1 = T − 3τ̃ ,

tn = tn−1 + τ̃

2n , n ≥ 0,

These times satisfy:

t−1 < tn < tn+1 < T − τ̃ , ∀n ≥ 0.

To aid in our analysis, we introduce a cut-off function ηn ∈ C1(R) defined as:

ηn(t) :=
{

0, t ≤ tn−1,

1, t ≥ tn,
and |η′

n(t)| ≤
2n+1

τ̃
. (4.10)

With these preparations in place, we define φn as in (3.12). For any n ≥ 0, we also introduce the interval
In = [tn−1, T] and the set:

An(t) := {x ∈ �:φ(x, t) − kn ≥ 0}, ∀t ∈ In.

It is evident that:

In+1 ⊆ In, ∀n ≥ 0,

An+1(t) ⊆ An(t), ∀n ≥ 0, ∀t ∈ In+1.

In conclusion, we define the sequence yn as follows:

yn =
∫

In

∫
An(s)

1dxds, ∀n ≥ 0.

For each n ≥ 0, we consider the test function v = φnη
2
n and integrate it over the interval [tn−1, t], where

tn ≤ t ≤ T . This yields (as shown in [15, 21, 29]):∫ t

tn−1

< ∂tφ, φnη
2
n >V ′ ,V ds +

∫ t

tn−1

∫
An(s)

F′′(φ)∇φ · ∇φnη
2
ndxds

=
∫ t

tn−1

∫
An(s)

η2
n(∇J ∗ φ) · ∇φndxds. (4.11)

We can then use assumption (1) to derive the following inequality:∫ t

tn−1

η2
n

∫
An(s)

F′′(φ)∇φ · ∇φndxds ≥ α

∫ t

tn−1

η2
n‖∇φn‖2ds, (4.12)

And for the right-hand side of Equation (4.11), given that |φ| < 1 almost everywhere in � × (0, +∞),
we find: ∫ t

tn−1

∫
An(s)

(∇J ∗ φ) · ∇φnη
2
ndxds

≤ α

2

∫ t

tn−1

η2
n‖∇φn‖2ds + 1

2α

∫ t

tn−1

∫
An(s)

η2
n|∇J ∗ φ|2dxds

≤ α

2

∫ t

tn−1

η2
n‖∇φn‖2ds + 1

2α

∫ t

tn−1

‖∇J ∗ φ‖2
L∞(�)

∫
An(s)

1dxds

≤ α

2

∫ t

tn−1

η2
n‖∇φn‖2ds + ‖∇J‖2

L1(Br )

2α
yn, (4.13)

where we have utilised the inequality (see, e.g., [2, Thm. 4.33]):

‖∇J ∗ φ‖L∞(�) ≤ ‖∇J‖L1(Br )‖φ‖L∞(�) ≤ ‖∇J‖L1(Br ), (4.14)

https://doi.org/10.1017/S0956792524000196 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000196


European Journal of Applied Mathematics 15

Here, Br represents a ball centred at 0 with radius r > 0, chosen sufficiently large such that x − � ⊂ Br

for any x ∈ �. Additionally, we have the expression:∫ t

tn−1

〈
∂tφ, φnη

2
n

〉
V ′ ,V ds = 1

2
‖φn(t)‖2 −

∫ t

tn−1

‖φn(s)‖2ηn∂tηnds. (4.15)

Since |φ| < 1 a.e. in �, for any t ≥ τ

2
, we have 0 ≤ φn ≤ 2δ a.e. in �, ∀t ≥ τ

2
(as shown in [29]). Therefore,

applying the above inequality, we obtain, as in [29, (4.27)]:∫ t

tn−1

‖φn(s)‖2ηn∂tηnds ≤ 2n+3δ2

τ̃
yn. (4.16)

By inserting Equations (4.12), (4.13), (4.15) and (4.16) into equation (4.11), we obtain:
1

2
‖φn(t)‖2 + α

2

∫ t

tn−1

η2
n‖∇φn(s)‖2ds

≤ 2n+1 max

{‖∇J‖2
L1(Br )

2α
,

8δ2

τ̃

}
yn ≤ 2n+1

‖∇J‖2
L1(Br )

2α
yn,

This holds for any t ∈ [tn, T], provided that δ is chosen sufficiently small. Specifically, we need δ to
satisfy:

8δ2

τ̃
≤ ‖∇J‖2

L1(Br )

2α
. (4.17)

As a result, we obtain the following inequalities:

max
t∈In+1

‖φn(t)‖2 ≤ Xn, α

∫
In+1

‖∇φn‖2ds ≤ Xn, (4.18)

where

Xn := 2n+1
‖∇J‖2

L1(Br )

α
yn.

On the other hand, for any t ∈ In+1 and for almost any x ∈ An+1(t), we have, as shown in (3.19),

φn(x, t) ≥ δ

2n+1
,

implying∫
In+1

∫
�

|φn|3dxds ≥
∫

In+1

∫
An+1(s)

|φn|3dxds ≥
(

δ

2n+1

)3 ∫
In+1

∫
An+1(s)

1dxds =
(

δ

2n+1

)3

yn+1.

Thus, by applying Hölder’s inequality, we get:(
δ

2n+1

)3

yn+1 ≤
(∫

In+1

∫
�

|φn|4dxds

) 3
4
(∫

In+1

∫
An(s)

1dxds

) 1
4

≤ (K1)
3
2

(
1 + 1

α

) 3
4 2

3n
2 + 3

2 ‖∇J‖3
L1(Br )

α
3
2

y
7
4
n . (4.19)

In conclusion, we can write:

yn+1 ≤ δ−3(K1)
3
2

(
1 + 1

α

) 3
4 2

9n
2 + 9

2 ‖∇J‖3
L1(Br )

α
3
2

y
7
4
n , ∀n ≥ 0, (4.20)

where we introduce the constant:

Cα := (K1)
3
2

(
1 + 1

α

) 3
4 2

9
2 ‖∇J‖3

L1(Br )

α
3
2

.
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Therefore, we can apply Lemma A.1. In particular, we have zn = yn, b = 2
9
2 > 1, C = δ−3Cα > 0, ε = 3

4
,

and we conclude that yn → 0, as long as

y0 ≤ C− 4
3 b− 16

9 ,

i.e.,

y0 ≤ 2−8δ4

C
4
3
α

. (4.21)

We are now faced with a final estimate, distinct from those found in [15, 21, 29]. We proceed in a manner
akin to the proof of Theorem 3.3 presented earlier. Specifically, as F′ is monotonically increasing, we
have:

y0 =
∫

I0

∫
A0(t)

1dxds

≤
∫

I0

∫
{x∈�: φ(x,t)≥1−2δ}

1dxds

≤
∫

I0

∫
A0(t)

|F′(φ)|q

F′(1 − 2δ)q
dxds

≤ 3τ̃‖F′(φ)‖q
L∞(τ ,∞;Lq(�))

F′(1 − 2δ)q

≤ 3τ̃C6(τ )q(
√

q)q

F′(1 − 2δ)q
,

where we have used (4.7). Importantly, under assumption (2), there exists CF > 0 such that, for
sufficiently small δ:

1

F′(1 − 2δ)
≤ CF

| ln (δ)|β .

Now, let us set δ = e−q, with q ≥ 2 sufficiently large. The estimate for y0 becomes:

y0 ≤ 3τ̃C6(τ )q(
√

q)q

F′(1 − 2δ)q
≤ 3τ̃Cq

FC6(τ )q(
√

q)q

| ln (δ)|βq
= 3τ̃Cq

FC6(τ )q

qq(β− 1
2 )

.

To ensure (4.21) with δ = e−q, we must assume:
3τ̃Cq

FC6(τ )q

qq(β− 1
2 )

≤ 2−8e−4q

C
4
3
α

, (4.22)

which leads to:

3τ̃
(

28C
4
3
α

)
≤ e−4qC−q

F C6(τ )−qqq(β− 1
2 ). (4.23)

It’s important to note that:

e−4qC−q
F C6(τ )−qqq(β− 1

2 ) → ∞ as q → ∞,

since β > 1
2
. Therefore, to satisfy (4.23), and thus (4.21), it is sufficient to choose a sufficiently large

value for q. In summary, with this choice of q, corresponding to δ = e−q, and by taking the limit as
n → ∞, we conclude that:

‖(φ − (1 − δ))+‖L∞(�×(T−τ̃ ,T)) = 0,

since, as n → ∞,

yn → |{(x, t) ∈ � × [T − τ̃ , T]:φ(x, t) ≥ 1 − δ}| ,
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and yn → 0 as n → ∞. We can then repeat the same argument, with the same T and τ̃ fixed, for the case
(φ − (−1 + δ))− (using φn(t) = (φ(t) + kn)−). The argument remains exactly the same due to assumption
(2.3). We can choose the minimum of the δ obtained in the two cases, ensuring that:

−1 + δ ≤ φ(x, t) ≤ 1 − δ, a.e. in � × (T − τ̃ , T).

In conclusion, since T − τ̃ = 2τ̃ + τ

2
≤ τ , we can repeat the same procedure on the interval (T , T + τ̃ )

(with a new starting time at t−1 = T − 2τ̃ ≥ τ

2
) and so on, eventually covering the entire interval [τ , +∞).

Notably, δ remains constant throughout the interval [τ , +∞), and the time horizon T does not affect any
of the estimates. The dependencies of δ on �, τ , m, ENL(φ0) and the parameters of the problem can be
deduced from the smallness assumptions (4.17) and (4.23). This concludes the proof.

5. The separation property for the fractional Cahn-Hilliard equation

In this section, we consider the fractional Cahn-Hilliard equation, often referred to as (5.1):⎧⎪⎪⎨⎪⎪⎩
∂tφ − 	μ = 0, in � × (0, ∞),

μ = As
Nφ + � ′(φ), in � × (0, ∞),

∂nμ = 0, on ∂� × (0, ∞),

(5.1)

Here, s ∈ (0, 1) and AN is the homogeneous Neumann Laplacian operator defined in Section 2. The pri-
mary result regarding the well-posedness and instantaneous regularisation of weak solutions to (5.1)
is established in [7] for weak solutions and [7, Theorems 5.1–5.4] for strong solutions and regulari-
sation. Notably, the essential estimate (5.5) below aligns with [15, (85)], and its proof relies on (2.2).
Specifically, we have:

Theorem 5.1. For s ∈ (0, 1), assuming F satisfies (1), and given that φ0 ∈D(A
s
2
N ) ∩ L∞(�) such that

‖φ0‖L∞ ≤ 1 and |φ0| = m < 1, there exists a unique weak solution to (4.1). This solution satisfies, for
any T > 0:

φ ∈ L∞(� × (0, T)): ∀t > 0, |φ(t)| < 1, a.e. in �,

φ ∈ L∞(0, T;D(A
s
2
N )) ∩ L4(0, T;D(As

N)) ∩ L2(1+s)(0, T;D(A
1+s

2
N )) ∩ H1(0, T;V ′),

μ ∈ L2(0, T;V),

such that:

〈∂tφ, v〉V ′ ,V + (∇μ, ∇v) = 0, ∀v ∈ V , a.e. in (0, T), (5.2)

μ = � ′(φ) + As
Nφ, a.e. in � × (0, T), (5.3)

and φ(·, 0) = φ0( · ) in �. Furthermore, for any τ > 0:

sup
t≥τ

‖∂tφ‖L2(t,t+1,V) ≤ C7√
τ

, ∀t ≥ τ , (5.4)

‖F′(φ)‖L∞(τ ,t;Lp(�)) + ‖μ‖L∞(τ ,∞,Lp(�)) ≤ C8(τ )
√

p, ∀p ∈ [2, ∞), (5.5)

Here, the positive constant C7 depends only on the initial datum energy

ESF(φ0) =
∫

�

1

2
|A s

2
N φ0(x)|2 + �(φ0(x))dx,

the domain �, φ0 and the parameters of the system, while C8(τ ) also depends on τ , but not on p.

We present a novel proof of the instantaneous strict separation property in 2D for problem (5.1). The
validity of the strict separation property in two-dimensional bounded domains has been established in
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[15, Theorem 5.4] under the assumption of a pointwise (exponential) relation between F′′ and F′. As
observed in Remark 2.1, here we only require a condition on F′ near its endpoints ±1.

Theorem 5.2. Let � ⊂R
2 be a smoothly bounded domain, s ∈ (0, 1), and F satisfying (1)–(2). Assume

that φ0 ∈D(A
s
2
N ) ∩ L∞(�) with ‖φ0‖L∞ ≤ 1 and |φ0| = m < 1. Then, for any τ > 0, there exists δ ∈ (0, 1),

depending on s, τ , �, m, the initial energy ESF(φ0), and the system parameters, such that the unique weak
solution to problem (5.1) satisfies:

|φ(x, t)| ≤ 1 − δ, for almost every (x, t) ∈ � × (τ , +∞).

Remark 3.4 is also applicable in this case.

Proof of Theorem 5.2. The proof closely follows the one for Theorem 3.3, with slight differences
to account for the fractional Laplacian case. Using the same notation as in the previous proof, we test
equation (5.3) by v = φn, where φn is defined in (3.12). Utilising Lemma A.2 and estimates (3.15)–(3.17),
which still apply, we arrive at:∥∥∥A

s
2
N φn

∥∥∥2 + (F′(1 − 2δ) − α0)
∫

�

φndx + α

∫
�

φ2
n dx ≤ C(τ )δ

√
pz

1− 1
p

n , for p ≥ 2. (5.6)

This holds for any t ≥ τ . Furthermore, it is recalled that (see (3.19)) for any t ∈ [τ , ∞) and almost x ∈
An+1(t), it holds:

φn(x, t) ≥ δ

2n+1
,

which implies: ∫
�

|φn|2dx ≥
∫

An+1(t)

|φn|2dx ≥
(

δ

2n+1

)2 ∫
An+1(t)

1dx =
(

δ

2n+1

)2

zn+1.

Using Hölder’s inequality and selecting 2 < γ < 2
1−s

, we obtain:(
δ

2n+1

)2

zn+1 ≤
∫

�

|φn|2dx

=
∫

An(t)

|φn|2dx ≤
(∫

�

|φn|γ dx

) 2
γ

(∫
An(t)

1dx

)1− 2
γ

. (5.7)

By the Sobolev-Gagliardo-Nirenberg-type inequality (2.2) (with p = γ ), we then get, setting ϑ := 2
γ s

−
1
s
+ 1 ∈ (0, 1), by (5.6):∫

�

|φn|γ dx ≤ (K2)γ

(
‖A

s
2
N φn‖2 + ‖φn‖2

) γ (1−ϑ)
2 ‖φn‖γϑ

≤ (K2)γ

(
C(τ )δ

√
pz

1− 1
p

n + C(τ )δ
√

pz
1− 1

p
n

) γ (1−ϑ)
2

C(τ )
γϑ
2 δ

γϑ
2 (

√
p)

γϑ
2 z

γϑ
2 (1− 1

p )
n

≤ K(τ )δ
γ
2 p

γ
4 z

γ
2 (1− 1

p )
n .

Here again, the constants C(τ ), K(τ ) represent generic constants that may vary from line to line.
Returning to (5.7), we immediately deduce:(

δ

2n+1

)2

zn+1 ≤
(∫

�

|φn|γ dx

) 2
γ

z
1− 2

γ
n

≤ K(τ )
2
γ δ

√
pz

2− 1
p − 2

γ
n , (5.8)
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Here, we choose and fix a generic p > 2 such that:

2 − 1

p
− 2

γ
> 1,

which implies p > γ

γ−2
. In conclusion, we arrive at:

zn+1 ≤ 22n+2K(τ )
2
γ δ−1√pz

2− 1
p − 2

γ
n .

Therefore, we can apply Lemma A.1. Specifically, with b = 22 > 1, C = 22K(τ )
2
γ δ−1√p > 0 and

ε = 1 − 1
p
− 2

γ
, we obtain:

zn → 0,

as long as:

z0 ≤ C− 1
ε b− 1

ε2 .

Incorporating various constants and recalling that p and γ are fixed and depend only on s, we arrive at:

z0 ≤ C(τ , s)δ
1

1− 1
p − 2

γ .

The last estimate is again similar to the proof of Theorem 3.3. Considering that F′ is monotonically
increasing, we deduce for any q ≥ 2:

z0 =
∫

A0(t)

1dx ≤
∫

A0(t)

|F′(φ)|q

F′(1 − 2δ)q
dx ≤ C8(τ )q(

√
q)q

F′(1 − 2δ)q
, (5.9)

where we have used the essential (5.5). Therefore, if we ensure that:
C8(τ )q(

√
q)q

F′(1 − 2δ)q
≤ C(τ , s)δ

1
1− 1

p − 2
γ ,

then (5.9) holds. This can be obtained as follows: according to assumption (2), there exists CF > 0 such
that, for sufficiently small δ:

1

F′(1 − 2δ)
≤ CF

| ln (δ)|β .

Now, we fix δ = e−q for q ≥ 2 sufficiently large. We then have:

C8(τ )qCq
F

qq(β− 1
2 )

≤ C8(τ )qCq
F

qq(β− 1
2 )

. (5.10)

The condition (5.10), with this choice of δ, is then ensured if:
C8(τ )qCq

F

qq(β− 1
2 )

≤ C(τ , s)e
− q

1− 1
p − 2

γ , (5.11)

or:
1

C(τ , s)
≤ C8(τ )−qC−q

F e
− q

1− 1
p − 2

γ qq(β− 1
2 ).

It is clear that:

C8(τ )−qC−q
F e

− q

1− 1
p − 2

γ qq(β− 1
2 ) → ∞ as q → ∞,

so that, by choosing q sufficiently large (corresponding to a sufficiently small δ = e−q), we can ensure
(5.11), and thus (5.10), thereby obtaining that zn → 0 as n → ∞. Continuing with this process for the
case (φ − (−1 + δ))− (by using φn(t) = (φ(t) + kn)− and testing (5.3) by v = −φn), we can choose the
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minimum δ obtained from the two cases. This ensures that there exists δ(τ ) > 0 (with dependencies
explained in (5.11)) such that:

−1 + δ ≤ φ(x, t) ≤ 1 − δ, a.e. in � × [τ , ∞).

The proof is thus concluded.

6. Remarks about the 3D cases
6.1. Instantaneous strict separation

In this section, we present some insights on the possibility of applying similar techniques in the case of
three-dimensional bounded domains, to show the validity of the strict separation property under general
assumptions on the entropy function.

6.1.1. The local Cahn-Hilliard equation
Assume that φ0 ∈ V ∩ L∞(�) with ‖φ0‖L∞ ≤ 1 and |φ0| = m < 1. In the case d = 3, i.e., for � ⊂R

3, the
proof presented in Section 3 is not directly applicable. However, with slight adaptations, the proof can be
extended under more restrictive assumptions on the entropy potential F. To see this, let us first assume
additionally that

(3) There exists ξ ∈ (0, 1) such that F′′ is nondecreasing in [1− ξ , 1) and non-increasing in
(− 1, −1 + ξ ].

We can now repeat almost word by word the proof of Theorem 3.3, with some slight changes. In
particular, with the same notation, under the additional assumption (1) we also have, from (3.14),∫

�

F′(φ)φndx =
∫

An(t)

F′(φ)φndx ≥ F′(1 − 2δ)
∫

�

φndx + F′′(1 − 2δ)
∫

�

φ2
n dx. (6.1)

Following the same aforementioned proof, we then end up with

‖∇φn‖2 + (F′(1 − 2δ) − α0)
∫

�

φndx + F′′(1 − 2δ)
∫

�

φ2
n dx ≤ C(τ )δz

5
6
n , (6.2)

for δ sufficiently small, so that, also, F′(1 − 2δ) − α0 ≥ 0. Clearly, in this case, we have chosen p = 6
as a maximum (see (3.7)). We now only need to adapt the Sobolev-Gagliardo-Nirenberg’s inequality to
three-dimensional bounded domains: we have∫

�

|φn| 10
3 dx ≤ C‖φn‖ 4

3 ‖∇φn‖2.

Therefore, adapting (3.20),(
δ

2n+1

)3

zn+1 ≤
∫

An(t)

|φn|3dx ≤
(∫

�

|φn| 10
3 dx

) 9
10

(∫
An(t)

1dx

) 1
10

. (6.3)

Utilising Sobolev-Gagliardo-Nirenberg’s inequality and taking into account (6.2), we can write:∫
�

|φn| 10
3 dx ≤ C

(‖φn‖2 + ‖∇φn‖2
) ‖φn‖ 4

3 ≤ K(τ )δ
5
3

F′′(1 − 2δ)
2
3

z
25
18
n ,

and thus we conclude

zn+1 ≤ 23n+3δ− 3
2 K(τ )

9
10

F′′(1 − 2δ)
3
5

z
27
20
n . (6.4)
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We then apply Lemma A.1 with b = 23 > 1, C = 23δ
− 3

2 K(τ )
9

10

F′′(1−2δ)
3
5

> 0 and ε = 20
7

, which allows us to conclude
that zn → 0, as long as

z0 ≤ δ
30
7

23 400
49 + 60

7 K(τ )
18
7

:= C(τ )δ
30
7 F′′(1 − 2δ)

12
7 . (6.5)

Now, for δ > 0 sufficiently small, recalling (3.7),

z0 =
∫

A0(t)

1dx ≤
∫

{x∈�: φ(x,t)≥1−2δ}
1dx

≤
∫

A0(t)

|F′(φ)|6

F′(1 − 2δ)6
dx ≤ C

F′(1 − 2δ)6
, (6.6)

so that, to ensure (6.5), we need that
C

F′(1 − 2δ)6
≤ C(τ )δ

30
7 F′′(1 − 2δ)

12
7 . (6.7)

In order to satisfy this condition, and thus to conclude that the strict separation holds, we refer to the
Tsallis’ entropy class presented in the Introduction, which stands out as a natural generalisation of the
BG functional (logarithmic), in the sense that the latter can be obtained from the former in a suitable
limit as q → 1. Namely, for given q ∈R+, we define the q-logarithm of a real number r > 0, as

ln{q} r :=
{

ln r, if q = 1,
r1−q−1

1−q
, if q > 0, q �= 1.

By defining gq(x) := x ln{q} 1
x
, the associated mixing potential is

Fq(x) :=
{

(1 + x) ln (1 + x) + (1 − x) ln (1 − x), q = 1,

−gq(1 + x) − gq(1 − x), q �= 1.
(6.8)

Notice that

F′
q(x) :=

{
ln (1 + x) − ln (1 − x), q = 1,

q
q−1

(1 + x)q−1 − q
q−1

(1 − x)q−1, q �= 1,
(6.9)

and

F′′
q (x) :=

{
1

1+x
+ 1

1−x
, q = 1,

q(1 + x)q−2 + q(1 − x)q−2, q �= 1.
(6.10)

Therefore, it is clear that if we assume q ∈ [
0, 2

3

)
then condition (6.7) is satisfied for Fq, with δ suffi-

ciently small, and thus the instantaneous strict separation property, i.e., (3.9), holds for three-dimensional
bounded domains. This result is very similar to the one obtained in [27] by means of a completely dif-
ferent argument. The challenge of establishing the instantaneous separation property for the natural
logarithmic choice of F (i.e., Fq when q = 1) remains an open problem. However, De Giorgi’s iterations
could potentially contribute to the solution of this open problem in three dimensions.

6.1.2. The nonlocal Cahn-Hilliard equation and the fractional Cahn-Hilliard equation
As already observed, the validity of the strict separation property for three-dimensional bounded
domains for the nonlocal Cahn-Hilliard equation has been first proven in [29] under the following
assumptions on F, more restrictive than (2), but nevertheless accounting for the logarithmic potential
(i.e., Fq with q = 1): as δ → 0+,
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1

F′(1 − 2δ)
= O

(
1

| ln (δ)|
)

,
1

F′′(1 − 2δ)
= O(δ) (6.11)

and, similarly,
1

|F′(−1 + 2δ)| = O

(
1

| ln (δ)|
)

,
1

F′′(−1 + 2δ)
= O (δ) . (6.12)

Additionally, we need to assume that there exists ξ ∈ (0, 1) such that F′′ is nondecreasing in [1 − ξ , 1)
and non-increasing in (−1, −1 + ξ ].

For the fractional Cahn-Hilliard equation, the strict separation for the logarithmic potential in three-
dimensional bounded domains is still an open problem. In any case, we can make some remarks as for
the local Cahn-Hilliard equation. In particular, by assuming the Tsallis’s entropy, i.e., F = Fq, defined in
(6.8), we can prove the instantaneous strict separation property when s ∈ (

1
4
, 1

)
and q ∈

[
0, 12−2γ (ϑ+2)

12−γ (ϑ+5)

)
,

for any γ ∈ [
2, 6

3−2s

)
and ϑ := 3

γ s
− 3

2s
+ 1. Indeed, similarly to the local case, exploiting (6.1) and

Lemma A.2, we end up with

‖A
s
2
N φn‖2 + (F′(1 − 2δ) − α0)

∫
�

φndx + F′′(1 − 2δ)
∫

�

φ2
ndx ≤ C(τ )δz

5
6
n , (6.13)

for δ sufficiently small, so that, also, F′(1 − 2δ) − α0 ≥ 0. We now only need to adapt the Sobolev-
Gagliardo-Nirenberg’s inequality to three dimensional bounded domains and then proceed as in the
proof of Theorem 5.2: we have (see, e.g., [3])∫

�

|φn|γ dx ≤ C‖φn‖ϑ‖∇φn‖1−ϑ , ∀s ∈ (0, 1), ∀γ ∈
[

2,
6

3 − 2s

)
, (6.14)

with ϑ = 3
γ s

− 3
2s

+ 1. Therefore, from (6.13) we get, for a fixed γ ∈ (
2, 6

3−2s

)
,∫

�

|φn|γ dx ≤ C
(
‖A

s
2
N φn‖2 + ‖φn‖2

) γ (1−ϑ)
2 ‖φn‖γϑ ≤ K(τ )δ

γ
2

F′′(1 − 2δ)
γϑ
2

z
5γ
12

n .

Here again, the constants C(τ ), K(τ ) are generic positive constants. Returning to (5.7), we deduce:

zn+1 ≤ 22n+2K(τ )
2
γ δ−1

F′′(1 − 2δ)ϑ
z

11
6 − 2

γ
n , (6.15)

where we need γ > 12
5

, entailing from (6.14) that we must restrict ourselves to the case s ∈ (
1
4
, 1

)
. We

then apply Lemma A.1 with b = 22 > 1, C = 22K(τ )
2
γ δ−1

F′′(1−2δ)ϑ
> 0 and ε = 5

6
− 2

γ
, which allows us to conclude

that zn → 0, as long as

z0 ≤ C(τ )δ
6γ

5γ−12 F′′(1 − 2δ)ϑ
6γ

5γ−12 . (6.16)

Now, for δ > 0 sufficiently small, recalling (6.6), condition (6.16) is satisfied if
C

F′(1 − 2δ)6
≤ C(τ )δ

6γ
5γ−12 F′′(1 − 2δ)ϑ

6γ
5γ−12 ,

since z0(t) ≤ C
F′(1−2δ)6 for any t ≥ τ . If so, then the proof is concluded and the instantaneous strict sepa-

ration holds. With the choice of F = Fq, this corresponds exactly to ask for q ∈
[
0, 12−2γ (ϑ+2)

12−γ (ϑ+5)

)
, for any

γ ∈ [
2, 6

3−2s

)
and ϑ := 3

γ s
− 3

2s
+ 1, as anticipated. Notice that, as s → 1, we can choose γ → 6 and thus

ϑ → 0, entailing q → 2
3
, which corresponds to the local Cahn-Hilliard case already analysed.

Remark 6.1. Due to the lower bound s > 1/4, we cannot let s → 0. Nevertheless, we can observe that
the technical reason for this issue is only related to the fact that μ ∈ L∞(τ , ∞;L6(�)). Indeed, if we
could prove that μ ∈ L∞(τ , ∞;Lp(�)) for any p ≥ 2, then in (6.15) we could simplify δ−1 by assuming,
for F = Fq, the value q = 2 − 1

ϑ
. Letting then s → 0, which would now be possible, we would have
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γ → 2 and then ϑ → 1, so that we could immediately deduce that q → 1. Ideally this would mean that
when s = 0, the strict separation property would hold also for the logarithmic potential (i.e., Fq with
q = 1). This is in agreement with what already obtained in [29] for the nonlocal Cahn-Hilliard equation,
corresponding in some sense to the fractional Cahn-Hilliard equation in the limit when s → 0.

6.2. Asymptotic strict separation property

In three dimensions, the validity of the asymptotic strict separation property, meaning that the strict
separation from pure phases holds only from some positive times (large enough), has been proven in
[1] for the local Cahn-Hilliard equation for any singular entropy, just having assumption (1) on F in
force. The proof is based upon showing that any solution to the stationary Cahn-Hilliard equation is
strictly separated from pure phases and that any weak solution to the (local) Cahn-Hilliard equation
converges to a single separated stationary state (solving the stationary Cahn-Hilliard equation) as t → ∞
in some Hr(�)-norm, with r > 3

2
. This entails, since Hr(�) ↪→↪→ L∞(�), that, from some time Ts > 0,

depending on the initial datum ϕ0, the strict separation holds (see [1, Section 6]). The same argument can
be extended to the fractional Laplacian case, as long as s ∈ (

3
4
, 1

]
, so that the regularity of the solution φ

(see Theorem 5.1) guarantees that φ ∈ L∞(τ , ∞;H2s(�)) for any τ > 0. Since then H2s(�) ↪→↪→ L∞(�),
the same argument of [1] works, entailing that the strict separation property holds at least asymptotically.
Here we aim at giving a new proof of the same result, which also extends the fractional exponent range
to s ∈ (

1
4
, 1

]
. This proof does not rely on any compactness property in L∞(�), but rather is based on the

dissipative properties of the associated dynamical system. Namely, we have the following:

Theorem 6.2. Let � ⊂R
3 be a smoothly bounded domain, s ∈ (

1
4
, 1

]
, and F satisfying (1). Assume that

φ0 ∈D(A
s
2
N ) ∩ L∞(�) with ‖φ0‖L∞ ≤ 1 and |φ0| = m < 1. Then, there exist δ ∈ (0, 1), depending on s, �,

ESF(φ0), m and the system parameters, and Tf = Tf (δ, φ0), depending additionally on δ and φ0, such that
the unique weak solution to problem (5.1) satisfies:

|φ(x, t)| ≤ 1 − δ, for almost every (x, t) ∈ � × (Tf , +∞). (6.17)

Remark 6.3. Observe that, when � ⊂R
2, the same result holds for the entire interval s ∈ (0, 1], by slight

modifications in the main argument (see the proof of Theorem 5.2). This means that the asymptotic
separation property holds without any assumption on F additional to (1), thus in an even more general
framework as presented in Sections 3 and 5.

Proof. Let us first recall that due to the energy inequality (see [15, Theorem 5.1]), it holds

ESF(φ(t)) +
∫ t

r

‖∇μ‖2dτ ≤ ESF(φ(r)), (6.18)

for any 0 ≤ r ≤ t. Moreover, having defined the difference quotient ∂h
t v( · ) := 1

h
(v( · +h) − v( · )), h > 0,

it holds by [15, (81)]
d

dt
‖∂h

t φ‖2
H1(�)′ + ‖A

s
2
N ∂h

t φ‖2 ≤ ‖∂h
t φ‖2

H1(�)′ , (6.19)

for almost any t ≥ 0. Note that by comparison and from (6.18), it holds, for h > 0 sufficiently small,∫ t+1

t

‖∂h
t φ‖2

H1(�)′ ≤ C
∫ t+2

t

‖∂tφ‖2
H1(�)′ ≤ C

∫ t+2

t

‖∇μ‖2dr, (6.20)

for any t ≥ 0. Now, since ESF(φ( · )) is monotone non-increasing, there exists ESF,∞ such that
limt→∞ ESF(φ(t)) = ESF,∞. Therefore, from (6.18), for any ε > 0, there exists Tf = Tf (ε, φ0), depending
also on φ0, such that ∫ t+2

t

‖∇μ‖2dr ≤ |ESF(φ(t + 2)) − ESF(φ(t))| < ε, ∀t ≥ Tf .
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By the Uniform Gronwall Lemma (see, e.g., [30]), we thus infer that there exists C > 0 such that

sup
t≥Tf

‖∂h
t φ(t)‖2

H1(�)′ ≤ Cε,

for any h > 0 sufficiently small, and then, clearly,

sup
t≥Tf

‖∂tφ(t)‖2
H1(�)′ ≤ Cε.

Therefore, by comparison, there exists C > 0 such that

sup
t≥Tf

‖∇μ(t)‖2 ≤ Cε. (6.21)

We can now perform the De Giorgi iteration scheme for t ≥ Tf (assume w.l.o.g. Tf > 1), similarly to
Section 6.1.2. In particular, recalling (3.15), analogously to (6.13), we end up with

‖A
s
2
N φn‖2 + (F′(1 − 2δ) − α0)

∫
�

φndx + α

∫
�

φ2
ndx ≤

∫
�

μφndx =
∫

�

(μ − μ)φndx + μ

∫
�

φndx.

Since |μ| ∈ L∞(1, ∞) and |μ| ≤ C(ESF(φ0), φ0), if we then assume δ = δ(ESF(φ0), φ0) sufficiently small
(recall assumption (1) on F) so that

F′(1 − 2δ) − α0 − μ ≥ 0,

we end up with

‖A
s
2
N φn‖2 + α

∫
�

φ2
n dx ≤ ‖A

s
2
N φn‖2 + (F′(1 − 2δ) − α0 − μ)

∫
�

φndx + α

∫
�

φ2
ndx

≤
∫

�

(μ − μ)φndx

≤ Cδ‖μ − μ‖L∞(Tf ,∞;L6(�))z
5
6
n (6.22)

≤ Cδ‖∇μ‖L∞(Tf ,∞;L2(�))z
5
6
n

≤ Cε
1
2 δz

5
6
n , (6.23)

by Sobolev embeddings and Poincaré’s inequality, together with (6.21). By repeating word by word
the same argument of Section 6.1.2, to obtain that zn(t) → 0 as n → ∞, with t ≥ Tf , s ∈ ( 1

4
, 1] and

γ ∈ (2, 6
3−2s

), we need that

z0(t) ≤ C

ε
3γ

5γ−12

δ
6γ

5γ−12 . (6.24)

Therefore, since z0(t) ≤ |�|, it is enough to choose ε = ε(δ) small enough such that

|�| ≤ C

ε
3γ

5γ−12

δ
6γ

5γ−12

to conclude that, for any t ≥ Tf (ε, φ0) (Tf > 1), the strict separation property, i.e., (6.17), holds,
concluding the proof of the theorem.

6.3. Strict separation property if the initial energy is small

We conclude this three-dimensional overview with another observation about the validity of the (almost
instantaneous) strict separation property under some smallness assumptions on the initial energy ESF(φ0),
and the sole assumption (1) for the singular function F. This means that somehow we need that the
initial datum φ0 is ‘close’ to a minimiser of the energy ESF. As far as we know, this result has been
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achieved only in [22, Theorem 6.1] for the local Cahn-Hilliard equation. In particular, the proof is based
on the control of the H2(�)-norm of the solution φ (see [22, (6.31)]. If this norm is sufficiently small,
then by the embedding H2(�) ↪→ L∞(�), one can deduce the validity of the strict separation property.
This argument can be extended to the fractional Cahn-Hilliard equation when s ∈ (

3
4
, 1

]
, thanks to the

embedding Hr(�) ↪→ L∞(�), for any r ∈ ( 3
2
, 1]. Here we propose a completely different approach to the

problem, based on the dissipativity properties of the dynamical system. This allows, in 3D, to extend
the validity of the strict separation to the range s ∈ (

1
4
, 1

]
. In particular, we have

Theorem 6.4. Let � ⊂R
3 be a smoothly bounded domain, s ∈ (

1
4
, 1

]
, and F satisfying (1). Assume

that φ0 ∈D(A
s
2
N ) ∩ L∞(�) with ‖φ0‖L∞ ≤ 1 and |φ0| = m < 1. Then, for any τ > 0, there exist δ ∈ (0, 1),

depending on τ , m, s, � and the system parameters, and ε = ε(τ , δ) > 0, such that, if |ESF(φ0)| ≤ ε, then
the unique weak solution to problem (5.1) satisfies:

|φ(x, t)| ≤ 1 − δ, for almost every (x, t) ∈ � × (τ , +∞). (6.25)

Remark 6.5. We point out that, in the case � ⊂R
2, Remark 6.3 still holds and the argument works for

any s ∈ (0, 1] without extra assumptions on F with respect to (1).

Proof. First, from (6.18), we deduce that∫ t+2

t

‖∇μ‖2dr ≤ ESF(φ(t)) ≤ ESF(φ0), ∀t ≥ 0,

since ESF( · ) is non-increasing. Let us fix, w.l.o.g., ε ∈ (0, 1] to be chosen later on, and assume that
|ESF(φ0)| ≤ ε. Recalling (6.19) and (6.20), we can apply the Uniform Gronwall Lemma to infer that
there exists C > 0 such that

sup
t≥τ

‖∂h
t φ(t)‖2

H1(�)′ ≤
C

τ
ε,

for any h > 0 sufficiently small, and then, by comparison, there exists also C > 0 so that

sup
t≥τ

‖∇μ(t)‖2 ≤ C

τ
ε. (6.26)

By reasoning as in the proof of Theorem 6.17, we can now apply the De Giorgi iteration scheme. In
particular, in this case, we obtain (see (6.23) for a reference), for any t ≥ τ and δ = δ(τ , φ0) sufficiently
small (recall that |μ|L∞(τ ,∞) ≤ C(τ , φ0) by (5.5), and the constant is independent of ε, by assuming ε ≤ 1),

‖A
s
2
N φn‖2 + α

∫
�

φ2
n dx ≤ ‖A

s
2
N φn‖2 + (F′(1 − 2δ) − α0 − μ)

∫
�

φndx + α

∫
�

φ2
ndx

≤ Cδ‖μ − μ‖L∞(τ ,∞;L6(�))z
5
6
n ≤ Cδ‖∇μ‖L∞(τ ,∞;L2(�))z

5
6
n ≤ Cε

1
2

τ
1
2

δz
5
6
n . (6.27)

By repeating the same argument of Section 6.1.2, we obtain that zn(t) → 0 as n → ∞, with t ≥ τ , s ∈
( 1

4
, 1] and γ ∈ (2, 6

3−2s
), as long as

z0(t) ≤ Cτ
3γ

5γ−12

ε
3γ

5γ−12

δ
6γ

5γ−12 . (6.28)

Therefore, due to z0(t) ≤ |�|, it is enough to choose ε = ε(τ , δ) ∈ (0, 1] suitably small such that

|�| ≤ Cτ
3γ

5γ−12

ε
3γ

5γ−12

δ
6γ

5γ−12 ,

to conclude that, for any t ≥ τ , the strict separation property, i.e., (6.25), holds, concluding
the proof.
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7. Concluding remarks and open questions

As outlined in the Introduction, the separation property is a pivotal physical characteristic in phase-
segregation processes. We have managed to minimise the mathematical assumptions, resulting not only
in critical behaviour in such processes but also in significantly relaxed conditions concerning the entropy
density, subject to various statistical characteristics of the solution flow. These advancements are poised
to have a profound impact on a wide array of applications, encompassing complex fluid behaviour in
two-phase flows, elastic surface phenomena in mathematical biology within intricate geometries, image
inpainting, multi-phase material behaviour and more (refer to the previously mentioned references in
the Introduction for details, cf. also [4, 5, 15, 18] and references therein).

Moreover, our approach holds the potential for further expansion into highly critical phase-
segregation processes involving anomalous mass transport (cf. [19, 20]). This will involve harnessing
the effects of fractional-order processes, an area of growing interest within the mathematical commu-
nity. We are also considering extending our framework to encompass multi-phase fluid flows and other
associated multi-component phase-segregation processes in the future.
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A. Appendix

One of the fundamental tools for applying De Giorgi’s iteration argument is the following lemma con-
cerning the geometric convergence of sequences. This lemma can be found in various sources, such as
[10, Ch. I, Lemma 4.1], and can be proven by induction (see, for example, [29, Lemma 3.8]).

Lemma A.1. Let {zn}n∈N∪{0} ⊂R
+ satisfy the recursive inequalities:

zn+1 ≤ Cbnz1+ε

n , ∀n ≥ 0, (A.1)

for some constants C > 0, b > 1, and ε > 0. If z0 ≤ θ : = C− 1
ε b− 1

ε2 , then

zn ≤ θb− n
ε , ∀n ≥ 0, (A.2)

and consequently, zn → 0 as n → ∞.

The following lemma establishes a useful comparison between the energy forms related to the (spec-
tral) fractional Laplacian As/2

N , where s ∈ (0, 1). This comparison is essential for carrying out De Giorgi’s
iterations. Specifically, we have the following result:

Lemma A.2. Let ρ ∈R and u ∈D(A
s
2
N ) ↪→ Hs(�) for s ∈ (0, 1). Then uρ : = (u − ρ)+ ∈D(A

s
2
N ), and for

u ∈D(As
N), it holds that

‖A
s
2
N uρ‖2 ≤ (As

Nu, uρ).

Proof. First, we note that the standard energy form dSF:D(A
s
2
N ) ×D(A

s
2
N ) →R+, defined as

dSF(u, v) =
∫

�

As/2
N u(x)As/2

N v(x)dx,

is a nonnegative and symmetric bilinear form on D(A
s
2
N ) ×D(A

s
2
N ), provided that D(A

s
2
N ) is equipped with

the equivalent norm of Hs(�). Utilising the semigroup representation of As
N (as detailed in [15, Appendix

A.1]), we can express dSF as follows:

dSF(u, v) = Cs

∫ ∞

0

∫
�

∫
�

KN(t, x, y)(u(x) − u(y))v(x) dydxt−1−sdt, (A.3)

where KN(t, x, y) is the symmetric heat kernel associated with the Markovian semigroup:

e−tAN =
∫

�

KN(t, x, y)f (y)dy,
∫

�

KN(t, x, y)dy = 1, (A.4)
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for the Neumann heat problem (see, e.g., [15, Appendix A.1]). From (A.3) and the properties of
KN(t, x, y), we can infer that for any u ∈D(As

N) and v ∈D(A
s
2
N ), we also have:

dSF(u, v) = (As
Nu, v),

where As
Nu(x) = 2P.V .

∫
�

K̃N(x, y)(u(x) − u(y))dy. Here, K̃N(x, y) is nonnegative and symmetric over
� × � and satisfies:

K̃N(x, y) = Cs

∫ ∞

0

KN(t, x, y)t−1−sdt � C̃s |x − y|−(d+2s) ,

whenever x �= y. In this expression, a � b indicates the existence of positive constants c1 and c2 such that
c1b ≤ a ≤ c2b. Notably, these observations imply that dSF is also a Dirichlet form on D(A

s
2
N ) in the sense

of [11, Chapter 1], as expressed below:

dSF(u, v) = 1

2

∫
�

∫
�

K̃N(x, y)(u(x) − u(y))(v(x) − v(y))dydx.

This, in turn, implies that uρ ∈D(A
s
2
N ) and dSF(u, uρ) ≥ dSF(uρ , uρ), which concludes the proof of the

lemma. �
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