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Abstract

The main purpose of this paper is to prove difference and q-difference counterparts of the Clunie
lemma from the Nevanlinna theory of differential polynomials, where the difference and q-difference
polynomials can contain many terms of maximal total degree in f (z) and its ( q-)shifts.
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1. Introduction

The original version of the well-known Clunie lemma in Nevanlinna theory can be
found in [3] and [6, Lemma 2.4.2 and Proposition 9.2.3]. A slightly more general
version of the Clunie lemma can be found in [5, pp. 218–220], and [6, Lemma 2.4.5].
Recently, the additional assumptions in the He–Xiao variant of the Clunie lemma have
been removed by Yang and Ye in [8, Theorem 1]. The Clunie lemma has numerous
applications in the study of complex differential equations.

We first fix some difference polynomials of the following types:

P(z, f ) =
∑
λ∈I

aλ(z)
σλ∏
j=1

f (z + αλ, j )
lλ, j , lλ =

σλ∑
j=1

lλ, j , (1.1)

Q(z, f ) =
∑
µ∈J

bµ(z)
τµ∏
j=1

f (z + βµ, j )
mµ, j , (1.2)

where I and J are index sets, αλ, j ∈ C, βµ, j ∈ C, and the coefficients of the difference
polynomials (1.1) and (1.2) are small functions as understood in the usual Nevanlinna
theory; that is, their characteristic is of type S(r, f ). Set

c =max
λ, j
{|αλ, j |}.
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There were no results about difference polynomials until two similar results on
a difference analogue of the logarithmic derivative lemma were presented in [2, 4].
Then Halburd and Korhonen [4] applied the lemma to difference equations to obtain a
difference counterpart of the Clunie lemma, as follows.

THEOREM A [4]. Let f (z) be a nonconstant meromorphic solution of

f (z)n P(z, f )= Q(z, f ),

where P(z, f ) and Q(z, f ) are difference polynomials of types (1.1) and (1.2)
respectively, and let 0< δ < 1 and ε > 0. If the degree of Q(z, f ) as a polynomial
in f (z) and its shifts is at most n, then

m(r, P(z, f ))= o

(
T (r + c, f )1+ε

r δ

)
+ o(T (r, f )),

for all r outside of a possible exceptional set with finite logarithmic measure.

In particular, if the order ρ( f ) of f (z) is finite, then

m(r, P(z, f ))= o

(
T (r + c, f )

r δ

)
+ o(T (r, f )),

for all r outside of a possible exceptional set with finite logarithmic measure.
Subsequently, Laine and Yang used the difference analogue of the logarithmic

derivative lemma proved in [2] and obtained a more general version of a difference
counterpart of the Clunie lemma as follows.

THEOREM B [7]. Let f (z) be a transcendental meromorphic solution of finite order ρ
of a difference equation of the form

U (z, f )P(z, f )= Q(z, f ),

where U (z, f ), P(z, f ) and Q(z, f ) are difference polynomials such that the total
degree deg f U (z, f )= n in f (z) and its shifts, and deg f Q(z, f )≤ n. Moreover, we
assume that U (z, f ) contains just one term of maximal total degree in f (z) and its
shifts. Then for each ε > 0,

m(r, P(z, f ))= O(rρ−1+ε)+ S(r, f ),

possibly outside an exceptional set of finite logarithmic measure.

Now consider replacing difference polynomials by q-difference polynomials. Here
a q-difference polynomial of f (z) for q ∈ C\{0, 1} is a polynomial in f (z) and finitely
many of its q-shifts f (qz), f (q2z), . . . , f (qnz) with meromorphic coefficients in
the sense that their Nevanlinna characteristic functions are o(T (r, f )) on a set of
logarithmic density 1. In [1], Barnet et al. obtained a q-difference analogue of the
logarithmic derivative lemma and applied it to a q-difference equation. Then they
proved a q-difference counterpart of the Clunie lemma as follows.
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THEOREM C [1]. Let f (z) be a nonconstant zero-order meromorphic solution of

f (z)n P(z, f )= Q(z, f ),

where P(z, f ) and Q(z, f ) are q-difference polynomials in f (z) and its q-shifts. If
the degree of Q(z, f ) as a polynomial in f (z) and its q-shifts is at most n, then

m(r, P(z, f ))= o(T (r, f ))

on a set of logarithmic density 1.

Subsequently Laine and Yang generalized this and obtained a more general version
of a q-difference counterpart of the Clunie lemma as follows.

THEOREM D [7]. Let f (z) be a transcendental meromorphic solution of zero order
of a q-difference equation of the form

Uq(z, f )Pq(z, f )= Qq(z, f ),

where Uq(z, f ), Pq(z, f ) and Qq(z, f ) are q-difference polynomials such that the
total degree deg f Uq(z, f )= n in f (z) and its q-shifts, and deg f Qq(z, f )≤ n.
Moreover, we assume that Uq(z, f ) contains just one term of maximal total degree
in f (z) and its q-shifts. Then

m(r, Pq(z, f ))= o(T (r, f ))

on a set of logarithmic density 1.

From Theorems A, B, C and D, we find that U (z, f )= f (z)n or U (z, f ) has just
one term of maximal total degree n in f (z) and its (q-)shifts. It is natural to ask
whether the assumption of just one term of maximal total degree n could be removed.
This is an open problem raised in [7]. In this paper, we consider difference polynomials
U (z, f ) and q-difference polynomials Uq(z, f ) which can contain many terms of
maximal total degree n.

The remainder of the paper is organized as follows. We discuss difference
counterparts of the Clunie lemma from the Nevanlinna theory of differential
polynomials, where the difference polynomial can contain many terms of maximal
total degree in f (z) and its shifts in Section 2. We present q-difference counterparts of
the Clunie lemma from the Nevanlinna theory of differential polynomials, where the
q-difference polynomial can contain many terms of maximal total degree in f (z) and
its q-shifts in Section 3.

2. Difference counterparts of the Clunie lemma

THEOREM 2.1. Let f (z) be a transcendental meromorphic solution of finite order ρ
of a difference equation of the form

U (z, f )P(z, f )= Q(z, f ), (2.1)

where U (z, f ), P(z, f ) and Q(z, f ) are difference polynomials. The maximal total
degree deg f U (z, f )= n in f (z) and its shifts, the sum of terms of maximal total
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degree in U (z, f ) does not vanish identically, and deg f Q(z, f )≤ n. Moreover, we
assume that f (z) also satisfies, for each ε > 0,

N (r, f )+ N

(
r,

1
f

)
= O(rρ−1+ε)+ S(r, f ). (2.2)

Then for each ε > 0,

m(r, P(z, f ))= O(rρ−1+ε)+ S(r, f ), (2.3)

possibly outside an exceptional set of finite logarithmic measure.

In order to prove Theorem 2.1 we need the following lemmas.

LEMMA 2.2 [2]. Let η1 and η2 be two complex numbers such that η1 6= η2 and let
f (z) be a finite-order meromorphic function. Let ρ be the order of f (z); then for each
ε > 0,

m

(
r,

f (z + η1)

f (z + η2)

)
= O(rρ−1+ε).

LEMMA 2.3 [2]. Let f (z) be a meromorphic function with exponent of convergence
of poles λ(r, 1/ f )= λ <+∞, η 6= 0 be fixed. Then for each ε > 0,

N (r, f (z + η))= N (r, f )+ O(rλ−1+ε)+ O(log r).

PROOF OF THEOREM 2.1. Set

U (z, f )=
∑
ν∈K

cν(z)
vν∏

j=1

f (z + γν, j )
nν, j , (2.4)

where K is an index set, γν, j ∈ C, and the coefficients of the difference polynomials
(2.4) are small functions as understood in the usual Nevanlinna theory; that is, their
characteristic is type S(r, f ).

By the assumption in Theorem 2.1, (1.2) and (2.4),

max
µ∈J

τµ∑
j=1

mµ, j ≤ n =max
ν∈K

vν∑
j=1

nν, j .

Now we rearrange the expression for the difference polynomial (2.4) by collecting
together all terms having the same total degree. Set

∧k :=

{
ν ∈ K |

vν∑
j=1

nν, j = k

}
.

Then we obtain

U (z, f ) =
∑
ν∈∧n

cν(z)
vν∏

j=1

f (z + γν, j )
nν, j +

∑
ν∈∧n−1

cν(z)
vν∏

j=1

f (z + γν, j )
nν, j + · · ·

+

∑
ν∈∧1

cν(z)
vν∏

j=1

f (z + γν, j )
nν, j +

∑
ν∈∧0

cν(z).
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Thus we can write U (z, f ) in the form

U (z, f )= c̃n(z) f (z)n + c̃n−1(z) f (z)n−1
+ · · · + c̃1(z) f (z)+ c̃0(z), (2.5)

where

c̃0(z)=
∑
ν∈∧0

cν(z), c̃k(z)=
∑
ν∈∧k

cν(z)
vν∏

j=1

(
f (z + γν, j )

f (z)

)nν, j

, j = 1, . . . , n.

We can show that the coefficient c̃n(z) in (2.5) does not vanish identically. Suppose
that c̃n(z)≡ 0; that is,

c̃n(z)=
∑
ν∈∧n

cν(z)
vν∏

j=1

(
f (z + γν, j )

f (z)

)nν, j

≡ 0.

Then

0≡ c̃n(z) f (z)n =

(∑
ν∈∧n

cν(z)
vν∏

j=1

(
f (z + γν, j )

f (z)

)nν, j
)

f (z)n

=

∑
ν∈∧n

cν(z)
vν∏

j=1

f (z + γν, j )
nν, j .

This shows that the sum of terms of maximal total degree vanishes identically in
U (z, f ). This contradicts the assumption in Theorem 2.1.

By Lemma 2.2 and the assumption concerning the coefficients cν(z), we see
immediately that

m(r, c̃ j (z))= O(rρ−1+ε)+ S(r, f ), (2.6)

for j = 0, 1, . . . , n.
Moreover, by (2.2) and Lemma 2.3,

N (r, c̃ j (z))= O(rρ−1+ε)+ S(r, f ), N

(
r,

1
c̃ j (z)

)
= O(rρ−1+ε)+ S(r, f ),

(2.7)
for j = 0, 1, . . . , n. Hence

T (r, c̃ j (z))= O(rρ−1+ε)+ S(r, f ). (2.8)

By using the first main theorem of Nevanlinna theory, we have, together with (2.6),
(2.7) and (2.8),

m

(
r,

1
c̃ j (z)

)
= O(rρ−1+ε)+ S(r, f ).
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Now, reasoning as in [8], we define

c(z)= max
1≤ j≤n

{
1, 2

∣∣∣∣ c̃n− j (z)

c̃n(z)

∣∣∣∣1/j}
. (2.9)

Obviously, c(z) is not meromorphic. However, we may compute the proximity
function of c(z) and obtain

m(r, c(z))≤
n∑

j=0

m(r, c̃ j (z))+ m

(
r,

1
c̃n(z)

)
+ O(1)= O(rρ−1+ε)+ S(r, f ).

(2.10)
Set

E1 = {θ ∈ [0, 2π) : | f (reiθ )| ≤ c(reiθ )}, E2 = [0, 2π)\E1. (2.11)

It follows from (1.1), for z = reiθ with θ ∈ E1, that

|P(z, f )| ≤
∑
λ∈I

|aλ(z)|
σλ∏
j=1

| f (z + αλ, j )|
lλ, j

=

∑
λ∈I

|aλ(z)| · | f (z)|
lλ

σλ∏
j=1

|gλ, j (z)|
lλ, j

=

∑
λ∈I

(|aλ(z) f (z)lλ |2)1/2
( σλ∏

j=1

|gλ, j (z)|
2lλ, j

)1/2

≤

(∑
λ∈I

|aλ(z) f (z)lλ |2
)1/2(∑

λ∈I

σλ∏
j=1

|gλ, j (z)|
2lλ, j

)1/2

, (2.12)

where gλ, j (z)= f (z + αλ, j )/ f (z).
On the other hand, for z = reiθ with θ ∈ E2, we have, by (2.9) and (2.11),

| f (z)|> c(z)≥ 2

∣∣∣∣ c̃n− j (z)

c̃n(z)

∣∣∣∣1/j

, | f (z)|> 1,

and hence ∣∣∣∣ c̃n− j (z)

c̃n(z)

∣∣∣∣≤ | f (z)| j2 j ,
1
| f (z)|

< 1, (2.13)

for all j = 1, 2, . . . , n.
This means that by (2.5) and (2.13), for z = reiθ with θ ∈ E2, we have

|U (z, f )| ≥ |̃cn(z)| · | f (z)|
n
(

1−
n∑

j=1

∣∣∣∣ c̃n− j (z)

c̃n(z)

∣∣∣∣ · 1
| f (z)| j

)
≥
|̃cn(z)| · | f (z)|n

2n .

(2.14)
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Now, recalling the assumption on the total degrees of Q(z, f ) and U (z, f ), by (1.2),
(2.1), (2.13) and (2.14), for z = reiθ with θ ∈ E2, we may estimate

|P(z, f )| =

∣∣∣∣Q(z, f )

U (z, f )

∣∣∣∣≤ 2n

|̃cn(z)| · | f (z)|n
∑
µ∈J

|bµ(z)|
τµ∏
j=1

| f (z + βµ, j )|
mµ, j

≤
2n

|̃cn(z)|

(∑
µ∈J

|bµ(z)|
2
)1/2(∑

µ∈J

τµ∏
j=1

|hµ, j (z)|
2mµ, j

)1/2

, (2.15)

where hµ, j (z)= f (z + βµ, j )/ f (z).
Now we estimate

m(r, P(z, f ))=
1

2π

∫ 2π

0
log+ |P(z, f )| dθ.

It follows from (2.12) for the case θ ∈ E1 and (2.15) for the case θ ∈ E2, that the last
factor on the right-hand side of both of these inequalities yields O(rρ−1+ε) if we take
logarithms and integrate them. The factors formed by the coefficients aλ(z) and bµ(z)
in (2.12) and (2.15) are of type S(r, f ), by the assumption of Theorem 2.1. The factor
(2n/|c̃n(z)|) in the case θ ∈ E2 results in O(rρ−1+ε)+ S(r, f ) by (2.10). Thus,

m(r, P(z, f ))=
1

2π

∫ 2π

0
log+ |P(z, f )| dθ = O(rρ−1+ε)+ S(r, f ).

This completes the proof of the theorem. 2

REMARK 2.4. Theorem 2.1 fails if U (z, f ) contains at least two terms of maximal
total degree but does not satisfy condition (2.2). Consider the difference equation[

f

(
z +

π

2

)2

+ f (z + π)2
]
· f (z)=− f (z + π),

which is solved by f (z)= cos z, where

U (z, f )= f

(
z +

π

2

)2

+ f (z + π)2, P(z, f )= f (z), Q(z, f )=− f (z + π).

Obviously, deg f U (z, f )= 2, deg f Q(z, f )= 1 and for each ε > 0,

N (r, f )+ N

(
r,

1
f

)
6= O(rρ−1+ε)+ S(r, f ).

We obtain that m(r, P(z, f ))= m(r, cos z)= 2r/π does not satisfy (2.3).
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3. q-Difference counterparts of the Clunie lemma

THEOREM 3.1. Let f (z) be a transcendental meromorphic solution of zero order of
a q-difference equation of the form

Uq(z, f )Pq(z, f )= Qq(z, f ),

where Uq(z, f ), Pq(z, f ) and Qq(z, f ) are q-difference polynomials. The total
degree deg f Uq(z, f )= n in f (z) and its q-shifts, the sum of terms of maximal total
degree in Uq(z, f ) does not vanish identically, and deg f Qq(z, f )≤ n. Moreover, we
assume that f (z) also satisfies

N (r, f )+ N

(
r,

1
f

)
= o(T (r, f )). (3.1)

Then
m(r, Pq(z, f ))= o(T (r, f ))

on a set of logarithmic density 1.

In order to prove the Theorem 3.1, we first state a lemma.

LEMMA 3.2 [2]. Let f (z) be a nonconstant zero-order meromorphic function, and
q ∈ C\{0, 1}. Then

m

(
r,

f (qz)

f (z)

)
= o(T (r, f ))

on a set of logarithmic density 1.

PROOF OF THEOREM 3.1. The proof is completely parallel to the proof of
Theorem 2.1. We again rearrange the expression for the q-difference polynomial
Uq(z, f ) in the form

Uq(z, f )= γ̃n(z) f (z)n + γ̃n−1(z) f (z)n−1
+ · · · + γ̃1(z) f (z)+ γ̃0(z),

where each coefficient γ̃ j (z), j = 0, 1, . . . , n, is the sum of finitely many terms of
the form f (qk z)/ f (z), each such product being multiplied by one of the original
coefficients of Uq(z, f ). By using similar reasoning, as applied to c̃n(z) in Section 2,
we assert that γ̃n(z) does not vanish identically.

Thus we obtain, by Lemma 3.2 and the assumption on the original coefficients of
Uq(z, f ),

m(r, γ̃ j (z))= o(T (r, f )), (3.2)

for all j = 0, 1, . . . , n, on a set of logarithmic density 1. Moreover, by (3.1),

N (r, γ̃ j (z))= o(T (r, f )), N

(
r,

1
γ̃ j (z)

)
= o(T (r, f )), (3.3)
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for all j = 0, 1, . . . , n, on a set of logarithmic density 1. Hence

T (r, γ̃ j (z))= o(T (r, f )), (3.4)

for all j = 0, 1, . . . , n, on a set of logarithmic density 1.
Now using the first main theorem of Nevanlinna theory, we have, by (3.2), (3.3) and

(3.4),

m

(
r,

1
γ̃ j (z)

)
= o(T (r, f )),

for all j = 0, 1, . . . , n, on a set of logarithmic density 1. Defining as before,

γ (z)= max
1≤ j≤n

{
1, 2

∣∣∣∣ γ̃n− j (z)

γ̃n(z)

∣∣∣∣1/j}
.

Although γ (z) is not meromorphic, we may compute the proximity function of γ (z)
and obtain

m(r, γ (z))= o(T (r, f ))

on a set of logarithmic density 1.
Set

F1 = {θ ∈ [0, 2π) : | f (reiθ )| ≤ γ (reiθ )}, F2 = [0, 2π)\F1.

We may now complete the proof by reasoning as in the proof of Theorem 2.1. 2
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