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This study evaluates the environmental performance of northeastern U.S. dairy
operations that differ in size using a directional output-distance function that
measures the joint production of milk and emissions while incorporating a four-
way error approach that captures farm-size heterogeneity, transient and
persistent technical efficiency, and random errors. For the emission component, a
comprehensive pollution index is generated that incorporates three major
sources of pollution in dairy farming: fuel, fertilizer, and livestock. Computed
shadow prices and Morishima elasticities of substitution reveal that large dairy
operations are environmentally inefficient compared to their smaller counterparts.
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Dairy farming is the largest agricultural sector in the northeast United States1

(Winsten et al. 2010). It contributes to the local economy through direct
generation of producer income, purchase of inputs and services from local
providers, and employment. According to the National Agricultural Statistics
Service (NASS), dairy operations in the Northeast in 2013 generated 17.5
billion pounds of milk and 3.7 billion dollars in household income (U.S.
Department of Agriculture (USDA) 2014). Moreover, as the Northeast has
become increasingly urbanized, the importance of dairy farms in preserving
rural landscapes and open spaces has been brought to the forefront
(Johnston 2002). These ecosystem services are responsible for maintaining
heritage values, rural vitality, and the ambience of the region (Batie 2003).
Benefits notwithstanding, the dairy sector in the Northeast faces serious

challenges. Most notably, economies of scale and rapidly changing technologies are
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driving dairies to consolidate into larger operations at the expense of smaller family-
operated farms. A national trend of fewer larger dairy farms has been observed for a
number of years (MacDonald, McBride, and O’Donoghue 2007); according to NASS
(USDA 2010), the total number of dairy operations nationwide had decreased 83
percent since 1960. In addition, environmental problems created by pollution
have raised concern about the industry’s environmental sustainability (Thoma
et al. 2013). Dairy farms are responsible for generating pollutants such as carbon
dioxide, methane, nitrogen oxide, ammonia, and acid gases (Environmental
Protection Agency (EPA) 2012a). The greenhouse gas (GHG) emissions originating
from dairy operations have been on an upward trend (EPA 2012a), accounting for
26 percent of total methane and 12 percent of total GHGs generated by the U.S.
agricultural sector from 1990 through 2009 (EPA 2011). Figure 1 illustrates the
evolution of methane emissions emanating from U.S. dairy farms.
Quantifying the environmental impact of GHGs poses various challenges. A key

issue is that these GHGs, hereafter referred to as emissions, are not priced in
markets, making it difficult to derive monetary measures of their environmental
impacts. Moreover, these emissions have been termed “uniformly mixed
assimilative pollutants” because they disperse from their point source of pollution
over a large area and accumulate over time when the discharge rate exceeds the
absorptive capacity of the environment (Tietenberg 2006). A consequence of
these characteristics is that the sources of such pollution are difficult to inventory.
This study measures and analyzes environmental efficiency for groups of

northeastern U.S. dairy operations that differ in size. Environmental efficiency
analysis evaluates the tradeoff between production of a desirable good and

Figure 1. Trend in GHG Emissions from the U.S. Agricultural Sector
Source: U.S. EPA (2011).
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associated emissions (Fernandez, Koop, andSteel 2002). In this study, thefirst step
in the analysis is construction of an emission index that incorporates the three
major types of pollution emanating from dairy operations—livestock, fertilizer,
and fuel—following Njuki and Bravo-Ureta (2015). Thereafter, the joint
production of the desirable output (dairy products) and emissions is analyzed
to estimate the cost to society of those emissions as well as to establish whether
environmental efficiency has improved or deteriorated over time.

Environmental Efficiency and Polluting Technologies

Over the years, productivity analyses have focused mainly on two major
components, technical efficiency and technological change, while ignoring
environmental efficiency. More recently, the interest in environmental efficiency
has increased as evidenced by a number of studies (e.g., Chung, Färe, and
Grosskopf 1997, Färe et al. 2005, Atkinson and Dorfman 2005, O’Donnell 2007,
Cuesta, Lovell, and Zofio 2009). So far, however, work related to environmental
efficiency in dairy farming has been limited; notable examples are Reinhard,
Lovell, and Thijssen (1999), Fernandez, Koop, and Steel (2002), Njuki and
Bravo-Ureta (2015), and Qi, Bravo-Ureta, and Cabrera (2015).
This study builds on recent developments in productivity analysis that have

examined both desirable outputs and emissions (bad outputs) generated by a
productive unit. This approach differs from previous work related to dairy
farming in its construction and modeling of the pollution index. Whereas the
environmental effects in studies by Reinhard, Lovell, and Thijssen (1999) and
Fernandez, Koop, and Steel (2002) were based only on the nitrogen surplus from
fertilizer applications, the emission index constructed in this study also includes
methane and nitrous oxide emissions from livestock and carbon dioxide
emissions from fuel. According to Gerber et al. (2013), feed production and
processing are responsible for at least 45 percent of the GHGs emanating from
livestock operations. Digestion by cows accounts for another 39 percent and
manure decomposition accounts for 10 percent. The remainder of the emissions
can be attributed to processing and transportation of animal products. Therefore,
the emission index constructed in this study captures a sizable share of dairy
operation emissions.
Researchers and stakeholders in the dairy sector became concerned about

environmental efficiency in the Northeast because the EPA (2009) declared that
GHGs posed a threat to public health and welfare and would be regulated under
the Clean Air Act Amendment (1990),2 which was meant to control three major
threats to the environment: acid rain, urban pollution, and toxic air emissions.
Specifically, EPA sought to control those environmental threats using economic
incentives in a market-driven process that included performance-based

2 This declaration followed Commonwealth of Massachusetts et al. vs. EPA et al., a lawsuit
decided by the Supreme Court in 2007.
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standards and banking and trading of emissions. In its 2009 report, “Mandatory
Reporting of Greenhouse Gases; Final Rule,” EPA provided a set of guidelines
that would impose strict standards for reporting of GHG emissions in several
sectors of the U.S. economy, including the livestock sector. Since implementation
of the policy could have far-reaching implications, this analysis measures the
impacts of emissions on the environmental efficiency of dairy farm operations
in the northeastern United States.

Methodology

The theoretical foundation for modeling a multi-output technology is
Shephard’s (1970) output-distance function (ODF). However, this function is
not appropriate for modeling polluting technologies because it radially
expands the desirable output and the emissions toward the frontier. Its
proportional expansion of all outputs, good and bad, is not compatible with
the goal of minimizing pollution.
An alternative to Shephard’s ODF is the directional distance function developed

by Chambers, Chung, and Färe (1996) and later extended as a technique for
modeling polluting technologies by Chung, Färe, and Grosskopf (1997).
Allowing the directional vectors for both inputs and outputs to vary generates
a directional technology-distance function (Färe 2010). In this study, the
assumed technology follows previous studies that restricted the directional
input vector to zero (e.g., Chung, Färe, and Grosskopf 1997, Färe et al. 2005,
O’Donnell 2007). Hence, it is a directional output-distance function (DODF)
that relies on two key assumptions: (i) in a multi-dimensional production
frontier, the decision-making unit’s (DMU’s) objective is to simultaneously
expand production of the desirable output and contract production of
emissions; (ii) the directional vector can follow numerous projections to the
frontier of the output set. The distance between the frontier and the observed
output in the direction that reduces emissions while not decreasing the
desirable output is the firm’s environmental technical efficiency.
We begin by defining a technology as a technique, method, or process for

transforming inputs into outputs. In addition, there are environmental factors,
z ∈ ℜj

þ, that are exogenous and involved in the production process but are
beyond the control of the DMU. The set of feasible combinations of inputs and
outputs includes a vector of k inputs, x ∈ ℜk

þ, and vectors representing the
desirable output and emissions, y ∈ ℜm

þ and b ∈ ℜi
þ, respectively. Therefore,

the environment-specific technology set can be defined (see O’Donnell 2016) as

(1) T(z) ¼ {(x, y, b): x ∈ ℜk
þ, y ∈ ℜm

þ ,

b ∈ ℜi
þ: x can produce(y, b) in environment z}:

Wealso assume an output set, P(x, z)¼ {(y, b): (x, y, b)∈ T(z)}, that is defined to be
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a multi-dimensional production-possibility frontier that represents the
combination of production of the desirable output and of emissions (y, b)
generated by the DMU using the input vector x in environment z. The output set
satisfies standard production axioms (see Färe and Primont 1995). In addition,
we assume null-jointness—the good and the bad are produced jointly. Thus, if
output of b is zero, it is not possible to generate any of good y (Shephard and
Färe 1974). Following Shephard (1970), we further assume that the outputs are
weakly disposable such that any proportional amounts of contraction of the
good and of the bad output are feasible. The weak disposability property
implies that disposing of emissions is costly because some inputs must be
redirected from producing the good output to emission reduction; that is,
abatement requires a reduction in the firm’s activity level (Kuosmanen 2005).
When g¼ (gy, –gb) represents the directional vector, the environment-specific

DODF is defined as

(2) D
→
o(x, z, y, b; gy; � gb) ¼ max{β: ( y þ βgy , b� βgb) ∈ P(x, z)}

where x, y, and b are vectors of the inputs, the desirable output, and emissions
respectively and z represents the exogenous environmental factors as already
noted. We define β as a scaling factor, and the firm’s objective is to expand
production of the good output by βgy while contracting emissions by βgb. The
directional vector is exogenously determined and hence can take a variety of values.
The properties of the DODF are inherited from the output set and can be

specified as follows. First, the DODF is nonnegative for all feasible output
vectors (y, b) ∈ P(x, z). Second, it is concave in (y, b) ∈ P(x, z). Third, it
exhibits monotonicity, which corresponds to strong disposability of desirable
outputs. This property is denoted as

(3) D
→
o(x, z, y0, b; gy , � gb) � D

→
o(x, z, y, b; gy, � gb) for (y

0, b) � (y, b)
∈ P(x, z):

According to equation 3, inefficiency does not increase if a firm, using the same
amount of inputs, generates more of the good output and the same amount of
the bad output. Under the fourth property, when the firm’s production of
emissions rises while production of the desirable output and of inputs
remains constant, inefficiency does not decrease; that is (Färe et al. 2005),

(4) D
→
o(x, z, y, b0; gy,� gbÞ � D

→
o(x, z, y, b; gy ,� gb) for (y, b

0) � (y, b)
∈ P(x, z):

The fifth property of the DODF is weak disposability for both goods, which can
be expressed as
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(5) D
→
o(x, z, θy, θb; gy ,� gb) � 0 for(y, b) ∈ P(x, z) and 0 � θ � 1:

This equation indicates that a reduction in emissions requires a decrease in the
firm’s activity level (Kuosmanen 2005). Finally, the sixth property is translation,
which is analogous to homogeneity of degree one in Shephard’s (1970) output-
distance function. The translation property is expressed as

(6) D
→
o(x, z, y þ βgy , b� βgb; gy ,� gb) ¼ D

→
o(x, z, y, b; gy ,� gb)� β;

for β ∈ ℜ:

According to the translation property, the value of the resulting distance
function will be more efficient by β if the vector of the good output expands
by scaling factor βgy and the bad output contracts by βgb (Färe et al. 2005).
Figure 2 provides a graphical illustration of the DODF. The representative

firm in this illustration initially produces inside the output set, P(x, z), at
point A¼ (y1, b1). The objective is to increase the firm’s efficiency by
simultaneously expanding production of the desirable output and
contracting production of emissions. This can be accomplished by scaling
the vector from point A¼ (y1, b1) to point B¼ (y1þ βgy, b1 – βgb). The
efficient combination of the desirable output and emission levels is
determined by the tangency between the price ratio (pb/py) and the frontier
of the output set, P(x, z), at point B. Since emissions are not priced in
markets, tangency of the price ratio and the frontier allows us to estimate
their shadow price, pb. The vector g¼ (gy, –gb) represents the directional
vector, which is determined exogenously following common practice (e.g.,

Figure 2. Directional Output Distance Function
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Chung, Färe, and Grosskopf 1997, Färe et al. 2005). By the translation
property, the scaling of the vector from point A to point B parallel to the
directional vector toward the frontier represents a solution to

D
→
o(x, z, y, b; gy ,� gb) ¼ max{β:(y þ βgy, b�gb) ∈ P(x, z)}:

At the point of tangency, the representative firm has fully improved its
environmental technical efficiency (ETE).

Empirical Specification

The parametric stochastic frontier takes the form

D
→
o(x, z, y, b; 1,� 1)þ (wi þ εit) ¼ 0:

The last term represents a two-part disturbance that captures the unobserved
firm effects, time-invariant persistent inefficiency, time-varying transient
inefficiency, and random errors (the error specification is discussed in more
detail hereafter).
A quadratic DODF is implemented while imposing values of g¼ (1, –1) on the

directional vector, which represent equal weights assigned to the desirable
output and desirable emissions. In addition, this choice of directional vector
emphasizes the weak disposability property of the DODF previously discussed.
That is, instead of scaling the directional vector from point A to the highest point
of the output set (see Figure 2), a reduction in emissions requires a decrease in
the firm’s activity level. Moreover, the directional vector provides analytical
simplicity and convenience in interpreting the results and is consistent with the
related literature (e.g., Chung, Färe, and Grosskopf 1997, Färe et al. 2005, Picazo-
Tadeo, Reig-Martinez, and Hernandez-Sancho 2005, Njuki and Bravo-Ureta 2015).
The model can be written as

(7) D
→
o(x, z, y, b; 1,� 1) ¼ α0þ

X4

n¼1
αnxnit þ

X2

n¼1
δnznt

þ π1t þ π2t
2 þ f1yit þ γ1bit

þ 1
2
f2y

2
1it þ

1
2
γ2b

2
it þ (ωi þ εit):

The variable xnit represents conventional inputs: cows, capital, labor, and
purchased feed respectively. Intermediate materials used in the production
process are embedded in capital. The variable znt captures 30-year moving
averages of two climate variables, temperature and precipitation. The
variables t and t2 represent a linear and a quadratic time trend that capture
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technical change in the model;3 and, finally, yit and bit measure milk output and
emissions respectively. For the translation property to hold and to account for
the choice of the directional vector, we impose the parametric restriction φ1 –
γ1¼ –1 (Färe et al. 2005).
Recent studies have developed a four-way error structure to disentangle

unobserved firm effects, time-invariant persistent technical efficiency, time-
varying transient technical efficiency, and random errors (e.g., Colombi et al.
2014, Filippini and Greene 2014, Kumbhakar, Lien, and Hardaker 2014,
Tsionas and Kumbhakar 2014). In the dairy sector, persistent inefficiency
levels can arise from institutional and statutory regimes such as minimum
pricing laws and food and safety regulations. Transient inefficiency levels, on
the other hand, are derived from shocks associated with implementing new
technologies (Kumbhakar, Tsionas, and Sipilainen 2009) and human capital
(Kumbhakar, Ghosh, and McGuckin 1991). Furthermore, unobserved firm
effects come about because firms adjust their use of inputs in response to
constantly changing production environments, a process that is observed by
the producer but not by the econometrician (Kellerman 2015).
Following Filippini and Greene (2014), we employ a generalized true

random effects (GTRE) approach that nests the pooled frontier and true
random effects models. Consequently, the error structure in equation 7
(ωiþ εit) is a two-part disturbance. The first part, ωi¼ ξi – ηi, is a time-
invariant component in which ξi captures firm heterogeneity and ηi captures
persistent technical inefficiency. This component follows a skew-normal
distribution and has distributional parameters of κ¼ ση/σξ and θ¼ (ση

2þ
σξ
2)1/2. The second part, εit¼ vit – uit, is a time-varying component. The term

vit represents statistical error that captures measurement errors and
functional form errors, and uit represents transient technical inefficiency.
This component also follows a skew-normal distribution with parameters
λ¼ σu / σv and ρ¼ (σv

2þ σu
2)1/2.

As in Färe et al. (2005), we assume that, for the ith observation, the scaling
factor βi is added to yi and subtracted from bi. We set βi¼ bi. Thus, we obtain
variation on the lefthand side by choosing a specific βi for each observation.
The functional form given in equation 7 can now be rewritten as

(8) �(emissions) ¼ α0 þ α1cowsit þ α2capitalit þ α3laborit þ α4feedit

þ δ1tempt þ δ2prect þ π1timet þ 1=2π2time2t þ φ1milkit

þ 1=2φ2milk2it þ 1=2γ2emissions2it þ (ωi þ εit):

3 Technical change is assumed to be Hicks-neutral; this corresponds to a homothetic shift in
isoquants following Solow (1957).
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Shadow Prices and Morishima Elasticities of Output Substitution

The shadow price is defined as the dollar value of the emission output
generated at the tangency of the price line (pb/py) and the output frontier
(Px). The shadow price also can be defined as the marginal abatement cost
and can be calculated by setting up the revenue function following Chambers,
Chung, and Färe (1998):

(9) R( py , pb) ¼ maxy, b{ py � pb � b: D
→
o(x, z, y, b; gy ,� gb)} � 0

where py is the price of the desirable output, pb is the price of the emissions, and
D
→
o(x, z, y, b; gy, –gb) is the directional output-distance function. The Lagrangian

expression associated with maximization of revenue subject to the DODF is

(10) L ¼ maxy, b{ py � y � pb � bþ λ(0� D
→
o(x, z, y, b; gy ,� gb))}:

To solve for the revenue function, we need to establish the value of λ. By making
use of the translation property, the revenue function can be rewritten as

(11) R( py , pb; β) ¼ maxy, b{ py(y þ βgy)� pb(bþ βgb):

D
→
o(x, z, y,þβgy , bþβgb; gy ,� gb)�0}þ β( pygyþ pbgb):

The short form of this revenue function is

R( py , pb; β) ¼ R ( py, pb)� β( pygy þ pbgb),

which implies that

∂R( py , pb; β)=∂β ¼ �( pygy þ pbgb):

By incorporating the translation property into the Lagrangian expression, we
obtain

L ¼ maxy, b{ py � y � pb � bþ λ(β� D
→
o(x, z, y, b; gy,� gb)}:

Then, we apply the envelope theorem to arrive at

Agricultural and Resource Economics Review30 April 2016

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
6.

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2016.1


(12) ∂L=∂β ¼ ∂R=∂β ¼ ∂=∂β{ py � y � pb � bþ λ(β� D
→
o(x, z, y, b; gy , � gb)}

¼ λ:

Using the initial values for the directional vector (1, –1), we solve for the
revenue function:

(13) R(py , pb; 1,�1) ¼ maxy, b{ py � y � pb � b : ðpy �1þ pb �1Þ

× D
→
o(x, z, y, b; 1, �1)}:

The first-order conditions associated with the revenue function are

(14) (py �gy � pbgb)∇y D
→
o(x, z, y, b; gy , �gb) ¼ � py

and

(15) (py �gy � pbgb)∇b D
→
o(x, z, y, b; gy , �gb) ¼ pb:

The ratio from those expressions gives the relative shadow price as

(16) py= pb ¼ {∇y D
→
o(x, z, y, b; gy , �gb)}={∇b D

→
o(x, z, y, b; gy , �gb)}:

We turn next to the Morishima elasticity of substitution (MES), which Blackorby
and Russell (1989, p. 883) defined as “a measure of curvature, or ease of
substitution.” More recently, Färe et al. (2005) defined the MES as a measure
of the change in the ratio of the price of the desirable output to the price of
the emissions relative to a change in the quantity of the desirable output and
emissions:

MESby ¼ {∂ln( pb= py)=∂ln( y=b)}:

In our case, the MES is an indicator of the ability of the dairy operation to trade
reductions in milk for reductions in emissions. Based on the DODF used in our
model, the MES can be specified as
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(17)
MESby ¼ y

"
∂2 D

→
o(x, z, y, b; 1, �1)=∂b2

∂D
→
o(x, z, y, b; 1, �1)=∂b

� ∂2 D
→
o(x, z, y, b; 1, �1)=∂y2

∂D
→
o(x, z, y, b; 1, �1)=∂y

#

Data

The data set used in this analysis is derived from annual publications prepared
by Farm Credit East (FCE), a financial institution and specialized lender that
caters to farm businesses in the Northeast. These annual publications assess
the financial health and progress of dairy farm businesses. Our data set
covers dairy operations located in Connecticut, Maine, Massachusetts, New
Hampshire, Rhode Island, Vermont, and New York and spans the 34-year
period of 1980 through 2013. The dairies covered in the reports received
most of their incomes from milk sales; between 2009 and 2013, for example,
milk sales represented 83.2–88.3 percent of the aggregate annual income
received by the dairies.
To preserve confidentiality, the FCE does not make individual farm-level data

available. Instead, the data are aggregated and averaged at the farm level and
reported on an annual basis for four categories of herd size. Hence, the units
of observation in this study correspond to those categories. For the 34-year
period covered by the data, we obtained 136 observations (dairies) that we
grouped into small dairies, which had fewer than 90 cows; medium dairies,
which had 90 to 149 cows; large dairies, which had 150 to 299 cows; and
very large dairies, which had 300 or more cows. The number of dairies that
participated in the annual survey ranged from 391 in 1980 to 789 in 1992.
Descriptive statistics for the variables in the data set are outlined in Table 1.

The quantity of feed purchased was constructed by dividing nominal figures for
total feed expense per cow by the nominal price for a 16-percent feed
concentrate per year using prices obtained from the New England regional
office of NASS. The variable for labor, expressed in worker-equivalent-hours,
was collected and summarized by the FCE. All monetary values were
converted to constant 2013-dollar values using the producer price index
derived from the Bureau of Labor Statistics.
Next, the data were augmented with estimates of emissions using a

comprehensive pollution index and climate variables that consisted of 30-
year moving averages of daily regional temperature and precipitation derived
from the National Oceanic and Atmospheric Administration. These were
included in the model in response to evidence that variations in climate
affect dairy production activities (e.g., Mukherjee, Bravo-Ureta, and De Vries
2013, Key and Sneeringer 2014, Njuki and Bravo-Ureta 2015, Qi, Bravo-Ureta,
and Cabrera 2015). The large size of the numerical values of the outputs and
inputs resulted in convergence difficulties; thus, following Färe et al. (2005),

Agricultural and Resource Economics Review32 April 2016

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
6.

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2016.1


we normalized the data by dividing each output and input value by its mean
value before estimating equation 8.

Construction of the Undesirable Output

As previously noted, a recent report by Gerber et al. (2013) indicated that a
significant share of GHGs emanating from livestock operations can be
attributed to feed production and processing, digestion by cows, and manure
decomposition. By constructing an index that captures emissions associated
with livestock, fuel, and fertilizer, we account for a significant share of the
emissions generated by the milk production portion of the fluid milk supply
chain.
The index of emissions from fuel is constructed using data on each dairy’s

expenditures for gasoline and oil. Expenditures are converted to quantities of
fuel consumed in gallons based on historical data on conventional gasoline
prices from the U.S. Department of Energy’s Energy Information Administration,
and the equivalent emissions of carbon dioxide from those fuels are computed
using the EPA’s GHG equivalencies calculator (EPA 2012b).
The index of fertilizer-based emissions is constructed using information on

the dairies’ fertilizer expenditures and historical fertilizer prices from NASS
to convert the expenditures to quantities. The amount of direct emission of
nitrous oxide, which is derived from nitrogen applied to the soil via
fertilizers, is calculated using formulations by Mosier (1994).
For the livestock-based emissions, we use methodologies outlined in EPA

guidelines (2009, p. 56481)4 that were designed to improve the accuracy of
information collected regarding GHG emissions and to better understand the

Table 1. Descriptive Statistics

Variable Mean Std. Dev. Min. Max.

Emissions – tons 1,156.7 1,203.8 470.0 7,261.0

Milk – tons 1,736.2 2,127.4 5,610.7 12,612.8

Cows – number 186.6 192.8 6,566.5 1,110.0

Labor – hours 4.5 3.6 1.0 21.4

Capital – dollars 100,701.0 86,357.0 0.5 523,773.0

Purchased feed – tons 956.6 1,067.3 0.1 4859.4

Temperature – degrees Fahrenheit 44.4 0.5 43.9 45.5

Precipitation – inches 3.7 0.1 3.6 3.9

4 Various stakeholders expressed specific concerns about these methodologies, and EPA
addressed those concerns in its report (EPA 2009, p. 56264, 56338–56339).
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sources of those emissions. These guidelines were authorized by congress
under the Consolidated Appropriations Act (2008). The livestock component
of the emissions index is measured in metric tons of carbon dioxide
equivalent, which accounts for methane and nitrous oxide generated by
animals at dairy facilities. The amount of methane emitted is a product of
total volatile solids (VS) excreted per animal (which varies with the type of
animal), the fraction of the VS that is methane (also varies by animal type),
and a conversion factor for the global warming potential of methane.
Total VS is a product of the average annual animal population at the facility,

the typical mass of each animal type (for dairy cows, the default value is 604
kilograms (kg)), and the VS excretion rate for type of animal, which varies by
state. In the northeast United States, these rates range from 8.63 VS per day
per 1,000 kg of animal mass in Massachusetts to 9.44 VS per day per 1,000
kg of animal mass in New Hampshire. We use the average for the region,
9.09. The resulting estimates of methane produced are then multiplied by 21,
the global warming potential of methane. We compute the amount of
livestock-based nitrous oxide emissions using the same calculations. The
daily nitrogen excretion rate for the northeastern United States ranges from
0.51 VS per day per 1,000 kg of animal mass in Massachusetts to 0.54 kg of
VS per day per 1,000 kg of animal mass in New Hampshire. We use the
average for the region, 0.525. The resulting estimates of nitrous oxide
produced are then multiplied by the conversion factor of 310 to determine
the potential for global warming.
The combination of these three major sources of pollution determines total

emissions. Table 1 provides a summary of the variables used in the analysis.

Results

Table 2 presents the estimated coefficients, standard errors, and results of the
distributional parameters: λ, ρ, ση, and σξ. The estimated coefficients are then
used to compute shadow prices and Morishima elasticities of substitution.
In terms of the distributional parameters, the ratio of σu to σv is denoted by λ.

This ratio signifies the relative importance of the transient inefficiency term uit
with respect to the two-sided statistical error term vit. The estimated value of λ
is 1.94, which implies that the one-sided transient inefficiency component
dominates any statistical error in determination of the time-varying
component, εit. The variance of the persistent inefficiency term ση, on the
other hand, is 0.70 and dominates the variance of the farm-size heterogeneity
term σξ, 0.03. Hence, we conclude that the persistent inefficiency term largely
determines the composition of the time-invariant component ωi.
Tables 3 and 4 report the estimates of transient and persistent technical

efficiency by farm size. The kernel densities for the efficiency estimates are
plotted in Figure 3. These estimates are higher on average than ones of
technical efficiency from studies of the stochastic production frontier for U.S.
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dairies (e.g., Ahmad and Bravo-Ureta 1996, Bravo-Ureta et al. 2007). Moreover,
farm size has no notable effect on efficiency.
Table 5 reports the estimated shadow prices. To illustrate the meaning of the

shadow price in this context, consider the $215.4 value for small farms in 1980.
This shadow price indicates that an increase in milk output at the margin would
have generated an additional $215.4 worth of emissions. Alternatively, this is
the dollar value that the average small farm would have had to forfeit in
1980 to reduce emissions by one ton.
In terms of farm size, our results are mixed. The lowest estimated shadow

price is $102.6 for very large farms in 1981. On the other hand, the highest
estimated shadow price is $314.7 in 2008, again for very large farms. In
general, at the beginning of the sample period, small farms consistently faced
the highest shadow prices. However, beginning in the mid-1990s, the
estimated shadow prices for very large farms began to exceed those of
smaller farms. Thus, larger operations would have faced greater marginal
abatement costs relative to their smaller counterparts.
As previously mentioned, the MES evaluates the ability of a dairy operation to

trade reductions in milk output for reductions in emissions. We present the MES
estimates by farm size in Table 6. In the early years, the estimates are highest for

Table 2. Estimated Random Coefficients from the Frontier Model

Variable Coefficient Std. Error Z |z|> Z*

α1 0.7261* 0.1036 7.0100 0.0000

α2 0.0635** 0.0303 2.1000 0.0359

α3 0.1549** 0.0783 1.9800 0.0479

α4 �0.1023* 0.0100 �10.2000 0.0000

δ1 8.7172* 1.0114 8.6200 0.0000

δ2 2.0297* 0.2613 7.7700 0.0000

π1 �0.0392 0.0266 �1.4700 0.1403

π2 �0.1101* 0.0152 �7.2700 0.0000

ϕ1 0.1395* 0.0482 2.9000 0.0038

ϕ2 �0.0954* 0.0024 �39.8800 0.0000

γ2 0.1372* 0.0043 32.2800 0.0000

α0 �10.5786* 0.9296 �11.3800 0.0000

λ 1.9400* 0.1638 11.8437 0.0000

ρ 0.0647* 0.0037 17.6700 0.0000

ση 0.7044* 0.0577 12.2100 0.0000

σξ 0.0270* 0.0017 16.0200 0.0000

Log simulated likelihood: 205.063

Note: * denotes significance at the 1 percent level, ** at the 5 percent level, and *** at the 10 percent level.
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Table 3. Transient Technical Efficiency

Medium Farms Large Farms

Year Small Farms Percent Very Large Farms

1980 96.61 96.84 97.71 97.69

1981 96.50 96.90 97.38 98.13

1982 96.76 97.12 97.34 97.18

1983 97.26 97.38 96.94 97.70

1984 96.94 97.16 96.59 96.46

1985 97.39 97.69 97.81 97.43

1986 97.32 97.54 97.69 97.43

1987 97.26 97.31 97.46 97.26

1988 97.03 97.51 97.12 97.65

1989 97.44 97.44 97.75 98.00

1990 97.69 97.90 97.84 97.95

1991 96.98 96.74 96.39 95.85

1992 96.43 96.26 96.14 94.72

1993 96.64 96.60 95.81 94.45

1994 97.31 97.98 97.73 97.45

1995 96.52 97.31 97.00 95.99

1996 96.50 97.19 96.42 97.36

1997 96.61 97.44 97.51 95.38

1998 97.06 97.91 98.08 95.13

1999 97.00 97.61 98.12 95.11

2000 96.86 97.40 97.64 95.00

2001 97.13 97.90 98.11 95.64

2002 97.15 97.85 97.76 97.25

2003 96.75 97.82 96.67 97.22

2004 97.26 97.87 98.11 97.09

2005 97.83 97.68 98.16 97.59

2006 97.21 97.43 97.64 95.89

2007 96.96 97.27 97.70 97.15

2008 96.79 96.85 95.40 97.74

2009 95.81 95.13 94.37 94.54

2010 97.59 96.65 96.05 98.04

2011 97.23 97.41 96.31 97.88

2012 96.66 97.70 97.23 97.87

2013 97.19 97.76 97.89 96.38
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small dairy operations in absolute value. Once again, however, the situation
changes in the mid-1990s, and the MES estimates of very large dairy farms
begin to exceed those of other dairy operations. In addition, we find evidence
that, in general, the MES values trend upward over time regardless of the size
of the operations, which points to a reduction in the ability of dairies to make
the substitution and curb their emissions in recent years.

Concluding Remarks

This study evaluates environmental efficiency for northeastern U.S. dairy farms
of various sizes. Using data derived from Farm Credit East for 1980 through
2013, we estimate a directional output-distance function that measures joint
production of milk and emission of GHGs while incorporating a four-way
error approach that accounts for unobserved farm-size heterogeneity, time-
varying transient technical efficiency, time-invariant persistent technical
efficiency, and random errors. We also estimate shadow prices and output
elasticities related to the cost of reducing emissions.
In terms of technical efficiency, we find that farm size has no significant effect.

However, the computed shadow prices and output elasticities indicate that,

Table 4. Persistent Technical Efficiency

Medium Farms Large Farms

Year Small Farms Percent Very Large

1980–2013 96.32 96.75 96.26 95.25

Figure 3. Kernel Density for Persistent (long-run) and Transient (short-run)
Technical Efficiency
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Table 5. Shadow Prices

Medium Farms Large Farms

Year Small Farms Dollars per Ton Very Large Farms

1980 215.36 192.01 145.31 147.85

1981 253.04 205.60 161.78 102.60

1982 218.24 176.86 148.76 145.65

1983 202.06 190.83 209.22 158.96

1984 214.84 179.43 195.37 171.51

1985 190.57 137.91 127.95 150.58

1986 210.80 173.69 157.92 171.36

1987 203.18 186.69 180.50 177.66

1988 221.41 189.05 211.95 177.06

1989 226.41 210.85 185.89 180.98

1990 205.00 189.94 194.43 186.23

1991 203.21 211.79 208.62 210.40

1992 266.74 253.93 247.23 265.18

1993 234.72 222.38 244.06 260.31

1994 185.46 137.60 171.60 192.17

1995 212.22 172.88 184.42 210.36

1996 239.55 212.18 225.57 221.66

1997 181.78 163.08 180.16 192.99

1998 192.00 170.62 170.10 216.69

1999 170.02 167.26 169.26 196.83

2000 148.11 156.12 157.72 179.55

2001 168.56 158.22 176.30 205.72

2002 142.27 133.77 158.81 179.08

2003 161.66 135.40 183.37 172.49

2004 207.28 178.85 192.52 239.28

2005 170.50 158.31 178.22 221.22

2006 176.38 161.54 173.38 214.22

2007 267.32 244.35 245.29 312.70

2008 280.83 261.91 293.63 314.74

2009 200.98 195.91 219.78 235.92

2010 200.43 222.36 237.99 276.54

2011 219.76 210.76 256.10 294.61

2012 210.59 195.94 223.50 241.86

2013 203.63 206.48 219.72 250.50

Average 199.13

Maximum 314.74

Minimum 102.60
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Table 6. Morishima Elasticity of Substitution

Year Small Farms Medium Farms Large Farms Very Large Farms

1980 �1.72 �1.70 �1.64 �1.65

1981 �1.79 �1.73 �1.67 �1.60

1982 �1.76 �1.70 �1.67 �1.67

1983 �1.74 �1.73 �1.77 �1.69

1984 �1.78 �1.73 �1.76 �1.73

1985 �1.77 �1.68 �1.67 �1.71

1986 �1.83 �1.76 �1.74 �1.77

1987 �1.82 �1.79 �1.79 �1.79

1988 �1.88 �1.82 �1.88 �1.80

1989 �1.87 �1.84 �1.79 �1.79

1990 �1.82 �1.80 �1.81 �1.80

1991 �1.92 �1.97 �1.96 �1.98

1992 �2.10 �2.08 �2.07 �2.15

1993 �2.05 �2.03 �2.12 �2.21

1994 �1.89 �1.77 �1.87 �1.94

1995 �2.02 �1.90 �1.95 �2.06

1996 �2.05 �1.97 �2.03 �2.02

1997 �1.93 �1.88 �1.94 �1.99

1998 �1.89 �1.84 �1.85 �1.99

1999 �1.86 �1.86 �1.88 �1.97

2000 �1.87 �1.91 �1.92 �2.01

2001 �1.86 �1.83 �1.90 �2.00

2002 �1.90 �1.87 �1.99 �2.09

2003 �1.98 �1.88 �2.10 �2.06

2004 �1.99 �1.91 �1.96 �2.15

2005 �1.92 �1.88 �1.96 �2.15

2006 �2.08 �2.02 �2.09 �2.34

2007 �2.12 �2.06 �2.07 �2.36

2008 �2.28 �2.21 �2.38 �2.51

2009 �2.29 �2.28 �2.48 �2.64

2010 �2.04 �2.15 �2.24 �2.49

2011 �1.99 �1.97 �2.14 �2.32

2012 �2.04 �2.00 �2.12 �2.21

2013 �1.97 �1.99 �2.05 �2.18

Average �1.95

Minimum �1.60

Maximum �2.64
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beginning in the mid-1990s, very large dairy operations faced higher shadow
prices and MES values relative to other farms, and in later years, we find that
the output elasticities generally trended up for all farm sizes.
As noted, the dairy industry both nationwide and in the Northeast has been

consolidating (USDA 2014, Winsten et al. 2010). Among the benefits of larger
dairy operations are economies of scale, increased productivity (Mosheim
and Lovell 2009), and a higher cash margin per unit of milk sold (MacDonald,
McBride, and O’Donoghue 2007). In recent years, large dairy operations in
the Northeast have been characterized by confinement of large herds in
relatively small and restricted areas. These confinement-feeding systems have
been adopted to reduce production costs and raise the output of milk per
cow (Winsten et al. 2010). However, having large herds in a confined area
contributes to higher levels of emissions since the cows are kept and raised
in restricted lots rather than on rangeland and pasture.
According to Farm Credit East, 65 of the 517 farms surveyed in 2013

maintained more than 700 cows. Dairy operations of that size are required to
meet statutory environmental standards under the Clean Water Act of 1972
and rules regarding concentrated animal feeding operations (EPA 2008) that
seek to protect the quality of ground water and public health. As a result,
these large dairy farms would have been required to obtain manure
discharge permits and to develop nutrient management plans to minimize
the negative effects of animal waste (Tao et al. 2012). These requirements
may have raised the cost of manure management and, hence, shadow prices,
and the difficulty associated with reducing emissions while maintaining or
raising the output of milk would then be reflected in higher MES values.
Our results suggest that any policy action taken to curb emissions could

adversely affect the competitiveness of large-scale dairy operations. This
poses a significant dilemma for policymakers given the importance of dairy
farming to local economies and preservation of agricultural landscapes in the
Northeast (Johnston 2002). We propose that public policy interventions be
directed toward large dairy operations to assist them in improving their
environmental efficiency and to smaller dairy farms to assist them in
becoming environmentally sustainable as they expand. These types of
assistance could take various forms, including an emphasis on extension
services that could provide expert advice regarding ways to reduce pollution
and direct subsidies and tax breaks for farms that install pollution-reduction
equipment such as anaerobic digesters.
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