CrossMark

doi:10.1017/S000711452200246X

Vitamin B₁₂ and gestational diabetes mellitus: a systematic review and meta-analysis

Xue Chen^{1,2,3}, Yushan Du^{2,3}, Shuangbo Xia^{2,3}, Zhiwen Li^{2,3} and Jufen Liu^{2,3}*

¹School of Public Health, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China ²Institute of Reproductive and Child Health, Key Laboratory of Reproductive Health, National Health Commission of People's Republic of China, Beijing, People's Republic of China

³Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, People's Republic of China

(Submitted 17 February 2022 – Final revision received 22 June 2022 – Accepted 25 July 2022 – First published online 2 August 2022)

Abstract

The relationship between vitamin B_{12} and gestational diabetes mellitus (GDM) remains controversial. To comprehensively evaluate the relationship between vitamin B_{12} and GDM, and to provide more information on GDM prevention, this study provides a systematic review and metaanalysis of vitamin B_{12} and GDM. As of September 22, 2021, 304 articles were searched in PubMed, Web of Science, EMBASE, and Cochrane databases, of which 15 studies met the inclusion criteria. Results presented there was no association between maternal vitamin B_{12} concentration during the first trimester with GDM, however, low vitamin B_{12} concentration in the second or third trimester of pregnancy was related to an increased risk of GDM. Compared with the non-GDM group, the vitamin B_{12} concentration in the GDM group was remarkably decreased (MD: -10.79; 95%CI: -21.37, -0.21), and vitamin B_{12} deficiency increased the risk for GDM (OR: 1.59; 95%CI: 1.10, 2.29). These effects were more significant among Asians. In addition, an increased ratio of high folate to low vitamin B_{12} in serum also increased the risk of GDM (OR: 1.87; 95% CI: 1.46, 2.41). These results suggest that more vitamin B_{12} may need to be provided during pregnancy.

Keywords: Gestational diabetes mellitus: Vitamin B12: Folate: Meta-analysis

Gestational diabetes mellitus (GDM) is a common complication of pregnancy, named 'any degree of glucose intolerance with onset or first recognition during pregnancy'(1). With the increasing trend during the past two decades, it has become a major public health problem⁽¹⁾. According to data released by the International Diabetes Federation in 2021, the global prevalence of women with hyperglycaemia during pregnancy is 16.7%, of which GDM accounts for 80.3 %, and the number of live births affected is as high as 21.1 million⁽²⁾. GDM can cause pre-eclampsia and may also increase the incidence of type 2 diabetes mellitus 3–6 years later after pregnancy^(3,4). In addition, it can also</sup> lead to adverse pregnancy outcomes (e.g. macrosomia and preterm birth) and increase the risk of fetal adulthood diseases (e.g. obesity and CVD)⁽⁵⁻⁷⁾. Therefore, exploring the aetiology of GDM and seeking effective prevention strategies have realistic and long-term significance for improving maternal and infant outcomes.

Vitamin B_{12} , the only water-soluble vitamin that contains metal ions, also known as cobalamin, plays an important role in pregnancy and is essential for DNA synthesis, cell division and amino acid metabolism. Total vitamin B_{12} decreases in concentration during the course of pregnancy, whereas holotranscobalamin (holoTC) remains relatively stable^(8,9). Two studies reported that lower serum total B₁₂ concentrations were associated with a higher homeostatic model assessment for insulin resistance (HOMA-IR) index during the third trimester of pregnancy⁽¹⁰⁾, and B₁₂-deficient pregnant women had higher BMI, the sum of skinfold thickness and insulin resistance than non-deficient women⁽¹¹⁾. Therefore, the relationship between vitamin B12 status during pregnancy and GDM has received widespread attention, but the findings were inconsistent. On the one hand, two studies found that vitamin B12 levels were inversely correlated with fasting blood glucose concentrations (r = -0.44, P = 0.0009; r = -0.29, P = 0.004)^(12,13). Studies reported that vitamin B₁₂ levels were significantly lower in GDM groups in the second and third trimesters of pregnancy, especially among Asians⁽¹³⁻¹⁷⁾. Some studies revealed vitamin B12 deficiency as a risk factor for GDM^(11,13-15,17). On the other hand, studies showed no association between vitamin B12 levels in the second and third trimesters of pregnancy and GDM, and the finding was also supported by others^(18–20). And vitamin B_{12} deficiency was

* Corresponding author: Dr J. Liu, fax +86 10 82801141, email liujufen@bjmu.edu.cn

Abbreviations: GDM, gestational diabetes mellitus; MMA, methylmalonic acid.

https://doi.org/10.1017/S000711452200246X Published online by Cambridge University Press

not associated with GDM⁽¹⁸⁾. Even more, a Chinese cohort study demonstrated higher vitamin B₁₂ concentrations in the first-trimester GDM group than in the control group (421.00 *v*. 364.00 pg/ml, P < 0.002)⁽²¹⁾.

The aim of this study is to conduct a systematic review and meta-analysis on the association of vitamin B_{12} with GDM and to clarify whether vitamin B_{12} deficiency is associated with GDM. Recent studies have shown that high concentrations of folate interfere with GDM, and the article further explores the relationship between high folate:low vitamin B_{12} ratio and GDM.

Methods

Search strategy

The study was conducted by the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines recommendations and searches performed in PubMed, Web of Science, EMBASE and Cochrane to identify all relevant publications updated before 22 September 2021. This review evaluated the effect of vitamin B_{12} concentration during pregnancy on GDM. Databases were searched by terms: vitamin B_{12} ; B_{12} , Vitamin; Vitamin B_{12} ; B_{12} , Vitamin; Cyanocobalamin; Cobalamins; Cobalamin; Eritron; Diabetes, Gestational; Diabetes, Pregnancy-Induced; Diabetes, Pregnancy Induced; Pregnancy-Induced Diabetes; Gestational Diabetes; Diabetes Mellitus, Gestational; Gestational Diabetes Mellitus. The full search strategy for the PubMed database is listed (online Supplementary Table S1).

Inclusion criteria

For this paper, the association of vitamin B_{12} and GDM was eligible for inclusion as follows: (1) studies showed the comparison of vitamin B_{12} concentrations in GDM and the non-GDM (control group) women; or (2) studies reported the incidence or prevalence of GDM based on the concentration of vitamin B_{12} or its deficiency levels, or the folic acid:vitamin B_{12} ratio.

Exclusion criteria

The following studies were excluded: (1) title/abstract/full text due to non-relevance; or (2) reviews, meta-analyses, conferences, letters, guidelines or English Literature; or (3) unable to get the full text; or (4) no *in vitro* or *in vivo* experiments; or (5) no relevant value for vitamin B_{12} or study variables.

Study selection process

Two independent authors (Xue Chen and Yushan Du) first independently screened the titles and abstracts, then identified that the relevant variables of the full-text articles were eligible. Finally, this paper included fifteen studies that fulfilled the inclusion criteria (Fig. 1).

Data extraction and quality assessment

Two reviewers independently extracted data from the study according to the pre-designed Excel tables. The data include the first author, publication year, participant nationality, study design, GDM diagnostic criteria, period of oral glucose tolerance test and vitamin B_{12} test, and the sample size. The quality assessment used the Newcastle–Ottawa Scale. The third reviewer will be joined the assessment if there are disagreements on the trial's risk of bias.

Data synthesis and analysis

Meta-analysis was performed using R 4.1.0 software. Results are presented as mean differences (MD) for continuous variables (concentrations of vitamin B_{12}) and the differences in risk ratios (adjustment of vitamin B_{12} deficiency) between GDM and non-GDM. Given that different periods for vitamin B_{12} and oral glucose tolerance tests are evaluated, we expect a large amount of heterogeneity in the results. The I^2 statistic is used to assess the heterogeneity between studies. I^2 values >50% are considered to indicate a large heterogeneity, and further subgroup analyses explored the cause. Funnel charts with Egger's tests were used to measure publication bias.

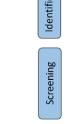
Result

Study characteristics

A total of 304 studies were identified, and fifteen studies were finally included. Details of the included studies are shown in Table 1. Of the fifteen studies, nine of them were from Europe (including the UK, Poland, Italy and Turkey) and six of them were from Asia (including China, Singapore, Pakistan and India). In all fifteen studies, the periods of oral glucose tolerance test, that is, the diagnosis time of GDM was between 24 and 32 weeks of pregnancy. However, the periods for vitamin B₁₂ are inconsistent: four of the fifteen studies were detected during the first trimester (<13 weeks), ten were during the second or third trimester (>13 weeks), and one was not listed.

Effects of vitamin B₁₂ and gestational diabetes mellitus

The effect of vitamin B_{12} concentration (pmol/l) during pregnancy on GDM is shown in Fig. 2. Compared with the non-GDM group, the vitamin B_{12} concentration in the GDM group was lower (MD = -6.83; 95 % CI (-17.56, 3.89)), although there is no significant statistical difference.


In subgroup analysis (Fig. 2), there was no association between maternal vitamin B₁₂ concentration with GDM during the first trimester (MD = 15·75; 95 % CI (-20·05, 51·54)). However, the vitamin B₁₂ concentration in the GDM group was remarkably lower than that in the non-GDM group (MD = -10·79; 95 % CI (-21·37, -0·21)) during the second or third trimester. We further analysed ethnicity as there is large heterogeneity ($I^2 = 78$ %, P < 0.01). The results illustrated that the vitamin B₁₂ concentration of Asians dropped dramatically in the GDM group during the second or third trimester (MD = -25·78; 95 % CI (-38·56, -12·99)) (Fig. 3). There is no publication bias in the analysis (online Supplementary Fig. S1), and Egger's tests were not significant (P=0·52).

Effects of vitamin B₁₂ deficiency and gestational diabetes mellitus

Six of the fifteen included studies examined the effect of vitamin B_{12} deficiency in the second or third trimester on GDM. The

https://doi.org/10.1017/S000711452200246X Published online by Cambridge University Press

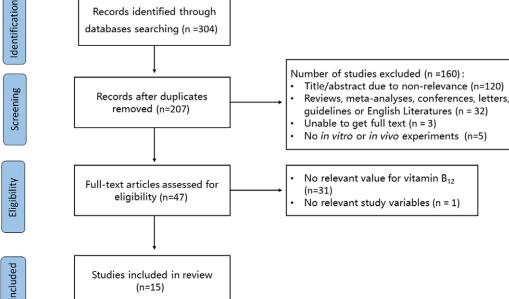


Fig. 1. PRISMA flow diagram for reviews of selection process. PRISMA, Preferred Reporting Items of Systematic Reviews and Meta-Analyses.

results suggested that vitamin B12 deficiency was associated with 1.59 times higher risk of GDM than the non-GDM group (OR: 1.59; 95 % CI (1.10, 2.29)) (Fig. 4). Further steps were taken to analyse these results due to heterogeneity $(I^2 = 77\%)$, P < 0.01). There was a higher risk of vitamin B₁₂ deficiency in GDM in Asians (OR: 2.08; 95 % CI (1.47, 2.96)), but no effects were observed among Europeans (Fig. 4). The publication bias was acceptable (online Supplementary Fig. S2), and Egger's tests were not significant (P = 0.09).

Ratio of folate and vitamin B₁₂ on gestational diabetes mellitus

Five of the fifteen studies assessed the risk of GDM with high folate:low vitamin B₁₂ ratio (Fig. 5). An increased maternal high folate:low vitamin B12 ratio during the second or third trimester was associated with an 87 % increased risk of GDM compared with non-GDM (OR: 1.87; 95 % CI (1.46, 2.41)). The publication bias was acceptable (online Supplementary Fig. S3), and Egger's test was not significant (P = 0.70).

Discussion

This meta-analysis showed that vitamin B₁₂ concentrations were lower in the GDM group, particularly in the second or third trimester, which was more remarkable for Asians. Some biochemical studies have shown decrease in circulating cobalamin levels during pregnancy^(8,9,22). This was associated with a physiological decline in maternal vitamin B12. The level of vitamin B12 was influenced by the concentration of the two plasma-binding proteins, transcobalamin and haptocorrin. Some studies had reported that total vitamin B₁₂ levels in the mother gradually decreased during pregnancy with the decrease in holohaptocorrin (holo HC), and total B12-binding capacities had less saturation, although the levels of holotranscobalamin (holoTC) remain relatively stable^(8,9,23). Thus, in addition to vitamin B₁₂ transferred to the fetus and hemodilution, physiological fall in maternal B12 was also associated with changes in B12-binding proteins and biomarkers^(8,24,25). Since there were only two studies on ethnic groups of Asian^(21,26), the results may need further studies to verify.

Intracellularly, there were two vitamin B12-dependent enzymatic reactions. And vitamin B12 deficiency led to impaired methylation and impaired metabolism of methylmalonate. In the absence of vitamin B12, 5-methyltetrahydrofolate cannot be used for the formation of methionine and tetrahydrofolate, resulting in a state of pseudo-folate deficiency (methyl-trap). DNA synthesis based on methyl-traps was impaired, and alterations in mitochondrial content or function may progressively lead to the development of insulin resistance^(27,28). High homocysteine (Hcy) can induce cellular stress, apoptosis, and endothelial and DNA damage, which associate with CVD, preeclampsia and type 2 diabetes mellitus (29,30). Additionally, vitamin B₁₂ deficiency leads to an elevated methylmalonic acid (MMA) concentration, a product of hydrolysis of the excessive concentration of methylmalonyl-CoA. MMA-CoA accumulation can inhibit fatty acids oxidation and hence increase adipogenesis and $IR^{(28)}$. This paper meta-analysed the risk of vitamin B₁₂ deficiency during pregnancy on GDM and found that the risk of vitamin B12 deficiency during pregnancy in the GDM group was 1.59 times higher than that in the non-GDM group (OR: 1.59; 95 % CI (1.10, 2.29)), and the risk for Asians could reach 2.08 times (OR: 2.08; 95 % CI (1.47, 2.96)). Therefore, we speculated that vitamin B₁₂ deficiency during pregnancy may induce GDM through IR. Unfortunately, four of the six studies defined vitamin B12 deficiency concentrations as <150 pmol/l, while the other two were well below this standard. This was unlikely to provide a GDM risk threshold based on vitamin B12 deficiency levels in the second or third trimester.

1326

Table 1. Characteristics of the inclusion study (n 15)

First author	Publication year	Country	Study design	GDM cri- teria	GDM/non- GDM	OGTT test (week)	The aver age of G (year)	DM	Folate supple- mentation	Vitamin B ₁₂ supple- mentation	Vitamin B ₁₂ test (week)	
van Weelden	2021	UK	Randomised con- trolled trial	IADPSG	271/675	23–30	31.8	4.8	Not mentioned	Not mentioned	23–30	
Saravanan	2021	UK	Prospective	NICE IADPSG	538/4208 633/4113	26–28	31.9	5.16	yes	no	<16	
Jankovic- Karasoulos	2021	Australia, New Zealand, Ireland, UK	Prospective	WHO 2016	33/111	26	28.9	5.2	yes	no	15	1
Chen	2021	China	Prospective	IADPSG	180/878	24–28	No data		yes	no	9–13	
Liu	2020	China	prospective	IADPSG And WHO	67/299	24–28	30.5	4.0	yes	no	<12	
Radzicka	2019	Poland	Case-control	IADPSG	60/19	24–28	32.27	4.5	Not mentioned	Not mentioned	24–28	
Li	2019	China	Cross-sectional	IADPSG	90/316	24–28	No data		Not mentioned	Not mentioned	24–28	
Lai	2018	Singapore	Cross-sectional	WHO 1999	164/749	26	No data		Not mentioned	Not mentioned	26	
Butt	2017	Pakistan	Cross-sectional	ADA	59/41	Second or third trimester	26.37	4.33	Not mentioned	Not mentioned	No data	
Sukumar	2016	UK	Case-control	WHO 1999	143/201	26–28	31.4	5.8	yes	no	Second or third trimesters	
Krishnaveni	2009	India	Retrospective cohort	WHO1999	49/724	30	No data		Not mentioned	Not mentioned	30	
Idzior-Waluś	2008	Poland	Case-control	WHO	44/17	26–32	30.5	6.6	yes	no	26–32	
Guven	2006	Turkey	Cross-sectional	C&C	30/147	24–28	30.0	4.3	no	no	24–28	
Tarim	2004	Turkey	Prospective	C&C	28/210	24–28	32	4.03	Not mentioned	Not mentioned	24–28	
Seghieri	2003	Italy	Case-control	ADA	15/78	24–28	34.6	3.1	no	no	24–28	

GDM, gestational diabetes mellitus; OGTT, oral glucose tolerance test; IADPSG, International Association of the Diabetes and Pregnancy Study Groups; NICE, National Institute for Health and Clinical Excellence; ADA, American Diabetes Association; C&C, Carpenter and Coustan.

1327

1328

https://doi.org/10.1017/S000711452200246X Published online by Cambridge University Press

Х.	Chen	et	al.

			GDM			Non-GDM					
Study	Total	Mean	SD	Total	Mean	SD	Mean d	ifference	MD	95% CI	Weight
Time = 2nd or 3rd trimes	toro							:			
van Weelden, W. 2021		182.30	83·1000	675	174·20	67·0000			8·10	[-3·01; 19·21]	10.7%
Saravanan, P. 2021		234.90	90·1000		247.80				-12·90	[-20·67; -5·13]	
Radzicka, S. 2019		212.40			182.00				30.40	[-9·29; 70·09]	
Li, S. 2019		185.00			206.60	73.8000			-21·60	[-36.36; -6.84]	
Butt, Ambreen 2017		94.60			132.90				-38·30	[-63.86; -12.74]	
Sukumar. N. 2016		176.00			199.60				-23·60	[-36.65; -10.55]	
Idzior-Walu?, B. 2008		193.60			212.10				-18·50	[-40.82; 3.82]	
Guven, M. A. 2006	30	111.40	33.6000	147	119.60	40.9000	-	-	-8·20	[-21.92; 5.52]	
Tarim E 2004	28 1	179.60	29.0000	210	169.90	32.8000			9.70	[-1.92; 21.32]	10.6%
Seghieri, G. 2003	15 1	160·40	32·1000	78	234.50	295.9000-	•		-74·10	[-141.75; -6.45]	2.1%
Random effects model 1	357			5315			<	è.	-10.79	[-21.37; -0.21]	84.8%
Heterogeneity: $I^2 = 78\%$, τ ² = 192	2.1460,	p<0·01								
Time = 1st trimester								_			• • • • •
Chen, X. 2021			129.3000			124.0000			32.90	[12·31; 53·49]	
Liu, P. J. 2020		237.30	101.8000		241.00	108.9000		1	-3.70	[-31.02; 23.62]	
Random effects model	247		0.04	1177			-		15.75	[-20.05; 51.54]	15.2%
Heterogeneity: $I^2 = 77\%$, τ-=51/	•4144,	p = 0.04								
Random effects model 1	604			6492			<		-6·83	[-17.56; 3.89]	100.0%
Heterogeneity: $I^2 = 80\%$.8500	n<0.01	0492				1		[=17 50, 5 69]	100 0 /0
Test for subgroup differe				0.16)			-100 -50	0 50	100		
lest for subgroup differe	nces. χ_1	- 1.94,	ui – i (p-	.0.10)							

Fig. 2. Effect of vitamin B₁₂ concentration (pmol/I) during pregnancy on GDM. GDM, gestational diabetes mellitus.

Study	Total Mean	GDM SD Total I	Non-GDM Mean SD	Mean difference	MD 95	Weight 5% CI (fixed)	Weight (random)
ethnicity = Europe van Weelden, W. 2021 Saravanan, P. 2021 Radzicka, S. 2019 Sukumar, N. 2016 Idzior-Walu?, B. 2008 Guven, M. A. 2006 Tarim E 2004 Seghieri, G. 2003 Fixed effect model Random effects model Heterogeneity: / ² = 78%	617 234.90 9 60 212.40 8 143 176.00 5 44 193.60 6 30 111.40 3 28 179.60 2 15 160.40 3 1208	8:0000 201 1 3:0000 17 2 3:6000 147 1 2:0000 210 1 3:0000 210 1 3:2:1000 78 2 4958	47.8096.300082.0075.100099.6064.700012.1027.700019.6040.9000		-12.90 [-20.6 30.40 [-9.2 -23.60 [-36.65 -18.50 [-40. -8.20 [-21. 9.70 [-1.9 -74.10 [-141.7 -6.34 [-11.0	82; 3·82] 3·8% 92; 5·52] 10·2% 2; 21·32] 14·2% 5; –6·45] 0·4%	14.0% 4.8% 12.3% 9.1% 12.1% 12.8%
ethnicity = Asian Li, S. 2019 Butt, Ambreen 2017 Fixed effect model Random effects model Heterogeneity: / ² = 19 ^o	90 185·00 5 59 94·60 5 149 %, τ ² =26·0570, μ	i9·3000 41 1 357	06-60 73-8000 32-90 67-3000		-21.60 [-36.3 -38.30 [-63.86 -25.78 [-38.56 -26.56 [-41.51	; -12·74] 2·9% ;-12·99] 11·7%	8·0%
Fixed effect model Random effects model Heterogeneity: <i>I</i> ² = 78 ⁹ Test for subgroup differ	%, τ ² =192·1460,		f = 1 (p<0.01)	-100 -50 0 50 10	-10.79 [-21.3	9; –4·24] 100·0% 7; –0·21] ···	100 00/

Test for subgroup differences (random effects): $\chi_1^2 = 4.39$, df = 1 (p = 0.04)

Fig. 3. Effect of vitamin B₁₂ concentration (pmol/l) on GDM in the second or third trimester. GDM, gestational diabetes mellitus.

It was known that folate played an important role in the prevention of neural tube defects, and it was recommended for women of childbearing age to take folic acid supplements during the first trimester^(31,32). Some studies had shown that adequate folate intake before pregnancy could reduce the risk of $GDM^{(33)}$; however, some had also shown that high folate intake and low levels of vitamin B₁₂ significantly increased the risk of $GDM^{(21,34)}$. Therefore, this study tried to clarify the correlation between the high folate to low B₁₂ and GDM and showed that in the second or third trimester, higher folate:vitamin B_{12} ratios increased the risk of GDM by 87% compared with non-GDM (OR: 1.87; 95% CI (1.46, 2.41)).

A recent systematic review of the relationship between vitamin B_{12} status, pregnancy outcomes and offspring outcomes in India showed that the prevalence of vitamin B_{12} deficiency in Indian women during pregnancy had 40–70 %, and low maternal B_{12} and low vitamin B_{12} :high folate ratio were associated with a higher risk for GDM⁽²²⁾. Unlike it, this study targets a wider

Vitamin B₁₂ and gestational diabetes mellitus

Study	TE seTE	OR	OR 9	5% CI	Weight (fixed)	Weight (random)
ethnicity = Europe						
Saravanan, P. 2021	0.18 0.0928		1.20 [1.00	• 1.44]	57.6%	23.2%
van Weelden, W. 2021	-0.19 0.1486		0.83 [0.62	-	22.5%	21.3%
Sukumar, N. 2016	0.96 0.3330		2.59 [1.35		4.5%	13.8%
Fixed effect model		\$	1.13 [0.98	· .	84.6%	
Random effects model			1.24 0.80	; 1.93]		58.3%
Heterogeneity: I^2 = 82%, τ^2	² =0·1142, p<0·01					
ethnicity = Asian	0.58 0.2455		1.78 [1.10	· 2.881	8.2%	17.2%
Li, S. 2019 Butt, Ambreen 2017	1.17 0.4259		3.21 [1.39	•	2.7%	10.8%
Krishnaveni, G. V. 2009	0.76 0.3352	<u>+</u>	2.14 [1.11	•	4.4%	13.7%
Fixed effect model	010 00002		2.08 [1.47	· .	15.4%	
Random effects model			2.08 [1.47			41.7%
Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	=0, p=0.48		-	, 1		
Fixed effect model		\$	1.25 [1.09	· .	100.0%	
Random effects model			1.59 [1.10); 2·29]		100.0%
Heterogeneity: $I^2 = 77\%$, τ^2	==1.1405, p<0.01	0.2 0.5 1 2 5				
Test for subgroup difference	es (fixed effect): $\chi_1^2 = 9.69$, df = 1 ($p < 0.01$) 2				

Test for subgroup differences (random effects): $\chi_1^2 = 3.22$, df = 1 (p = 0.07)

Fig. 4. Effect of vitamin B₁₂ deficiency on GDM in the second or third trimester. GDM, gestational diabetes mellitus.

Study	TE	seTE			OR		(OR	95% CI	Weight (fixed)	Weight (random)
Saravanan, P. 2021 2nd or 3rd trimesters Jankovic-Karasoulos, T. 2021 2nd or 3rd trimesters Chen, X. 2021 1st tri Li, S. 2019 2nd or 3rd trimesters Lai, J. S. 2018 2nd or 3rd trimesters	0.31 -0.42 1.12	0.1753 0.3331 0.2120 0.3251 0.3199		0	-		1 0 3	.37 .66 .08	[1.24; 2.46] [0.71; 2.63] [1.44; 1.00] [1.63; 5.82] [1.05; 3.69]	53·5% 14·8% 0·0% 15·6% 16·1%	48·5% 16·5% 0·0% 17·3% 17·8%
Fixed effect model Random effects model Heterogeneity: I^2 = 12%, τ^2 = 0.0107, p = 0.33			0.2	0.5	1	2			[1·46; 2·41] [1·43; 2·49]	100·0% 	 100.0%

Fig. 5. Effect of the high folate:low vitamin B₁₂ ratio on GDM. GDM, gestational diabetes mellitus.

population and is a multi-ethnic analysis of all countries, not just the Indian population, so the findings of the study are more comprehensive. In addition, this study also discussed the status of vitamin B12 at different stages of pregnancy, and the risk of vitamin B₁₂ deficiency on GDM, which provided a basis for further analysis of the reasonable timing of vitamin B12 supplementation during pregnancy and a more accurate exploration of its mechanism.

We should be considered the limitations of the study. First, the lack of vitamin B₁₂ biomarkers makes the assessment of GDM relatively simple. Some studies suggested that holoTC might be a better marker of vitamin B₁₂ status during pregnancy than total vitamin B12 as it was less affected by hormonal changes and by the decrease in the levels of haptocorrin during pregnancy(35,36). Hcy and MMA levels increased in the third trimester compared with the first trimester, which might be indicative of a degree of metabolic intracellular vitamin B₁₂ depletion, even though both Hcy and MMA were lower than the established cut-off levels defining deficiency in non-pregnant women^(8,37). Most markers of vitamin B12 status (circulating levels of total vitamin B12, holoTC, MMA and Hcy) are physiologically affected at low levels during pregnancy, complicating the assessment of vitamin B12. Whether the reference values for vitamin B12 status in non-pregnant women apply to pregnant women is also debatable. Second, the limited number of studies available for metaanalysis, particularly the lack of data on maternal vitamin B₁₂ concentrations in the first trimester (only two studies were inconsistent), hindered accurate assessment of the association between vitamin B₁₂ and GDM throughout pregnancy. Third, there were differences in the adjustment confounding factors of GDM risk in the report, so it is uncertain whether the above results will still occur in the second or third trimester.

Conclusions

Taken together, this study revealed that vitamin B₁₂ concentrations were lower in the GDM group in the second or third trimester, and vitamin B12 deficiency increased the risk of GDM, which

1329

https://doi.org/10.1017/S000711452200246X Published online by Cambridge University Press

1330

was more significant in Asians. An increased maternal high folate:low vitamin B_{12} ratio during the second or third trimester also increased the risk of GDM. These results suggest that more vitamin B_{12} needs to be provided during pregnancy. To better promote the results and consider whether vitamin B_{12} supplementation is needed during pregnancy, we need more studies on folate and vitamin B_{12} associated with GDM or glycolipid metabolism. It can provide a theoretical clue for the prevention strategy of GDM and further study on the mechanism of vitamin B_{12} and GDM.

Acknowledgements

This research was supported by the Chinese Nutrition Society-Zhen Dong Tizhi and Health Fund (CNS-ZD2020-115). We also would like to express our sincere gratitude to the editor Matthew Woodcock (Dr.) and three anonymous reviewers for their valuable comments, which have greatly improved this paper.

X. C.: conceptualisation, data curation, formal analysis, methodology, software and writing original draft preparation. Y. D.: data curation. S. X.: methodology and writing – review. Z. L.: writing – review. J. L.: methodology, supervision, writing – review and editing.

The authors declare no conflict of interest.

Supplementary material

For supplementary material/s referred to in this article, please visit https://doi.org/10.1017/S000711452200246X

References

- 1. International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in Pregnancy, Metzger BE, Gabbe SG, *et al.* (2010) International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. *Diabetes Care* **33**, 676–682.
- International Diabetes Federation (2021) International Diabetes Federation Diabetes Atlas, 10th ed, pp. 54–59. Brussels: International Diabetes Federation.
- 3. Sun J, Kim GR, Lee SJ, *et al.* (2021) Gestational diabetes mellitus and the role of intercurrent type 2 diabetes on long-term risk of cardiovascular events. *Sci Rep* **11**, 21140.
- Montoro MN, Kjos SL, Chandler M, et al. (2005) Insulin resistance and preeclampsia in gestational diabetes mellitus. *Diabetes Care* 28, 1995–2000.
- Gou BH, Guan HM, Bi YX, *et al.* (2019) Gestational diabetes: weight gain during pregnancy and its relationship to pregnancy outcomes. *Chin Med J* 132, 154–160.
- Bianco ME & Josefson JL (2019) Hyperglycemia during pregnancy and long-term offspring outcomes. *Curr Diab Rep* 19, 143.
- Aviram A, Guy L, Ashwal E, *et al.* (2016) Pregnancy outcome in pregnancies complicated with gestational diabetes mellitus and late preterm birth. *Diabetes Res Clin Pract* **113**, 198–203.
- 8. Greibe E, Andreasen BH, Lildballe DL, *et al.* (2011) Uptake of cobalamin and markers of cobalamin status: a longitudinal

study of healthy pregnant women. *Clin Chem Lab Med* **49**, 1877–1882.

- Morkbak AL, Hvas AM, Milman N, et al. (2007) Holotranscobalamin remains unchanged during pregnancy. Longitudinal changes of cobalamins and their binding proteins during pregnancy and postpartum. *Haematologica* 92, 1711–1712.
- 10. Sobczynska-Malefora A, Yajnik CS, Harrington DJ, *et al.* (2022) Vitamin B_{12} and folate markers are associated with insulin resistance during the third trimester of pregnancy in south Asian women, living in the United Kingdom, with gestational diabetes and normal glucose tolerance. *J Nutr* **152**, 163–170.
- 11. Krishnaveni GV, Hill JC, Veena SR, *et al.* (2009) Low plasma vitamin B₁₂ in pregnancy is associated with gestational 'diabesity' and later diabetes. *Diabetologia* **52**, 2350–2358.
- Radzicka S, Ziolkowska K, Zaborowski MP, *et al.* (2019) Serum homocysteine and vitamin B₁₂ levels in women with gestational diabetes mellitus. *Ginekol Pol* **90**, 381–387.
- 13. Butt A, Malik U, Waheed K, *et al.* (2017) Low serum cobalamin is a risk factor for gestational diabetes. *Pak J Zool* **49**, 1963–1968.
- 14. Saravanan P, Sukumar N, Adaikalakoteswari A, *et al.* (2021) Association of maternal vitamin B_{12} and folate levels in early pregnancy with gestational diabetes: a prospective UK cohort study (PRiDE study). *Diabetologia* **64**, 2170–2182.
- 15. Sukumar N, Venkataraman H, Wilson S, *et al.* (2016) Vitamin B_{12} status among pregnant women in the UK and its association with obesity and gestational diabetes. *Nutrients* **8**, 768.
- Seghieri G, Breschi MC, Anichini R, *et al.* (2003) Serum homocysteine levels are increased in women with gestational diabetes mellitus. *Metab Clin Exp* **52**, 720–723.
- Li S, Hou Y, Yan X, *et al.* (2019) Joint effects of folate and vitamin B₁₂ imbalance with maternal characteristics on gestational diabetes mellitus. *J Diabetes* 11, 744–751.
- 18. van Weelden W, Seed PT, Antoun E, *et al.* (2021) Folate and vitamin B_{12} status: associations with maternal glucose and neonatal DNA methylation sites related to dysglycaemia, in pregnant women with obesity. *J Dev Orig Health Dis*, **13**, 168–176.
- Idzior-Waluś B, Cyganek K, Sztefko K, et al. (2008) Total plasma homocysteine correlates in women with gestational diabetes. Arch Gynecol Obstet 278, 309–313.
- Guven MA, Kilinc M, Batukan C, *et al.* (2006) Elevated second trimester serum homocysteine levels in women with gestational diabetes mellitus. *Arch Gynecol Obstet* 274, 333–337.
- Chen X, Zhang Y, Chen H, *et al.* (2021) Association of maternal folate and vitamin B₁₂ in early pregnancy with gestational diabetes mellitus: a prospective cohort study. *Diabetes Care* 44, 217–223.
- 22. Behere RV, Deshmukh AS, Otiv S, *et al.* (2021) Maternal vitamin B_{12} status during pregnancy and its association with outcomes of pregnancy and health of the offspring: a systematic review and implications for policy in India. *Front Endocrinol* **12**, 619176.
- Koebnick C, Heins UA, Dagnelie PC, *et al.* (2002) Longitudinal concentrations of vitamin B₁₂ and vitamin B₁₂-binding proteins during uncomplicated pregnancy. *Clin Chem* 48, 928–933.
- Allen LH (1994) Vitamin B₁₂ metabolism and status during pregnancy, lactation and infancy. *Adv Exp Med Biol* **352**, 173–186.
- 25. Milman N, Byg KE, Bergholt T, *et al.* (2006) Cobalamin status during normal pregnancy and postpartum: a longitudinal study comprising 406 Danish women. *Eur J Haematol* **76**, 521–525.
- 26. Liu PJ, Liu Y, Ma L, *et al.* (2020) Associations between gestational diabetes mellitus risk and folate status in early pregnancy

and MTHFR C677T polymorphisms in Chinese women. *Diabetes Metab Syndr Obes* **13**, 1499–1507.

- 27. Shin YS, Beuhring KU & Stokstad EL (1975) The relationships between vitamin B_{12} and folic acid and the effect of methionine on folate metabolism. *Mol Cell Biochem* **9**, 97–108.
- 28. Maher A & Sobczynska-Malefora A (2021) The relationship between folate, vitamin B₁₂ and gestational diabetes mellitus with proposed mechanisms and foetal implications. *J Family Reprod Health* **15**, 141–149.
- Selhub J (2008) Public health significance of elevated homocysteine. Food Nutr Bull 29, S116–S125.
- 30. Huang T, Ren J, Huang J, *et al.* (2013) Association of homocysteine with type 2 diabetes: a meta-analysis implementing Mendelian randomization approach. *BMC Genom* **14**, 867.
- Estevez-Ordonez D, Davis MC, Hopson B, *et al.* (2018) Reducing inequities in preventable neural tube defects: the critical and underutilized role of neurosurgical advocacy for folate fortification. *Neurosurg Focus* 45, E20.

- Osterhues A, Ali NS & Michels KB (2013) The role of folic acid fortification in neural tube defects: a review. *Crit Rev Food Sci Nutr* 53, 1180–1190.
- 33. Li M, Li S, Chavarro JE, *et al.* (2019) Prepregnancy habitual intakes of total, supplemental, and food folate and risk of gestational diabetes mellitus: a prospective cohort study. *Diabetes Care* **42**, 1034–1041.
- Lai JS, Pang WW, Cai S, *et al.* (2018) High folate and low vitamin B₁₂ status during pregnancy is associated with gestational diabetes mellitus. *Clin Nutr* **37**, 940–947.
- Nexo E & Hoffmann-Lucke E (2011) Holotranscobalamin, a marker of vitamin B₁₂ status: analytical aspects and clinical utility. *Am J Clin Nutr* 94, 3598–3658.
- Herzlich B & Herbert V (1988) Depletion of serum holotranscobalamin II. An early sign of negative vitamin B₁₂ balance. *Lab Invest* 58, 332–337.
- Green R, Allen LH, Bjorke-Monsen AL, *et al.* (2017) Vitamin B₁₂ deficiency. *Nat Rev Dis Primers* 3, 17040.

https://doi.org/10.1017/S000711452200246X Published online by Cambridge University Press