Search and characterization of T-type planetary mass candidates in the σ Orionis cluster

Karla Peña Ramírez¹, Maria R. Zapatero Osorio² and Victor J.S. Béjar¹

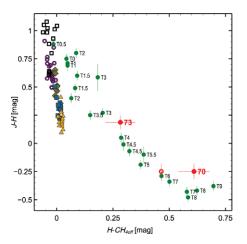
¹ Instituto de Astrofísica de Canarias. E-38205 La Laguna, Tenerife. Spain email: karla@iac.es

² Centro de Astrobiología (CSIC-INTA). E-28850 Torrejón de Ardoz, Madrid. Spain

Abstract. We present new photometric and astrometric data available for S Ori 70 and 73, the two T-type planetary-mass member candidates in the σ Orionis cluster ($\sim 3 \pm 2$ Myr, d ~ 360 pc). S Ori 70 ($J \sim 19.9$ mag) has a spectral type of T5.5 ± 1.0 measured from published near-infrared spectra, while no spectroscopic data are available for S Ori 73 ($J \sim 21$ mag). We estimate the spectral type of S Ori 73 by using J, H, and $CH_{4\text{off}}$ ($\lambda_c=1.575 \,\mu\text{m}$, $\Delta\lambda=0.112 \,\mu\text{m}$) photometry and comparing the H- $CH_{4\text{off}}$ index of S Ori 73 with the colors of field stars and brown dwarfs of spectral types in the range F to late T. The locations of S Ori 70 and 73 in the J-H vs H- $CH_{4\text{off}}$ color-color diagram are consistent with spectral types T8 ± 1 and T4 ± 1 , respectively. Proper motion measurements of the two sources are larger than the motion of the central σ Ori star, making their cluster membership somehow uncertain.

Keywords. infrared: stars, brown dwarfs, planetary systems, open clusters and associations: individual (σ Orionis)

1. Motivation


Knowledge of the low-mass end of the initial mass function (IMF) is crucial to understand the formation mechanisms giving rise to substellar objects. In the σ Orionis cluster $(\sim 3 \pm 2 \text{ Myr}, d\sim 360 \text{ pc})$, there are only two T-type planetary mass candidates: S Ori 70 $(J \sim 19.9 \text{ mag})$, which has a spectral type of T5.5 \pm 1.0 measured from near-infrared low-resolution spectra (Zapatero Osorio *et al.* 2002), and S Ori 73 $(J \sim 21 \text{ mag})$, which has no spectra available so far (Bihain *et al.* 2009). We present new photometric and astrometric data for S Ori 70 and 73 to study the methane nature of the latter and to assess their cluster membership via proper motion analysis.

2. Observational data

Imaging data are summarized in Table 1. HAWK-I and OSIRIS observations were intended to image S Ori 70 and 73, covering areas of ~120 and ~220 arcmin², respectively. VISTA data covers the entire region of the σ Orionis cluster. HAWK-I and OSIRIS images were reduced following standard procedures; aperture and point-spread-function instrumental photometry were obtained and calibrated into observed magnitudes using the UKIDSS DR7 database for the near-infrared wavelengths (Lawrence *et al.* 2007) and photometric standard stars from Smith *et al.* (2002) for the optical. The VISTA (science verification) data were reduced by the Cambridge Astronomy Survey Unit (CASU) and only aperture photometry of 2" in diameter was performed.

Telescope	Instrument	Filter	Date	Exp.time[s]	Seeing [arcsec]	Completeness [mag]	Limiting [mag]
GTC	OSIRIS	i'	2009 Oct 15	3146	0.80	25.0	26.0
			2010 Jan 11	9360	1.10		
	OSIRIS		2009 Oct 13,14,15	9438	0.70		
			2009 Nov 19	3198	1.10		
VISTA	VIRCAM	Z	2009 Oct 20,21	6084	0.80	22.6	23.2
		Y	2009 Oct 20	1008	0.90	21.0	21.4
		J	2009 Oct 19,20	2112	0.90	21.4	21.8
		Н	2009 Oct 20	288	0.90	19.6	20.0
		K _s	2009 Oct 20	288	0.70	18.6	19.1
U T 4	HAWK-I	J	2008 Sep 19	160	0.64	22.4	23.4
		Н	2008 Dec 8	8410	0.34	22.5	23.4
		CH_{4off}	2009 Feb 24	13500	0.52	22.5	23.1
		1011	2009 Mar 28	13500			
U T 4	HAWK-I	J	2008 Oct 27	160	0.75	21.8	22.8
		Н	2009 Mar 28	8410	0.52	20.5	21.8
		$CH_{4\mathrm{off}}$	2009 Mar 16	13500	0.57	21.3	22.4

 Table 1. Log of optical and near infrared observations.

Figure 1. Color-color diagram (including the methane filter) for T (green), L (black), M (magenta), K (olive green), G (blue), and F (yellow) type field sources. The photometry of S Ori 70 and 73 is plotted as red filled circles. The red open circle corresponds to the synthetic methane color of S Ori 70 derived from its spectrum (Zapatero Osorio *et al.* 2002).

3. Results

We estimated the spectral types of S Ori 73 and S Ori 70 by comparing their *J*-*H* and *H*-*CH*_{4off} colors with those of field dwarfs of known classification. We derived T4 ± 1.0 for S Ori 73, and T8 ± 1.0 for S Ori 70. The "methane" nature of S Ori 73 is thus confirmed. The typing of S Ori 70 is slightly cooler, though still consistent within error bars, than the value previously reported in the literature (T5.5 ± 1). From our astrometric analysis we derived the following proper motions: $(\mu_{\alpha} \cos \delta, \mu_{\delta}) = (30.8 \pm 11.0, 18.2 \pm 8.0)$ mas yr⁻¹ for S Ori 70, and $(\mu_{\alpha} \cos \delta, \mu_{\delta}) = (43.2 \pm 10.0, -3.7 \pm 7.0)$ mas yr⁻¹ for S Ori 73. These values are larger than the Hipparcos proper motion of the cluster central star (σ Ori) by at least 2- σ , making the cluster membership of the two T dwarfs somehow uncertain.

We also carried out a photometric search for additional T-type candidates in the cluster using the HAWK-I (~120 arcmin² and completeness magnitude of $J \sim 21.8$ mag), VISTA and OSIRIS data. The selection photometric criteria ($i'-J \ge 5$, $Z-J \ge 2.5$, $J-H \le 0.5$ and $H-CH_{4\text{off}} \ge 0.15$ mag) did not yield any additional candidate with the colors expected for $\ge T3$ dwarfs.

References

Bihain, G., et al. 2009, A&A, 506, 1169
Zapatero Osorio, M. R., et al. 2000, Science, 290, 103
Zapatero Osorio, M. R., et al. 2002, ApJ, 578, 536
Zapatero Osorio, M. R., et al. 2008, A&A, 477, 895