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Abstract
Objective: Current approaches to food volume estimation require the person to
carry a fiducial marker (e.g. a checkerboard card), to be placed next to the food
before taking a picture. This procedure is inconvenient and post-processing of the
food picture is time-consuming and sometimes inaccurate. These problems keep
people from using the smartphone for self-administered dietary assessment. The
current bioengineering study presents a novel smartphone-based imaging approach
to table-side estimation of food volume which overcomes current limitations.
Design: We present a new method for food volume estimation without a fiducial
marker. Our mathematical model indicates that, using a special picture-taking
strategy, the smartphone-based imaging system can be calibrated adequately if the
physical length of the smartphone and the output of the motion sensor within the
device are known. We also present and test a new virtual reality method for food
volume estimation using the International Food Unit™ and a training process for
error control.
Results: Our pilot study, with sixty-nine participants and fifteen foods, indicates
that the fiducial-marker-free approach is valid and that the training improves
estimation accuracy significantly (P< 0·05) for all but one food (egg, P> 0·05).
Conclusions: Elimination of a fiducial marker and application of virtual reality, the
International Food Unit™ and an automated training allowed quick food volume
estimation and control of the estimation error. The estimated volume could be
used to search a nutrient database and determine energy and nutrients in the diet.
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Over the years, unhealthy foods with increasingly large
portion sizes have been among the most popular products
of fast-food chains and restaurants, and people often eat
more than they need without being aware of the extra
energy intake. Constructing an effective tool that quickly
informs people of the amounts of energy and nutrients in a
plate of food at the dining table, i.e. allowing them to eat
with quantitative dietary knowledge, is highly significant
in public health.

As the mobile and electronic technologies advance,
numerous smart wristbands (e.g. Fitbit wristband) and
watches (e.g. Apple Watch) have become available for
quantitative physical activity assessment(1–4). As a result,
these devices have been used widely by the public to
gauge their level of exercise, such as the distance walked
and the energy expended. In contrast, there is currently no
convenient way for an individual to know the energy
content in a plate of food before it is consumed.
Currently, to determine the energy intake of an individual,

a self-reporting procedure to a dietitian is the most utilized
method. This subjective method is not only unreliable and
inaccurate, but also very burdensome, costly and time-
consuming for both the individual being assessed and the
assessor. To innovate dietary assessment, several electro-
nic approaches have been developed. Piezoelectric
sensors and microphones have been developed to mea-
sure chewing and swallowing during eating events(5–9).
However, these sensors may not be suitable for long-term
use in people’s daily life. Electronic sensors have been
embedded within utensils, such as plates and mugs, to
weigh the food or beverage(10); these novel methods
monitor eating automatically. However, their utility is
limited due to the required use of specially made utensils.
Wearable cameras have been used to reduce dietary
assessment error in 24 h dietary recalls(11). However,
existing commercial body-worn cameras are not well
suited for dietary assessment because they are mostly
designed for public security or entertainment purposes.
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To conduct objective dietary assessment, the eButton,
a small wearable device worn in the upper chest area, has
been developed(12,13). The eButton has a specially
designed camera with a large field of view (up to 170°)
and an appropriately tilted lens to observe food on a table.
Although the eButton can conduct dietary assessment
objectively, it is more suitable for dietary research than
everyday use, mainly because people near the device may
be accidently recorded and the wearer may forget to turn
it off during private events. These problems can be con-
trolled by pre-filtering data using advanced computational
algorithms (e.g. deep learning-based eating recogni-
tion(14–19)) and specially trained people(20). However,
these methods cannot be adopted easily in non-research
applications.

Nowadays the smartphone has become the most
ubiquitous personal electronic device. A recent survey
indicated that 77% of Americans now own a smartphone,
up from 35% in 2011(21). Dietary assessment using
the smartphone has been previously investigated(22–26).
Food pictures provide an excellent means to refresh
people’s memory about their dietary intake, and motivated
people have formed social media groups to exchange
food pictures and discuss their dietary experience (e.g.
‘Food’ in Facebook(24)). However, when smartphone
pictures are used to evaluate energy/nutrients quantita-
tively, a number of limitations exist: picture taking must
be volitionally initiated by an individual for each plate of
food; two pictures are needed when there is a leftover for
volume subtraction; it is difficult to use this method if
multiple people fetch food from shared containers; and
the process of picture taking may disrupt normal eating
habits. Despite these problems, considering the wide-
spread availability of the smartphone, we believe that
this device is currently the most practical tool for
self-motivated food energy/nutrient analysis in real life.

Obtaining the energy/nutrients from a food image
requires two important pieces of information: food
name and food volume. There are several ways to let
the smartphone know the food name, such as speech
recognition of the user’s announcement(27,28) and deep
learning-based computer vision(14–17). In addition to food
name, the volume, or portion size, of the food must be
entered into a food database to determine energy and
nutrients. The volume problem is more difficult because:
(i) the ordinary food image does not have a dimensional
reference, preventing the size of the food from being
gauged; and (ii) the two-dimensional image lacks infor-
mation about the three-dimensional surface of the food
which defines its volume.

Currently, the dimensional reference is obtained by
using a fiducial marker that must be present in a food
picture. Clearly, this is a very strong requirement. Many
objects have been suggested as fiducial markers, includ-
ing: (i) a colour checkerboard(29); (ii) a business card(30,31);
(iii) a specially designed physical cube(32,33); (iv) a circular

plate of a known diameter(34); (v) a specially designed
tablecloth(25); and (vi) a laser-generated pattern or mesh(35,36).
Methods (i) to (iii) require people to carry a physical object
and place it beside the food before taking the picture;
methods (iv) and (v) require special dining setups; and
method (v) requires a complex laser device attached to
the smartphone.

A common approach to estimating food volume is by
human visualization. This method is often used when the
fiducial marker is missing, such as in the case of a finger
food. To achieve better accuracy, a wireframe volume
estimation method was developed(37–40). Since a two-
dimensional image does not carry the complete three-
dimensional information, the observed food is assumed to
have a specific shape, such as a cuboid, wedge, cylinder
or partial ellipsoid. Once a wireframe shape is selected,
the food is fit by scaling in different dimensions until the
best fit is visually achieved (Fig. 1). Then, the volume of
the scaled wireframe provides a volumetric estimate. This
method has been well studied by both our and other
groups(20,38). The results indicate that the method has a
high accuracy when the shape of food and the wireframe
are well matched. However, if this condition is not met,
the estimation error can be large. In addition, the
wireframe method is ineffective when multiple foods
occlude each other or are mixed.

In the current paper, we present a new smartphone-
based dietary evaluation method that does not require the
use of any fiducial marker placed with food. Instead, the
length (or the width) of the smartphone itself is used to
calibrate the imaging system. We also present a new
interactive portion size estimation method based on virtual
reality technology, where a virtually generated cube
is used as the unit of estimation. Instead of finding
a numerical value of the food volume by comparing the
sizes of food and cube, which is mentally demanding, we
ask the estimator to scale the cube up or down until the
volumes of the cube and the food are visually equivalent.
This scaling procedure can be easily and quickly per-
formed on the smartphone screen by sliding two fingers

Fig. 1 (colour online) Wireframe method for food volume
estimation
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inward or outward. To gauge the estimation error for the
estimator, we also present an automated training proce-
dure to evaluate the individual’s skill level. These new
technologies will allow people to perform table-side esti-
mation of energy and nutrients before making a dietary
decision.

Methods

In this section, we first present a fiducial-marker-free
method to calibrate the camera system. Then, a virtual
reality method for food volume estimation is described.

Calibration of imaging system
The key concepts that enable us to eliminate the external
fiducial marker are: (i) making use of the motion sensor
within the smartphone to determine camera orientation;
(ii) utilizing the length or width of the smartphone to
uniquely determine the location of any visible point on the
tabletop; and (iii) using a special way to photograph a
food (setting the bottom of the smartphone on the tabletop
during picture taking, see Fig. 3 below). We show, math-
ematically, that these concepts provide an adequate cali-
bration of the imaging system, allowing volume estimation
of the food on the tabletop without any fiducial marker in
the image.

Let us assume that the tabletop is a level surface. The
camera within the smartphone, the tabletop and the food
on the table form an imaging system, as shown in Fig. 2.
For this system, we can establish four coordinate systems,
including the world coordinates, camera coordinates,
optical image coordinates and pixel coordinates, illu-
strated in Fig. 2.

Let [X, Y, Z]t be the coordinates in the world coordinate
system. We define the camera coordinate system [U, V, W]t

in such a way that its W-axis is parallel to the optical axis
of the lens and its origin is located at the centre of the lens.
With these definitions and assuming that the food shape
does not change during the estimation process, the rela-
tionship between coordinate systems [U,V,W]t and [X,Y,Z]t

can be represented as a rigid body transformation(41,42):

U

V

W

2
664

3
775=R

X

Y

Z

2
664

3
775 +T ; (1)

where T is a 3× 1 translation vector determined by the
choice of origin for the world coordinates and R is a 3× 3
rotation matrix with its entries being sinusoidal functions
of three angles, i.e. pitch θ, yaw φ and roll ψ, given by:

R=

cosφ cosψ sin θ sinφ cosψ� cos θ sinψ

cosφ sinψ sin θ sinφ sinψ + cos θ cosψ

�sinφ sin θ cosφ

2
6664

cos θ sinφ cosψ + sin θ sinψ

cos θ sinφ sinψ� sin θ cos ψ

cos θ cosφ

3
7775:ð2Þ

Note that the values of θ, φ and ψ can be measured
using the inertial measurement unit within the smart-
phone. These parameters determine the orientation, or
pose, of the smartphone when the food picture is taken.

Now, let us define the image coordinate system in the
imaging sensor plane and the camera coordinate system at
the plane of the optical lens. The origin of the image
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Fig. 2 (colour online) Model of the smartphone imaging system
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coordinate system is located at the centre of the imaging
sensor, which is also the intersection between the imaging
plane and the optical axis. Particularly, let the u- and v-axes
in the image coordinate system be parallel with the U- and
V-axes in the camera coordinate system, and the origin of
the camera coordinate system be the centre of the optical
lens. Then, the projection from the camera coordinate
system to the image coordinate system is given by:

u

v

" #
=

fc
W

U

V

" #
; (3)

where fc is the focal length of the camera.
Within the camera, the optical image of the food object

at the imaging plane is sampled digitally by a CMOS
(complementary metal oxide semiconductor) sensor,
resulting in a rectangular array of pixels as a digital image.
We thus perform another coordinate transformation to
associate the optical image with the digital image, given by:

x

y

" #
=

sxc 0

0 syc

" #
u

v

" #
+

cx

cy

" #
; (4)

where cx and cy are offsets which are the pixel coordinates
of the origin in the optical image coordinates, and sxc and syc
are scale factors determined by the resolution of the parti-
cular imaging sensor.

Combining Eqs (1) to (4), we have a compact form of
the coordinate transformation:

x

y

" #
= f X ; Y ; Zð Þ: (5)

Reconstruction of tabletop coordinates
Eq. (5) provides a mathematical model describing the
projection of any visible point in the real world to a
specific pixel in the food image. Conversely, given a food

image, we are interested in the inverse function of Eq. (5)
for the purposes of volume estimation, i.e.

X ; Y ; Zð Þ= f�1 x; yð Þ: (6)

However, there is a fundamental problem in defining Eq.
(6). Because, in general, for surface points on the food,
depth W cannot be determined from the two-dimensional
image, Eq. (5) is not invertible and thus Eq. (6) does not
exist. However, if certain constraints on the imaging
system are imposed, Eq. (6) can be well defined, allowing
the world coordinates to be reconstructed.

Let us assume that the food image is taken while the
smartphone is set on the tabletop as shown in Fig. 3. With
the known smartphone orientation provided by the inertial
measurement unit, a right angle between the surface of
the smartphone and the optical axis, and the projection
relationship in Eq. (5), it can be shown (detailed in the
Appendix) that the inverse of function f in Eq. (6) exists
for the tabletop, i.e.

X ; Y ; 0ð Þ= f�1 x; yð Þ: (7)

Note that Z= 0 in Eq. (7) represents the plane equation
of the tabletop. Since, according to Fig. 3, the angles φ and
ψ, which represent yaw and roll, respectively, are both
zero, Eq. (2) becomes:

R=

1 0 0

0 cos θ �sin θ

0 sin θ cos θ

2
664

3
775: (8)

From Eq. (4), the world coordinates of the tabletop are
related to the pixel coordinates by:

u

v

" #
=

1=sxc 0

0 1=syc

" #
x� cx

y� cy

" #
; (9)
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Fig. 3 (colour online) Mathematical model for reconstructing the world coordinates of the tabletop (CMOS, complementary metal
oxide semiconductor)
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W =
h � sin θ

cos θ�ðv=fcÞ � sin θ ; (10)

U

V

" #
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W
fc

u

v

" #
(11)

and X

Y

0

2
64

3
75=R�1

U

V

W

2
64

3
75�T

0
B@

1
CA; (12)

where the derivation of Eq. (10) is included in the
Appendix.

We point out that all the parameters in Eqs (8) to (12) are
known from smartphone specifications or are available from
the output of the inertial measurement unit (containing an
accelerometer, a gyroscope and a magnetometer) within the
smartphone. For example, for the iPhone 6 Plus, the spe-
cifications and calibration parameters used in Eqs (8) to (12)
are listed in Tables 1 and 2, respectively.

Background of food image-based volume
estimation
Although Eqs (8) to (12) allow the world coordinates
[X, Y, 0]t of any visible points in the tabletop to be recon-
structed, the information provided about the food volume is
still very sparse because the surface function of the food is
unknown except along the observable intersection (if it
exists) between the food and the tabletop. Previously, the
wireframe method(38–40) solved this problem by assuming
that the food shape is close to one of a set of predefined
shapes (e.g. cuboid, wedge, cylinder, partial ellipsoid) ren-
dered in deformable wireframes (Fig. 1 and related text).
This method produces accurate results for well-matched
shapes, but shows only limited performance for complex
shaped, obscured, mixed or hand-held foods. In these
cases, visual estimation becomes the only way to provide an
estimate. This is a difficult task because the estimator must
come up with a volumetric value for each food. If the
volume is in the unit of cm3 (or equivalently, ml), the value
is usually very large and the estimate is not intuitive.
Although the ‘cup’ is often used as the unit for measuring
real-world foods, it is not very suitable for image-based
measures because its height and shape are not standardized,
and its mental images differ for different people. In many
parts of the world, the Western ‘cup’ is an unfamiliar object.

International food unit
To improve the robustness of food volume estimation
from images, we propose to use the International Food
UnitTM (IFUTM)(32), which is a 4 cm× 4 cm× 4 cm cube
(64 cm3; Fig. 4). The result of food volume measurement is
in ‘F’. For example, an apple of 128 cm3 is 2 F. The IFU™
cube can be dyadically divided into 2 cm and 1 cm sub-
cubes, in units of ‘dF’ (where ‘d’ follows ‘divided’)(32).
Thus, 1 F= 8 dF= 64ml. The features of the IFUTM,
including its cubic shape, dyadic division in length and

octave division in volume, appear to be more convenient
for human visualization from images than other forms of
divisions. In addition, they are also preferred by computer
processing because they are parallel to the binary and
octave number systems utilized by the computer. The
IFUTM has many other attractive properties. First, since it is
a cube of known size, its world coordinates (Eq. (6)) are
well defined from pixels in images so long as it sits on the
tabletop, either physically or virtually. Second, although
other convex shapes (e.g. a sphere) may also invert
Eq. (6), the corners of the cube, when projected into a
two-dimensional image, produce a well observable sense
of orientation. Third, previously, a significant practical
difficulty was to estimate the height of the food from
an image when a planar fiducial marker is used. The
three-dimensional IFUTM facilitates height estimation
significantly by providing a clearly observable height
reference. Finally, the IFUTM is connected to both the
metric millilitre (1 F= 64 cm3= 64ml) and the commonly
used cup measures (1 F≈¼ cup, whereas the cup has
multiple confusing definitions: 1metric cup= 250ml, 1 US
legal cup= 240ml, 1 US customary cup= 236·6ml and
1 imperial cup= 284ml). Previous studies on IFU™ have
shown a significantly higher accuracy in food volume
estimation using the IFUTM than the cup for untrained
individuals(32,33).

Volume estimation using the IFUTM

Based on the fiducial-marker-free food image estimation
technique and the IFUTM concepts, we present a fast,

Table 1 Smartphone (iPhone 6 plus) parameters used in Eqs (8)
to (12)

Focal length 4·15mm
CMOS size Height: 4·8mm

Width: 3·6mm
Image resolution Height: 1280 pixels

Width: 960 pixels
Angle of pitch Real-time readout from

accelerometer sensor unit: rad
Phone height (from camera

to the bottom)
152mm

CMOS, complementary metal oxide semiconductor.

Table 2 Calibration parameters used in Eqs (8) to (12) for the
smartphone (iPhone 6 plus)

fc 4·15mm
syc 1280pixels/4·8mm
sxc 960 pixels/3·6mm
cy 1280 pixels/2
cx 960 pixels/2
T [0, −152mm, 0]t

R 1 0 0
0 cos θ �sin θ
0 sin θ cos θ

2
4

3
5,

where θ is obtained from the accelerometer in the IMU

IMU, inertial measurement unit.
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interactive method for portion size estimation using the
smartphone. Since, by Eqs (8) to (12), the world coordi-
nates of the tabletop are known, we can manipulate the
image properly and utilize virtual reality technology on the
tabletop to assist the estimation task shown in Fig. 5(a).
First, we extend the tabletop virtually, thus providing more
spaces in the image. Then, we create a virtual ‘tablecloth’
in the form of a grid. The side length of each square in this
grid is exactly 4 cm in the world coordinates, the same as
the side length of the IFUTM. This grid both marks the
location and orientation of the tabletop in the image and
provides a scale reference, in both horizontal and vertical
directions, for all foods on the table. Next, we place a
virtual IFUTM cube on the tabletop. During the estimation
process, the estimator moves the cube to a desired place
(sliding with one finger on the smartphone screen), scales
it (sliding with two fingers in an inward or outward
motion), while comparing it side-by-side with any food
item of his/her interest until the volume of the scaled cube

is visually equivalent to that of the food (what we
call ‘volumetric equivalence’ (VE)), as seen in Fig. 5(b)
and 5(c).

It is important to point out that we ask the estimator to
achieve a VE rather than coming up with a numerical
value because, we believe, the VE task is easier than the
numerical task for most people, although this assertion still
needs a proof. A distinct advantage of the IFUTM approach
over the wireframe approach is that it is more robust in
handling complex real-world cases, as shown in Fig. 6
where the use of wireframes would be very difficult.

Nevertheless, to correctly judge VE requires human
experience. In practice, a person who has no experience
in VE needs to acquire skills, and it is important to gauge a
person’s skill level by measuring his/her average portion
estimation error. Thus, we propose an automated training
process using an app to conduct a set of exercises. The
person first estimates the volume of a food in an image,
then a feedback with the true volume is provided so he/
she can learn from the error. If this error is larger than a
pre-set bound (e.g. 20%), the person will need to retry the
exercise until the error bound is reached.

Experiments

We conducted two experimental studies to: (i) compare
the effect of training; and (ii) evaluate whether the pre-set
error bound for food volume estimation is achieved
successfully.

Study 1
In this experiment, we implemented the described
algorithms in MATLAB® with a graphical interface
(MathWorks, Natick, MA, USA). Fifteen commercial food
models of known volumes (Nasco Life/form® Food
Replica; shown in Fig. 7(a)) were used as the test objects.

4 cm

4 cm 1 F

Fig. 4 International Food UnitTM

(a) (b) (c)

Fig. 5 (colour online) Virtual reality-based volume estimation using the International Food UnitTM (IFUTM): (a) fiducial-marker-free
image; (b) extended image with a virtual grid of 4 cm spacing and an IFUTM; (c) final image in which the volume of the scaled IFUTM

cube is visually equivalent to the volume of the milk, yielding an estimate of 4·2 F
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Forty volunteers, who were first- and second-year under-
graduate students, participated in the study. These
students had never estimated food portion sizes from
images. During the experiment, each participant manually
adjusted the size of the virtual cube to reach the VE as
described previously. At this point, the participant had to
click a control bar to move to the next food image.

Study 2
In this experiment, twenty-nine volunteers, who were
again first- and second-year undergraduate students
without experience in estimating portion sizes from ima-
ges, participated in the study. The same fifteen food
models (Fig. 7(a)) were used for tests. However, before
the tests, we implemented a training process. We selected
fourteen foods, beverages and non-food objects (different
from the fifteen foods for testing), as shown in Fig. 7(b). It
can be observed that many of these objects or containers
have irregular shapes, unsuitable for using the wireframe
method. The volumes of the training items were measured
using cup measures (for liquids and grains), by water
displacement (for submergible ones) or with a ruler (for
cuboids). They were photographed in different containers,
such as plates, glasses and bowls, resulting in forty-five
training images. The training was provided by our
self-developed MATLAB software. For each image, the
participant scaled the virtual cube until he/she believed
that a VE was reached between the food and the cube.
Once he/she clicked the ‘submit’ button, the software
provided a feedback of the true volume in a message box.
If the absolute estimation error was larger than 20%, the
participant had to retry the volume estimation for this
specific item until the error was less than 20%. The

participant was asked to estimate as many training images
as possible until he/she felt confident about his/her skills
for food volume estimation. After training, the test was
conducted the same as that in Study 1.

Results

Table 3 lists the name of each food (column 1) and its
ground truth volume (ml or, equivalently, cm3; column 2) as
measured by cup, water displacement or ruler. For each test
with or without training, we list the median, interquartile
range (defined as the difference between the medians of the
lower and higher halves of the data values after sorting in an
ascending order(43)), average absolute error and root-mean-
square error. Each of these values was calculated over the
number of estimates provided by the research participants.
In the last column, we also list the probability of the null
hypothesis (i.e. ‘no difference’ with and without training)
from the Mann–Whitney U test for each food.

Several important observations can be made from
Table 3. First, all the measures indicate that the training
process improves volume estimation performance. Sec-
ond, in fourteen out of fifteen cases (except for egg), there
is a statistically significant reduction in the relative error
(defined as (estimate – ground truth)/ground truth×100%)
after training (last column). Third, without training, there
is a large estimation bias as measured by the median
(average 87·97%). After training, it is nearly eliminated
(average −1·14%).

Figure 8(a) and 8(b) further compare the relative error
(with the standard derivation indicated) and the root-
mean-square error, respectively. It is noticeable that, from
both measures, the errors tend to be much larger in the last

(a) (b)

Fig. 6 (colour online) (a) A complex real-world fiducial-marker-free image; (b) extended virtual reality image from which any food
item can be estimated by moving and scaling the International Food UnitTM
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(a) (b)

Fig. 7 (colour online) (a) Fifteen food models tested in both Studies 1 and 2; (b) fourteen foods, beverages and non-food objects utilized for generating forty-five training images in
different containers for Study 2. Note that, in each image, the two-dimensional barcode records the motion sensor data at the time of image acquisition
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few items. These items, which are shown in the last row of
Fig. 7(a), have the smallest volumes among the fifteen
foods tested, as indicated in the second column in Table 3.
The average absolute error is 16·65% for the first ten foods
(calculated from the ninth column in Table 3), indicating
that, for these large-volume items, the 20% error bound
was well achieved. On the other hand, for the last five
foods, the average absolute error is 47·60%, indicating
that, for these small-volume items, the 20% error bound
was not achieved.

Discussion

One of the desired goals in portion size estimation is to
gauge and control, in a statistical sense, the average esti-
mation error. Our pre-training method is, in theory, capable
of reaching this goal if the statistical features of food items
for training and testing are the same. Our experimental
results indicated that this goal was achieved for large-volume
foods (average absolute error 16·65%<20%). However,
it failed for small-volume foods (average absolute error
47·60%>20%). Several factors may have contributed to this
failure. First, we found that it was difficult to visually judge
the VE when the display of the food and the cube was small.
Thus, we believe that the excessive error was mainly due to
this visual effect. This effect could be corrected by allowing
the estimator to manually zoom the display window, so the
food and cube appear in normal sizes. Second, our training
samples (Fig. 7(b)) lacked small objects with similar shapes
to the small foods utilized in the test (last row in Fig. 7(a)). As
a result, participants may not be trained adequately for the
types of foods tested. This problem can be solved by
enlarging the training set properly. Third, in Study 2, we
asked the participants to decide by themselves when to stop
training. This self-judgement may have also contributed to
the large error because some participants may be over-
confident in their skills and stopped training too early. A
more appropriate stop criterion could be to monitor the
participant’s skills by averaging the absolute estimation errors
in the past N trials, where N is to be determined empirically,
and stopping the training when the average error is below
the pre-set error bound.

In our method, the IFU™ played an important role in
the algorithm development. We used the cubic-shaped
virtual dimensional reference to provide a better visual
effect in estimating food volume, especially providing
a reference in the height of the food which was not
provided previously when using the actual two-
dimensional fiducial markers. In addition, the scalable
virtual cube allows the use of this new VE concept.
We believe that, for most people, the mental task
involved in assessing VE is easier than coming up with a
numerical number for the volume. However, this assertion
is still subject to a solid proof, perhaps by a psychological
or experimental study.Ta
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Currently, the VE is established manually. However, it is
possible to develop an algorithm to initiate this equiva-
lence using a computer and display the computed result
for a person to validate or modify. This computational
approach could make the table-side food volume estima-
tion both quicker and more accurate.

Clearly, our purpose of computing food volume is to
use it for the estimation of energy and nutrients. However,
this final step of estimation is not straightforward. There
are numerous unsolved problems, such as food/ingredient
recognition and food database development/improve-
ment. Despite solving these problems is important, the
present work focuses on food volume estimation.

Limitations
Our fiducial-marker-free method for image-based food por-
tion size estimation requires taking the food picture with the

bottom of the smartphone sitting on the tabletop. This may
become too restrictive in cases where the food is tall, and the
single image may not cover the food adequately. In this case,
the second image can be taken at an arbitrary position where
the view is more desirable. Since some shape and dimen-
sional features of the food have been available in the first
image, this image can be used as an important reference
while volume estimation is performed using the first image.
Alternatively, computational algorithms could be developed
to automatically transfer the calibration information from the
first image to the second image so that volume estimation
can be performed in the same way as that for the first image.
Finally, we remark that there are limitations in our experi-
ments. It should be noted that the number of human foods
utilized in our study (i.e. sample size) was small, and the
sample population (college students) was more educated
than the average population. Thus, our subjects were digitally
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Fig. 8 (colour online) (a) Mean relative error ((estimate – ground truth)/ground truth × 100%) with standard deviation indicated by
vertical rules and (b) root mean-square error (RMSE) for each of the fifteen foods tested using the new approach of fiducial-marker-
free image-based food portion size estimation using a smartphone: , Study 1, without training; , Study 2, with training
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knowledgeable, which may have helped them learn more
quickly than the general population in using the computa-
tional tools. In addition, we have not yet been able to fully
delineate the mechanisms of the large performance differ-
ence before and after training. It was likely that different
individuals visualized the sizes of objects (including foods)
differently, which affected their initial estimates. Further, the
colour and contrast of the virtual IFUTM and grid displayed on
the computer screen could also be factors affecting the initial
estimates, even for experienced computer users. However,
we believe that, after repeated training with feedbacks of true
food volumes, the individual differences with respect to
subject population, visualization of object size and response
to computer display will all decrease and likely disappear, in
a similar trend as that observed in our experiments.

Conclusion

The present work contributes to the field of smartphone-
based food portion size estimation from images by: (i)
elimination of the fiducial marker; (ii) achievement of a
greater robustness and practical utility by the introduction of
new concepts and application of advanced technologies,
including the IFUTM, virtual tablecloth, scalable cube as a
reference and VE; and (iii) assessment and control of the
estimation error using an automated training process. Our
methods are suitable for implementation in an app, allowing
the smartphone owner to perform table-side estimation of
the energy and nutrients of his/her food before making a
dietary decision. In the future, the presented technology may
be combined with methods for automated food recogni-
tion(43) to quickly search a nutrient database and determine
and monitor energy and nutrient intakes.
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Appendix

In this section, we explain the derivation for Eq. (10). Let
Z= 0 which represents the tabletop. According to Eq. (1),
we have:

U

V

W

2
664

3
775=R

X

Y

0

2
664

3
775 +T ; (13)

where

R=
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R21 R22 R23

R31 R32 R33

2
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3
775 (14)
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and

T =

T1

T2

T3

2
664

3
775: (15)

By substitution, Eqs (13) to (15) yield:

U

V

" #
=

R11 R12

R21 R22

" #
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Y

" #
+

T1
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" #
(16)

and
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+ T3: (17)

Since R is a rotation matrix, its inverse,
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;
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Substituting Eq. (18) into Eq. (17), we have:
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Because
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=

fc
W
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" #

as expressed in Eq. (3), we have:
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Substituting Eq. (20) into Eq. (19), we obtain:
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Extracting W from both sides of Eq. (21) gives:
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T1

T2

" #
+ T3

1� R31 R32½ �
R11 R12

R21 R22

" #�1
u

v

" #
= fc

: (22)

For the specific setup in Fig. 3,

T=

0

�h

0

2
664

3
775

and

R11 R12

R21 R22

" #�1

=
1 0

0 1=cos θ

" #
:

Substituting them into Eq. (22), the relationship between
W and v can be simplified as follows:

W =

� 0 sin θ½ � �
1 0

0 1=cos θ

" #
0

�h

" #
+ 0

1� 0 �h½ �
1 0

0 1=cos θ

" #
u

v

" #
=fc

=
h � ðsin θ=cos θÞ

1�ðv � sin θ=fc � cos θÞ

=
h � sin θ

cos θ�ðv = fcÞ � sin θ ; ð23Þ

which is Eq. (10).
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