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Abstract
The goal of this paper is to describe certain nonlinear topological obstructions for the existence of first-order
smoothings of mildly singular Calabi–Yau varieties of dimension at least 4. For nodal Calabi–Yau threefolds, a
necessary and sufficient linear topological condition for the existence of a first-order smoothing was first given in
[Fri86]. Subsequently, Rollenske–Thomas [RT09] generalized this picture to nodal Calabi–Yau varieties of odd
dimension by finding a necessary nonlinear topological condition for the existence of a first-order smoothing. In
a complementary direction, in [FL22a], the linear necessary and sufficient conditions of [Fri86] were extended to
Calabi–Yau varieties in every dimension with 1-liminal singularities (which are exactly the ordinary double points
in dimension 3 but not in higher dimensions). In this paper, we give a common formulation of all of these previous
results by establishing analogues of the nonlinear topological conditions of [RT09] for Calabi–Yau varieties with
weighted homogeneous k-liminal hypersurface singularities, a broad class of singularities that includes ordinary
double points in odd dimensions.
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1. Introduction

The deformation theory of generalized Fano and Calabi–Yau threefolds with ordinary double points (or
nodes), or more generally isolated canonical hypersurface singularities, has been extensively studied
[Fri86], [Nam94], [NS95], [Nam02], [Ste97], [Gro97]. This paper is part of a series [FL22a, FL22b,
FL22c, FL23] that aims to revisit and sharpen these results and explore generalizations to higher
dimensions. A motivating question throughout has been the problem of understanding the local structure
of compactified moduli spaces of Calabi–Yau varieties. Let Y be a generalized Calabi–Yau variety in a
suitable sense (Definition 1.1). Two natural questions arise: (1) Is the first-order deformation space of Y
unobstructed (i.e., is the moduli space smooth at the point corresponding to Y)? (2) If the singularities
of Y are of some prescribed type, is there a smoothing of Y (i.e. a proper flat morphism Y → Δ whose
fiber over 0 is isomorphic to Y and whose general fiber is smooth)?

To put Question (1) in context, the deformations of a Calabi–Yau manifold Y are unobstructed by the
Bogomolov-Tian-Todorov theorem. This result was generalized to the case where Y is allowed to have
ordinary double points by Kawamata, Ran and Tian [Kaw92], [Ran92], [Tia92]. In [FL22a, FL22c],
this was further extended to a much wider class of singularities, 1-Du Bois singularities (possibly non-
isolated starting in dimension 4). Turning to Question (2), a natural class of singularities to consider
is isolated Gorenstein canonical (or equivalently rational) singularities. If the singularities are also
local complete intersections, there are no local obstructions to smoothability. For isolated hypersurface
singularities, there is a natural local condition on first-order deformations (i.e., deformations over
SpecC[𝜀]), which we call a strong first-order smoothing (Definition 1.4). This condition guarantees
that any deformation of Y over Δ whose associated first-order deformation over SpecC[𝜀] is a strong
first-order smoothing is a smoothing of Y. If there is a first-order deformation of Y that is a strong first-
order smoothing at every singular point, and if, in addition, the deformation space of Y is unobstructed,
then Question (2) has a positive answer.

Already in dimension 3, there is a somewhat paradoxical aspect to Question (2): the ‘more rational’
the singularities of Y, the harder it is to decide if Y is smoothable to first order. In dimension 3, this
corresponds to the fact that there is a certain (linear) topological constraint in order for the ordinary
double points of Y to be smoothable [Fri86], whereas no such constraint exists for more complicated
rational hypersurface singularities [NS95], [FL22a]. In higher dimensions, this phenomenon is even
more striking: if Y has rational hypersurface singularities that are ‘not too rational’ (not 1-Du Bois),
then Y is smoothable at least to first order [FL22a], but these methods do not apply if the singularities
are ‘too rational’ (1-rational).

A framework for understanding these results is the theory of higher Du Bois and higher rational sin-
gularities. Mustaţă, Popa and Saito along with their collaborators and the authors have introduced the
notion of k-Du Bois and k-rational singularities for a complex algebraic variety X (for 0 ≤ 𝑘 ≤ dim 𝑋),
extending the usual notions of Du Bois and rational singularities, respectively (which correspond to
the case 𝑘 = 0) [MOPW23], [JKSY22], [FL22c]. If X has local complete intersection (lci) singular-
ities, then k-rational =⇒ 𝑘-Du Bois =⇒ (𝑘 − 1)-rational [CDM22], [FL22c], [FL24]. Thus, as
k increases, the singularities become milder: A local complete intersection singularity that is k-Du
Bois with 𝑘 > 1

2 (dim 𝑋 − 1) is smooth, and it is an ordinary double point if 𝑘 = 1
2 (dim 𝑋 − 1).

Varieties with k-rational and k-Du Bois singularities satisfy various vanishing and non-vanishing re-
sults (e.g., [Ste85], [Ste97], [MP20], [FL24]), which, in turn, are closely related to the deformation
theory of Calabi–Yau varieties in case 𝑘 = 1 [FL22a]. In particular, the deformation theory of Y is
especially well-behaved when the singularities are 1-Du Bois but not 1-rational. In this case, Question
(1) has a positive answer and, for Question (2), there is a necessary and sufficient condition for the
existence of a strong first-order smoothing in case the singular points of Y are isolated hypersurface
singularities.

As noted above, the methods of [FL22a] unfortunately say nothing about the answer to Question
(2) if the singularities are 1-rational. On the positive side, for odd-dimensional Calabi–Yau varieties Y
(of dimension at least 5) with only ordinary double points, Rollenske and Thomas found a nonlinear
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obstruction to the existence of a first-order smoothing of Y [RT09], which we state more precisely below
(Theorem 1.3). To find an appropriate generalization of this result, we make the following definition
[FL24, Definition 6.10], Definition 2.4: An isolated hypersurface singularity is k-liminal if it is k-Du
Bois, but not k-rational. In dimension 3, the only 1-liminal singularities are ordinary double points.
More generally in odd dimension 2𝑘 + 1, the only k-liminal singularities are ordinary double points.
However, ordinary double points in even dimensions are not k-liminal for any value of k. By Lemma 2.7

below, for every 𝑛 ≥ 3, there exist k-liminal singularities of dimension 𝑛 ⇐⇒ 0 ≤ 𝑘 ≤

[
𝑛 − 1

2

]
. In

particular, for every 𝑛 ≥ 3, there exist k-liminal singularities of dimension n for some 𝑘 ≥ 1. Thus,
k-liminal singularities are important boundary/transition cases and are a far-reaching generalization of
ordinary double points in odd dimensions.

Since the ordinary double points are exactly the k-liminal lci singularities in dimension 2𝑘 + 1, the
Rollenske–Thomas theorem can then be rephrased as follows: If Y is a Calabi–Yau variety of dimension
𝑛 = 2𝑘 + 1 with only k-liminal lci singularities, there is a topological obstruction to the existence of
a strong first-order smoothing of Y (i.e., a necessary condition for the existence of a strong first-order
smoothing) that is (roughly) k-linear. (In dimension 3, the obstruction is a linear condition, and it is also
sufficient [Fri86].) The main result of this paper is a generalization of the Rollenske–Thomas theorem to
the case where Y is a Calabi–Yau variety with isolated hypersurface weighted homogeneous k-liminal
singularities.

To explain our results in more detail, we begin with the following definition:

Definition 1.1. A canonical Calabi–Yau variety Y is a compact analytic variety Y with at worst canonical
Gorenstein (or equivalently rational Gorenstein) singularities, such that 𝜔𝑌 � O𝑌 , and such that either
Y is a scheme or Y has only isolated singularities and the 𝜕𝜕-lemma holds for some resolution of Y.

For a compact analytic variety Y with at worst ordinary double point singularities, recall that a first-
order deformation of Y is a flat proper morphism 𝑓 : Y → SpecC[𝜖], together with an isomorphism
from the fiber over 0 to Y, and these are classified by T1

𝑌 = Ext1(Ω1
𝑌 ,O𝑌 ). Given a class 𝜃 ∈ T1

𝑌 , its
image in 𝐻0(𝑌 ;𝑇1

𝑌 ) =
⊕

𝑥∈𝑌sing
𝑇1
𝑌 ,𝑥 measures the first-order change to the singularities of Y, and 𝜃 is a

first-order smoothing of Y if the image of 𝜃 in 𝑇1
𝑌 ,𝑥 � C is nonzero for every 𝑥 ∈ 𝑌sing. Then by [Fri86,

§4] (also [Fri91, Prop. 8.7]), we have the following:

Theorem 1.2. Suppose that Y is a canonical Calabi–Yau variety of dimension 3 whose only singularities
are ordinary double points. Let 𝜋 : 𝑌 ′ → 𝑌 be a small resolution of the singularities of Y, so that
𝜋−1 (𝑥) = 𝐶𝑥 � P1 for every 𝑥 ∈ 𝑌sing, and let [𝐶𝑥] be the fundamental class of 𝐶𝑥 in 𝐻2(𝑌 ′;Ω2

𝑌 ′ ).
Then a first-order smoothing of Y exists ⇐⇒ there exist 𝑎𝑥 ∈ C, 𝑎𝑥 ≠ 0 for every x, such that∑

𝑥∈𝑌sing 𝑎𝑥 [𝐶𝑥] = 0 in 𝐻2(𝑌 ′;Ω2
𝑌 ′ ).

Next, we describe the partial extension of Theorem 1.2 to all odd dimensions 𝑛 = 2𝑘 + 1 ≥ 3 due
to Rollenske–Thomas. For 𝑛 > 3, there is no small resolution of an ordinary double point. Instead,
consider the standard blowup of a node. The exceptional divisor is an even dimensional quadric, whose
primitive cohomology is generated by the difference [𝐴] − [𝐵], where A and B are two complementary
linear spaces of dimension k such that 𝐴 · 𝐵 = 1. For Y a projective variety of dimension 2𝑘 + 1 whose
only singular points are nodes and 𝜋 : 𝑌 → 𝑌 a standard resolution as above, for each 𝑥 ∈ 𝑌sing, there is
thus a class [𝐴𝑥] − [𝐵𝑥] ∈ 𝐻𝑘+1(𝑌 ;Ω𝑘+1

𝑌
). The following is equivalent to the necessity part of Theorem

1.2 in dimension 3 and generalizes it to all odd dimensional nodal canonical Calabi–Yau varieties
[RT09]:

Theorem 1.3. Suppose that Y is a canonical Calabi–Yau variety of odd dimension 𝑛 = 2𝑘 + 1 whose
only singularities are ordinary double points, and let 𝑌 → 𝑌 be a standard resolution as above. Then
there exist identifications 𝑇1

𝑌 ,𝑥 � C such that the following holds: If 𝜃 is a first-order smoothing of
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Y with image in 𝑇1
𝑌 ,𝑥 equal to 𝜆𝑥 ∈ C via the above isomorphisms 𝑇1

𝑌 ,𝑥 � C, then, with notation
as above, ∑

𝑥∈𝑌sing

𝜆𝑘
𝑥 ([𝐴𝑥] − [𝐵𝑥]) = 0 (1.1)

in 𝐻𝑘+1(𝑌 ;Ω𝑘+1
𝑌

).

We can interpret Theorem 1.3 in the following way. First, if there exists a first-order smoothing of
Y, then the classes [𝐴𝑥] − [𝐵𝑥] are not linearly independent in 𝐻𝑘+1(𝑌 ;Ω𝑘+1

𝑌
), and in fact satisfy a

linear relation whose coefficients are all nonzero. Second, the image of T1
𝑌 in 𝐻0(𝑌 ;𝑇1

𝑌 ), which is a
vector subspace of 𝐻0(𝑌 ;𝑇1

𝑌 ), is contained in the subvariety of 𝐻0(𝑌 ;𝑇1
𝑌 ) defined by the nonlinear

Equation 1.1, which is roughly speaking an intersection of affine varieties of Fermat type.
The goal of this paper is to generalize Theorem 1.3. To state the result, let Y be as before a compact

analytic variety with isolated singularities. If 𝑥 ∈ 𝑌sing is a singular point, let 𝜋 : 𝑌 → 𝑌 be some log
resolution of Y, and let 𝐸𝑥 = 𝜋−1 (𝑥) be the exceptional divisor over x. In the case of ordinary double
points, dim𝑇1

𝑌 ,𝑥 = 1 for a singular point and there are distinguished classes [𝐴𝑥]−[𝐵𝑥] ∈ 𝐻𝑘+1(𝑌 ;Ω𝑘+1
𝑌

)

that are defined locally around the singular points. In general, dim𝑇1
𝑌 ,𝑥 ≠ 1, so we must define the types

of smoothings to which our methods will apply:
Definition 1.4. Let (𝑋, 𝑥) be the germ of an isolated hypersurface singularity, so that 𝑇1

𝑋,𝑥 = O𝑋,𝑥/𝐽 is
a cyclic O𝑋,𝑥-module. Thus, dim𝑇1

𝑋,𝑥/𝔪𝑥𝑇
1
𝑋,𝑥 = 1. Then an element 𝜃𝑥 ∈ 𝑇1

𝑋,𝑥 is a strong first-order
smoothing if 𝜃𝑥 ∉ 𝔪𝑥𝑇

1
𝑋,𝑥 . In case x is an ordinary double point, 𝜃𝑥 ∈ 𝑇1

𝑋,𝑥 is a strong first-order
smoothing ⇐⇒ 𝜃𝑥 ≠ 0. For a compact Y with only isolated hypersurface singularities, a first-order
deformation 𝜃 ∈ T1

𝑌 is a strong first-order smoothing if the image 𝜃𝑥 of 𝜃 in 𝑇1
𝑋,𝑥 is a strong first-order

smoothing for every 𝑥 ∈ 𝑌sing. A standard argument (e.g., [FL22a, Lemma 1.9]) shows that if 𝑓 : Y → Δ
is a deformation of Y over the disk, then its Kodaira-Spencer class 𝜃 is a strong first-order smoothing
⇐⇒ Y is smooth, and in particular, the nearby fibers 𝑌𝑡 = 𝑓 −1(𝑡), 0 < |𝑡 | 	 1, are smooth.
Remark 1.5. For 𝑘 ≥ 1, a k-liminal singularity is in particular 1-Du Bois. Hence, by [FL22c, Corollary
1.5], a canonical Calabi–Yau variety Y with only isolated k-liminal hypersurface singularities has
unobstructed deformations. In particular, if there exists a strong first-order smoothing of Y, then Y is
smoothable.

To deal with the correct generalization of the class [𝐴𝑥]− [𝐵𝑥], recall that for each 𝑥 ∈ 𝑌sing (assumed
throughout to be an isolated hypersurface singularity), we have the corresponding link 𝐿𝑥 at x. There is
a natural mixed Hodge structure on 𝐻•(𝐿) (see, for example, [PS08, §6.2]). Moreover, for all k, there is
a natural map

𝜑 : Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿𝑥) → 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
) (1.2)

given as the composition

Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿𝑥) = 𝐻𝑘 (𝐸𝑥 ;Ω𝑛−𝑘

𝑌
(log 𝐸𝑥) |𝐸𝑥) → Gr𝑛−𝑘𝐹 𝐻𝑛+1

𝐸 (𝑌 ) = 𝐻𝑘 (𝐸𝑥 ;Ω𝑛−𝑘

𝑌
(log 𝐸𝑥)/Ω

𝑛−𝑘

𝑌
)

𝜕
−→ 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
).

In case there is a Hodge decomposition for 𝑌 (for example, if 𝑌 is Kähler or more generally satisfies the
𝜕𝜕-lemma), the above maps are consistent in the obvious sense with the topological maps

𝐻𝑛 (𝐿𝑥) → 𝐻𝑛+1
𝐸𝑥

(𝑌 ) → 𝐻𝑛+1(𝑌 ),

where via Poincaré duality, the map 𝐻𝑛 (𝐿𝑥) → 𝐻𝑛+1 (𝑌 ) is the same as the natural map 𝐻𝑛−1(𝐿𝑥) →
𝐻𝑛−1 (𝑌 ). In the special case where x is an ordinary double point and 𝑛 = 2𝑘 +1, dim 𝐻𝑛 (𝐿𝑥) = 1, so that
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𝐻𝑛 (𝐿𝑥) = C𝜀𝑥 for some 𝜀𝑥 ∈ 𝐻𝑛 (𝐿𝑥), and, for an appropriate choice of 𝜀𝑥 , 𝜑(𝜀𝑥) = [𝐴𝑥] − [𝐵𝑥] ∈
𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
) = 𝐻𝑘+1(𝑌 ;Ω𝑘+1

𝑌
).

The link of a k-liminal singularity is formally analogous to that of an ordinary double point in odd
dimensions, by the following result, essentially due to Dimca-Saito [DS12, §4.11] (cf. also [FL24,
Corollary 6.14]):

Theorem 1.6. If (𝑋, 𝑥) is the germ of an isolated k-liminal hypersurface singularity and L is the
corresponding link, then dim Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) = 1.

For 1-liminal singularities, we showed [FL22a, Lemma 5.6, Corollary 5.12] that there is a necessary
and sufficient linear condition for there to exist a strong first-order smoothing of Y, and hence an
actual smoothing by Remark 1.5. This statement (see Theorem 2.11 below for a precise version) can
be viewed as a natural generalization of Theorem 1.2. The main results of this paper, Theorem 4.4
and Corollary 4.5, are then further generalizations that apply to all weighted homogeneous k-liminal
singularities. However, as in Theorem 1.3, we are only able to obtain necessary conditions for 𝑘 ≥ 2:

Theorem 1.7. Let Y be a canonical Calabi–Yau variety of dimension n with isolated k-liminal weighted
homogeneous hypersurface singularities and 𝑘 ≥ 1. For each singular point 𝑥 ∈ 𝑌 , let 𝐿𝑥 be the link at
x, and write Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿𝑥) = 𝐻𝑘 (𝐸𝑥 ;Ω𝑛−𝑘

𝑌
(log 𝐸𝑥) |𝐸𝑥) = C · 𝜀𝑥 for some choice of a generator 𝜀𝑥 .

Let 𝜑 : Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) =
⊕

𝑥∈𝑌sing
Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) → 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
) be the natural map.

Finally, for each 𝑥 ∈ 𝑌sing, fix an identification 𝑇1
𝑌 ,𝑥/𝔪𝑥𝑇

1
𝑌 ,𝑥 � C. Then, for each 𝑥 ∈ 𝑌sing, there

exist 𝑐𝑥 ∈ C∗ with the following property: If 𝜃 ∈ T1
𝑌 induces 𝜆𝑥 ∈ C, then∑

𝑥∈𝑌sing

𝑐𝑥𝜆
𝑘
𝑥𝜑(𝜀𝑥) = 0 ∈ 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
).

In particular, if a strong first-order smoothing of Y exists, then the classes 𝜑(𝜀𝑥) are not linearly
independent.

In some sense, the proof of Theorem 1.7 follows the main outlines of [RT09]. A key aspect of our
arguments is that by restricting to weighted homogeneous singularities, we can work as if there exists a
log resolution with a single (smooth) exceptional divisor E as in loc. cit. More precisely, for Y with such
singularities, there is the weighted blowup (i.e., an orbifold resolution of singularities 𝑌# → 𝑌 whose
exceptional divisors E are smooth divisors in the sense of orbifolds). There are stacks naturally associated
to𝑌# and E, a picture that is worked out in detail in [FL22a, §3] (whose methods we use systematically).
Thus, we can proceed as if 𝑌# and E were smooth and use the familiar numerology of hypersurfaces in
weighted projective space. It would be interesting to generalize the proof of Theorem 1.7 to the case
where the singularities are not necessarily weighted homogeneous.

The outline of this paper is as follows. In §2.1, we collect some necessary preliminaries about isolated
singularities. k-liminal singularities are defined in §2.2, and the stack point of view is recalled in §2.3.
Section 3 deals with the geometry of k-liminal weighted homogeneous singularities and establishes the
existence of a nonzero homogeneous pairing between two one-dimensional vector spaces. In §4.1, this
construction is globalized to establish Theorem 1.7 (Theorem 4.4 and Corollary 4.5). There is also a
brief discussion in §4.2 of the interplay between the Hodge theory of Y or of𝑌 and of a smoothing𝑌𝑡 of Y.

2. Preliminaries

2.1. Some general Hodge theory

Let X be a contractible Stein neighborhood of the isolated singularity x of dimension 𝑛 ≥ 3, and let
𝜋 : 𝑋 → 𝑋 be a good (log) resolution (i.e., 𝜋 is a resolution of singularities, and 𝐸 = 𝜋−1 (𝑥) (with
its reduced structure) is a divisor with simple normal crossings). For every coherent sheaf F on 𝑋 ,
𝐻𝑖 (𝑋;F) � 𝐻0(𝑋; 𝑅𝑖𝜋∗F). Let 𝑈 = 𝑋 − {𝑥} = 𝑋 − 𝐸 . In the global setting, Y will denote a projective
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variety of dimension n with isolated singularities, 𝑍 = 𝑌sing the singular locus of Y, and 𝜋 : 𝑌 → 𝑌 a
good (log) resolution at each singular point. We will also use E to denote the exceptional divisor in
this context (i.e., 𝐸 = 𝜋−1 (𝑍)), again viewed as a reduced divisor, and 𝑉 = 𝑌 − 𝐸 = 𝑌 − 𝑍 . Instead of
assuming that Y is projective, it is more generally enough to assume that Y has a resolution satisfying
the 𝜕𝜕-lemma.

Lemma 2.1. With Y and 𝜋 : 𝑌 → 𝑌 as above, and for all 𝑝, 𝑞, the groups 𝐻𝑞 (𝑋;Ω𝑝

𝑋
(log 𝐸)),

𝐻𝑞 (𝑋;Ω𝑝

𝑋
(log 𝐸) (−𝐸)), 𝐻𝑞 (𝑌 ;Ω𝑝

𝑌
(log 𝐸)) and 𝐻𝑞 (𝑌 ;Ω𝑝

𝑌
(log 𝐸) (−𝐸)) are all independent of the

choice of resolution.

Proof. The independence of 𝐻𝑞 (𝑌 ;Ω𝑝

𝑌
(log 𝐸)) is a result of Deligne [Del71, 3.2.5(ii)]. The inde-

pendence of 𝐻𝑞 (𝑌 ;Ω𝑝

𝑌
(log 𝐸) (−𝐸)) then follows because 𝐻𝑞 (𝑌 ;Ω𝑝

𝑌
(log 𝐸) (−𝐸)) is Serre dual to

𝐻𝑛−𝑞 (𝑌 ;Ω𝑛−𝑝

𝑌
(log 𝐸)). The local results for 𝑋 can then be reduced to this case (cf. [FL22a, Remark

3.15]). �

Remark 2.2. In case Y is projective, we can understand the birational invariance as follows: Let
Ω•
𝑌 ,𝑍 be the relative filtered de Rham complex as defined by Du Bois [DB81]. By [DB81, Théorème

2.4], Ω•
𝑌 ,𝑍 is an invariant of Y as an object in the filtered derived category, and the corresponding

Hodge spectral sequence degenerates at 𝐸1 in case Y is projective. By [PS08, Example 7.25], Ω𝑝
𝑌 ,𝑍 �

𝑅𝜋∗Ω
𝑝

𝑌
(log 𝐸) (−𝐸). Applying the Leray spectral sequence for hypercohomology gives

Gr𝑝𝐹 𝐻 𝑝+𝑞 (𝑌, 𝑍) = H𝑞 (𝑌 ;Ω𝑝
𝑌 ,𝑍 ) = 𝐻𝑞 (𝑌 ;Ω𝑝

𝑌
(log 𝐸) (−𝐸)).

Hence, 𝐻𝑞 (𝑌 ;Ω𝑝

𝑌
(log 𝐸) (−𝐸)) = Gr𝑝𝐹 𝐻 𝑝+𝑞 (𝑌, 𝑍) does not depend on the choice of a resolution.

Note that from the exact sequence

· · · → 𝐻𝑖−1(𝑍) → 𝐻𝑖 (𝑌, 𝑍) → 𝐻𝑖 (𝑌 ) → 𝐻𝑖 (𝑍) → · · · ,

𝐻𝑖 (𝑌, 𝑍) � 𝐻𝑖 (𝑌 ) except for 𝑖 = 0, 1 since dim 𝑍 = 0. Moreover, the hypercohomology of the exact
sequence

0 → Ω•

𝑌
(log 𝐸) (−𝐸) → Ω•

𝑌
→ Ω•

𝐸/𝜏
•
𝐸 → 0

gives the Mayer–Vietoris sequence, an exact sequence of mixed Hodge structures:

· · · → 𝐻𝑖−1(𝐸) → 𝐻𝑖 (𝑌, 𝑍) → 𝐻𝑖 (𝑌 ) → 𝐻𝑖 (𝐸) → · · · .

Finally, the duality between H•(𝑌 ;Ω•

𝑌
(log 𝐸) (−𝐸)) and H•(𝑌 ;Ω•

𝑌
(log 𝐸)) corresponds to Poincaré

duality (cf. [PS08, §5.5, B.21, B.24])

𝐻𝑖 (𝑌, 𝑍) � 𝐻𝑖
𝑐 (𝑌 − 𝑍) � (𝐻2𝑛−𝑖 (𝑌 − 𝑍))∨(−𝑛) = (𝐻2𝑛−𝑖 (𝑌 − 𝐸))∨(−𝑛).

Lemma 2.3. With Y and 𝜋 : 𝑌 → 𝑌 as above, the map

Gr𝑛−𝑘𝐹 𝐻𝑛+1(𝑌 ) = 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸)) → 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
)

is injective for all 𝑘 ≥ 0.
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Proof. We have the exact sequence

𝐻𝑘 (𝑌 ;Ω𝑛−𝑘

𝑌
) → 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘

𝐸 /𝜏𝑛−𝑘𝐸 ) → 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸)) → 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
).

By semipurity in the local setting [Ste83, (1.12)], the map 𝐻𝑛
𝐸 (𝑋) → 𝐻𝑛 (𝐸) is an isomorphism. Since

it factors by excision as 𝐻𝑛
𝐸 (𝑋) � 𝐻𝑛

𝐸 (𝑌 ) → 𝐻𝑛 (𝑌 ) → 𝐻𝑛 (𝐸), the map 𝐻𝑛 (𝑌 ) → 𝐻𝑛 (𝐸) is therefore
surjective, and hence, by strictness of morphisms, so is the map

Gr𝑛−𝑘𝐹 𝐻𝑛 (𝑌 ) = 𝐻𝑘 (𝑌 ;Ω𝑛−𝑘

𝑌
) → Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐸) = 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘

𝐸 /𝜏𝑛−𝑘𝐸 ).

Thus, the map 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸)) → 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
) is injective. �

2.2. k-Du Bois, k-rational, and k-liminal singularities

The k-Du Bois and k-rational singularities, natural extensions of Du Bois and rational singularities,
respectively (the case 𝑘 = 0), were recently introduced by [MOPW23], [JKSY22], [KL20], [FL22c] and
[MP22]. The relevance of these classes of singularities (especially for 𝑘 = 1) to the deformation theory
of singular Calabi–Yau and Fano varieties is discussed in [FL22a], which additionally singles out the k-
liminal singularities (for 𝑘 = 1) as particularly relevant to the deformation theory of such varieties. The
k-liminal singularities should be understood as the frontier case between (𝑘 −1)-rational and k-rational.
For the convenience of the reader, we summarize the relevant facts for these classes of singularities.
Definition 2.4. Let (𝑋, 𝑥) be the germ of an isolated local complete intersection (lci) singularity of
dimension 𝑛 ≥ 3, and let 𝜋 : 𝑋 → 𝑋 be a good resolution with exceptional divisor E. Then X is k-Du
Bois if 𝑅𝑖𝜋∗Ω

𝑝

𝑋
(log 𝐸) (−𝐸) = 0 for 𝑖 > 0 and 𝑝 ≤ 𝑘 , and is k-rational if 𝑅𝑖𝜋∗Ω

𝑝

𝑋
(log 𝐸) = 0 for 𝑖 > 0

and 𝑝 ≤ 𝑘 . By [FL22c], [MP22], if (𝑋, 𝑥) is k-rational, then it is k-Du Bois and by [FL24], [CDM22],
if (𝑋, 𝑥) is k-Du Bois, then it is (𝑘 − 1)-rational.

Finally, (𝑋, 𝑥) is k-liminal if it is k-Du Bois but not k-rational. In this case, if X is a hypersurface
singularity, then dim Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) = 1, by Theorem 1.6.

The following collects some basic facts about k-liminal singularities:
Lemma 2.5. Let X be the germ of an isolated hypersurface singularity.

(i) If dim 𝑋 = 3 and X is not smooth, then X is not 1-rational, and X is 1-liminal ⇐⇒ 𝑋 is 1-Du
Bois ⇐⇒ 𝑋 is an ordinary double point.

(ii) More generally, if X is a k-Du Bois singularity and 𝑘 > 1
2 (𝑛−1), then X is smooth. If dim 𝑋 = 2𝑘+1

and X is not smooth, then X is k-Du Bois ⇐⇒ 𝑋 is k-liminal ⇐⇒ 𝑋 is an ordinary double point.
(iii) Suppose that X is weighted homogeneous. Viewing X as locally analytically isomorphic to the

subvariety { 𝑓 = 0} of (C𝑛+1, 0), where C∗ acts on C𝑛+1 with weights 𝑎1, . . . , 𝑎𝑛+1 ≥ 1, and f is
weighted homogeneous of degree d, define 𝑤𝑖 = 𝑎𝑖/𝑑. Then
(a) X is k-Du Bois ⇐⇒

∑𝑛+1
𝑖=1 𝑤𝑖 ≥ 𝑘 + 1.

(b) X is k-rational ⇐⇒
∑𝑛+1

𝑖=1 𝑤𝑖 > 𝑘 + 1.
(c) X is k-liminal ⇐⇒

∑𝑛+1
𝑖=1 𝑤𝑖 = 𝑘 + 1.

Proof. (i) This is a result of Namikawa-Steenbrink [NS95, Theorem 2.2] (cf. also [FL24, Corollary
6.12]).

(ii) This is [DM23, Corollary 6.3] (cf. also [FL24, Corollary 4.4]).
(iii) This is a result of Saito [Sai16, (2.5.1)] (see also [FL24, Corollary 6.8]). �

Remark 2.6. (i) By definition, a 0-liminal singularity is 0-Du Bois (i.e. Du Bois in the terminology
of [Ste83]), but not rational. Thus, these singularities fall outside the scope of this paper. If X is an
isolated normal Gorenstein surface singularity that is Du Bois but not rational, then by [Ste83, 3.8], X
is either a simple elliptic or a cusp singularity. Such singularities are known to be deeply connected to

https://doi.org/10.1017/fms.2024.44 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.44


8 R. Friedman and R. Laza

degenerations of 𝐾3 surfaces. In [FL23], we explore the analogous picture for Calabi–Yau varieties in
higher dimensions in case Y has hypersurface singularities.

(ii) Assume that X is a weighted homogeneous hypersurface singularity. If X is the cone over a smooth
hypersurface E of degree d in P𝑛, then, by Lemma 2.5(iii), the k-liminal condition is 𝑛 + 1 = 𝑑 (𝑘 + 1),
and in particular, 𝑛 + 1 is divisible by d and by 𝑘 + 1. Thus, these examples are somewhat sparse. By
Theorem 1.6, the Hodge structure on 𝐻𝑛−1 (𝐸) is (up to a Tate twist) of Calabi–Yau type. Primarily for
this reason, such hypersurfaces are exceptions to Donagi’s proof for generic Torelli ([Don83]; cf. Voisin
[Voi22] for recent work along these lines).

Despite Remark 2.6(ii) above, there are many examples of isolated weighted homogeneous k-liminal
singularities:

Lemma 2.7. For all k with 1 ≤ 𝑘 ≤

[
𝑛 − 1

2

]
, there exists an isolated weighted homogeneous k-liminal

singularity given by a diagonal hypersurface 𝑓 (𝑧) = 𝑧𝑒1
1 + · · · + 𝑧𝑒𝑛+1

𝑛+1 .

Proof. Given k such that 1 ≤ 𝑘 ≤

[
𝑛 − 1

2

]
, let 𝑓 (𝑧) = 𝑧𝑒1

1 + · · · + 𝑧𝑒𝑛+1
𝑛+1 . First suppose that 𝑛 = 2𝑎 + 1 is

odd, so
[
𝑛 − 1

2

]
= 𝑎. Then choose 2ℓ of the 𝑒𝑖 equal to 2 and the remaining 𝑛+1−2ℓ = 2(𝑎+1−ℓ) equal

to
𝑛 + 1 − 2ℓ

2
= 𝑎 + 1 − ℓ. Here, 0 ≤ ℓ ≤ 𝑎 − 1 because the value ℓ = 𝑎 would give some 𝑒𝑖 = 1. Then

∑
𝑖

𝑤𝑖 =
∑
𝑖

1
𝑒𝑖

=
1
2
(2ℓ) + (𝑛 + 1 − 2ℓ)

(
2

𝑛 + 1 − 2ℓ

)
= ℓ + 2,

and hence, 𝑘 =
∑

𝑖 𝑤𝑖 − 1 = ℓ + 1 can take on all possible values from 1 to a.

Similarly, if 𝑛 = 2𝑎 is even, so that
[
𝑛 − 1

2

]
= 𝑎 − 1, and 1 ≤ ℓ ≤ 𝑎 − 2, choose 2ℓ − 1 of the 𝑒𝑖 to be

2, 2 of the 𝑒𝑖 to be 4, and the remaining 𝑛 + 1 − (2ℓ + 1) = 2𝑎 − 2ℓ to be
𝑛 + 1 − (2ℓ + 1)

2
= 𝑎 − ℓ. Then

∑
𝑖

𝑤𝑖 =
∑
𝑖

1
𝑒𝑖

=
1
2
(2ℓ − 1) +

1
2
+ (𝑛 + 1 − (2ℓ + 1))

(
2

𝑛 + 1 − (2ℓ + 1)

)
= ℓ + 2,

and hence, 𝑘 =
∑

𝑖 𝑤𝑖 − 1 = ℓ + 1 can take on all possible values from 2 to 𝑎 − 1. For the remaining
possibility 𝑘 = 1, take 𝑛 − 1 = 2𝑎 − 1 of the 𝑒𝑖 equal to a and the remaining two equal to 2𝑎 to get∑

𝑖 𝑤𝑖 = 2 and hence, 𝑘 = 1. �

The following then generalizes [RT09, 2.6]:

Lemma 2.8. If the singularities of X are isolated 1-Du Bois lci singularities, then 𝐻0 (𝑋;𝑇1
𝑋 ) �

𝐻1 (𝑋;Ω𝑛−1
𝑋

(log 𝐸)). In the global case, T1
𝑌 � 𝐻1(𝑌 ;Ω𝑛−1

𝑌
(log 𝐸)), compatibly with the map T1

𝑌 →

𝐻0 (𝑌 ;𝑇1
𝑌 ) and restriction – that is, the following diagram commutes:

𝐻1 (𝑌 ;Ω𝑛−1
𝑌

(log 𝐸)) −−−−−−→ 𝐻0 (𝑌 ; 𝑅1𝜋∗Ω𝑛−1
𝑌

(log 𝐸))

�
⏐⏐� ⏐⏐��
T1
𝑌 −−−−−−→ 𝐻0(𝑌 ;𝑇1

𝑌 ).
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Proof. First, by a result of Schlessinger (see, for example, [FL22a, Lemma 1.16]), 𝐻0(𝑋;𝑇1
𝑋 ) �

𝐻1 (𝑈;𝑇0
𝑋 |𝑈). Clearly, 𝐻1(𝑈;𝑇0

𝑋 |𝑈) = 𝐻1(𝑈;Ω𝑛−1
𝑋

(log 𝐸) |𝑈). The local cohomology sequence gives

𝐻1
𝐸 (𝑋;Ω𝑛−1

𝑋
(log 𝐸)) → 𝐻1 (𝑋;Ω𝑛−1

𝑋
(log 𝐸)) → 𝐻0 (𝑋;𝑇1

𝑋 ) → 𝐻2
𝐸 (𝑋;Ω𝑛−1

𝑋
(log 𝐸)).

Since 1-Du Bois lci singularities are rational, 𝐻1
𝐸 (𝑋;Ω𝑛−1

𝑋
(log 𝐸)) = 0 by [FL22a, 1.8], and the

1-Du Bois assumption implies that 𝐻2
𝐸 (𝑋;Ω𝑛−1

𝑋
(log 𝐸)) = 0 (cf. [FL22a, 2.8]). Hence, 𝐻0(𝑋;𝑇1

𝑋 ) �

𝐻1 (𝑋;Ω𝑛−1
𝑋

(log 𝐸)). The global case is similar, using T1
𝑌 � 𝐻1 (𝑉 ;Ω𝑛−1

𝑌
(log 𝐸) |𝑉), and the compati-

bility is clear. �

There is a similar result for 1-rational singularities:

Lemma 2.9. If the singularities of X are isolated 1-rational lci singularities, then 𝐻0(𝑋;𝑇1
𝑋 ) �

𝐻1 (𝑋;Ω𝑛−1
𝑋

(log 𝐸) (−𝐸)). Globally, T1
𝑌 � 𝐻1 (𝑌 ;Ω𝑛−1

𝑌
(log 𝐸) (−𝐸)), and there is a commutative dia-

gram

𝐻1(𝑌 ;Ω𝑛−1
𝑌

(log 𝐸) (−𝐸)) −−−−−−→ 𝐻0 (𝑌 ; 𝑅1𝜋∗Ω𝑛−1
𝑌

(log 𝐸) (−𝐸))

�
⏐⏐� ⏐⏐��
T1
𝑌 −−−−−−→ 𝐻0(𝑌 ;𝑇1

𝑌 ).

Proof. Since isolated 1-rational singularities are 1-Du Bois, it suffices by Lemma 2.8 to show that the
map 𝐻1(𝑋;Ω𝑛−1

𝑋
(log 𝐸) (−𝐸)) → 𝐻1(𝑋;Ω𝑛−1

𝑋
(log 𝐸)) is an isomorphism. We have the long exact

sequence

𝐻0 (𝐸 ;Ω𝑛−1
𝑋

(log 𝐸) |𝐸) → 𝐻1 (𝑋;Ω𝑛−1
𝑋

(log 𝐸) (−𝐸)) → 𝐻1(𝑋;Ω𝑛−1
𝑋

(log 𝐸))

→ 𝐻1 (𝐸 ;Ω𝑛−1
𝑋

(log 𝐸) |𝐸).

Moreover, 𝐻1(𝐸 ;Ω𝑛−1
𝑋

(log 𝐸) |𝐸) = Gr𝑛−1
𝐹 𝐻𝑛 (𝐿), which has dimension ℓ𝑛−1,1 = ℓ1,𝑛−2 = 0 by the

1-rational condition [FL24, Theorem 5.3(iv)]. Likewise, dim 𝐻0(𝐸 ;Ω𝑛−1
𝑋

(log 𝐸) |𝐸) = ℓ𝑛−1,0. Since X
is a rational singularity, ℓ𝑛−1,0 = 0 by a result of Steenbrink [Ste97, Lemma 2]. Hence,

𝐻1 (𝑋;Ω𝑛−1
𝑋

(log 𝐸) (−𝐸)) � 𝐻1(𝑋;Ω𝑛−1
𝑋

(log 𝐸)).

The global case and the compatibility are again clear. �

Remark 2.10. In the global case, where we do not make the assumption that 𝜔𝑌 � O𝑌 , the above
lemmas remain true provided that we replace 𝐻1(𝑌 ;Ω𝑛−1

𝑌
(log 𝐸)) resp. 𝐻1 (𝑌 ;Ω𝑛−1

𝑌
(log 𝐸) (−𝐸)) by

𝐻1 (𝑌 ;Ω𝑛−1
𝑌

(log 𝐸) ⊗ 𝜋∗𝜔−1
𝑌 ) resp. 𝐻1(𝑌 ;Ω𝑛−1

𝑌
(log 𝐸) (−𝐸) ⊗ 𝜋∗𝜔−1

𝑌 ).

To illustrate how these results may be used in practice, we give a quick proof of a slight variant of
[FL22a, Corollary 5.8]:

Theorem 2.11. Suppose that Y is a canonical Calabi–Yau variety of dimension 𝑛 ≥ 3 with isolated
1-liminal hypersurface singularities. Then a strong first-order smoothing of Y exists ⇐⇒ for every 𝑥 ∈
𝑍 , there exists 𝑎𝑥 ∈ C, 𝑎𝑥 ≠ 0, such that

∑
𝑥 𝑎𝑥𝜑(𝜀𝑥) = 0 in 𝐻2 (𝑌 ;Ω𝑛−1

𝑌
), where 𝜀𝑥 ∈ Gr𝑛−1

𝐹 𝐻𝑛 (𝐿𝑥)

is a generator and 𝜑 is the composition

𝐻1(𝐸 ;Ω𝑛−1
𝑌

(log 𝐸) |𝐸)
𝜕
−→ 𝐻2(𝑌 ;Ω𝑛−1

𝑌
(log 𝐸) (−𝐸)) → 𝐻2(𝑌 ;Ω𝑛−1

𝑌
).

In particular, if Y satisfies the above condition, it is smoothable.
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Proof. By Lemma 2.8, there are isomorphisms

𝐻0 (𝑋;𝑇1
𝑋 ) � 𝐻1(𝑈;𝑇0

𝑋 |𝑈) � 𝐻1(𝑈;Ω𝑛−1
𝑋

(log 𝐸) |𝑈).

Following the isomorphism 𝐻0(𝑋;𝑇1
𝑋 ) � 𝐻1(𝑈;Ω𝑛−1

𝑋
(log 𝐸) |𝑈) with the restriction map

𝐻1(𝑈;Ω𝑛−1
𝑋

(log 𝐸) |𝑈) → 𝐻1 (𝐸 ;Ω𝑛−1
𝑌

(log 𝐸) |𝐸)

gives a homomorphism 𝐻0 (𝑌 ;𝑇1
𝑌 ) → 𝐻1(𝐸 ;Ω𝑛−1

𝑌
(log 𝐸) |𝐸), such that the following diagram is

commutative:

T1
𝑌 −−−−−−→ 𝐻0 (𝑌 ;𝑇1

𝑌 )

�
⏐⏐� ⏐⏐�

𝐻1(𝑌 ;Ω𝑛−1
𝑌

(log 𝐸)) −−−−−−→ 𝐻1(𝐸 ;Ω𝑛−1
𝑌

(log 𝐸) |𝐸)
𝜕

−−−−−−→ 𝐻2 (𝑌 ;Ω𝑛−1
𝑌

(log 𝐸) (−𝐸)).

Here, if as usual 𝐸𝑥 = 𝜋−1(𝑥), 𝐻1(𝐸𝑥 ;Ω𝑛−1
𝑌

(log 𝐸) |𝐸𝑥) has dimension one for every 𝑥 ∈ 𝑍 by the
1-liminal assumption. Let 𝜀𝑥 be a basis vector. By [FL22a, Lemma 2.6, Theorem 2.1(v)], the map
𝑇1
𝑌 ,𝑥 → 𝐻1 (𝐸𝑥 ;Ω𝑛−1

𝑌
(log 𝐸) |𝐸𝑥) is surjective, and its kernel is 𝔪𝑥𝑇

1
𝑌 ,𝑥 . Thus, Y has a strong first-

order smoothing ⇐⇒ for every 𝑥 ∈ 𝑍 , there exists 𝑎𝑥 ∈ C, 𝑎𝑥 ≠ 0, such that
∑

𝑥∈𝑍 𝑎𝑥𝜕 (𝜀𝑥) = 0
in 𝐻2(𝑌 ;Ω𝑛−1

𝑌
(log 𝐸) (−𝐸)). By Lemma 2.3, the map 𝐻2 (𝑌 ;Ω𝑛−1

𝑌
(log 𝐸) (−𝐸)) → 𝐻2(𝑌 ;Ω𝑛−1

𝑌
) is

injective. It follows that
∑

𝑥 𝑎𝑥𝜕 (𝜀𝑥) = 0 in 𝐻2(𝑌 ;Ω𝑛−1
𝑌

(log 𝐸) (−𝐸)) ⇐⇒
∑

𝑥 𝑎𝑥𝜑(𝜀𝑥) = 0 in
𝐻2 (𝑌 ;Ω𝑛−1

𝑌
). Thus, a strong first-order smoothing exists ⇐⇒

∑
𝑥 𝑎𝑥𝜑(𝜀𝑥) = 0. The final statement

then follows from [FL22c, Corollary 1.5]. �

Remark 2.12. There is a similar result in the 1-liminal Fano case: Assume that Y has only isolated 1-
liminal hypersurface singularities and that 𝜔−1

𝑌 is ample. In this case, the above construction produces an
obstruction to a strong first-order smoothing – namely,

∑
𝑥∈𝑍 𝑐𝑥𝜆

𝑘
𝑥𝜕 (𝜀𝑥) ∈ 𝐻2(𝑌 ;Ω𝑛−1

𝑌
(log 𝐸) (−𝐸) ⊗

𝜋∗𝜔−1
𝑌 ). The group 𝐻2(𝑌 ;Ω𝑛−1

𝑌
(log 𝐸) (−𝐸) ⊗ 𝜋∗𝜔−1

𝑌 ) is Serre dual to 𝐻𝑛−2 (𝑌 ;Ω1
𝑌
(log 𝐸) ⊗ 𝜋∗𝜔𝑌 ).

In many cases, 𝐻𝑛−2 (𝑌 ;Ω1
𝑌
(log 𝐸)) ⊗ 𝜋∗𝜔𝑌 ) = 0. For example, if there exists a smooth Cartier divisor

H on Y, thus not passing through the singular points of Y, such that 𝜔𝑌 = O𝑌 (−𝐻), and in addition
𝐻𝑛−3 (𝐻;Ω1

𝐻 ) = 0, then an argument with the Goresky-MacPherson-Lefschetz theorem in intersection
cohomology [GM83] shows that

𝐻𝑛−2 (𝑌 ;Ω1
𝑌
(log 𝐸) ⊗ 𝜋∗𝜔𝑌 ) = 𝐻𝑛−2 (𝑌 ;Ω1

𝑌
(log 𝐸) ⊗ O𝑌 (−𝐻)) = 0,

where we identify the divisor H on Y with its preimage 𝜋∗𝐻 on 𝑌 . The proof of Theorem 2.11 then
shows that, under these assumptions, a strong first-order smoothing of Y always exists, and hence, Y is
smoothable by [FL22a, Theorem 4.5]. A somewhat stronger statement is proved in [FL22a, Corollary
4.10].

Remark 2.13. In dimension three, a singular point can be k-liminal only for 𝑘 = 1. Since this case is
covered by Theorem 2.11, we are free to make the assumption that 𝑛 ≥ 4, as needed in what follows.

2.3. Weighted homogeneous singularities and quotient stacks

For the remainder of this section, we are concerned with generalizing the above picture, and in particular,
Lemma 2.9, in the context of stacks: Assume that the isolated singularity X is locally analytically
isomorphic to a weighted cone in C𝑛+1 over a weighted hypersurface 𝐸 ⊆ 𝑊𝑃𝑛. Thus, we may as well
assume that X is the weighted cone as in Lemma 2.5(iii), with an isolated singularity at 0.
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Definition 2.14. Let X be the weighted cone in C𝑛+1 over a weighted hypersurface 𝐸 ⊆ 𝑊𝑃𝑛, where
𝑊𝑃𝑛 is a weighted projective space, and 𝑋# the weighted blowup of X as in [FL22a, §3]. Let 𝐸 , 𝑋#,𝑊𝑃𝑛

be the corresponding quotient stacks. If X has an isolated singularity at 0, then 𝑋# and 𝐸 are quotient
stacks for an action of C∗ on smooth schemes with finite stabilizers. Hence, 𝑋# is a smooth stack, 𝐸 is a
smooth divisor in 𝑋#, and there is a morphism 𝑋# → 𝑋 that defines an isomorphism 𝑋#−𝐸 → 𝑋 −{0}.

Globally, let Y be a projective variety of dimension n with isolated weighted homogeneous hyper-
surface singularities. Let 𝜋 : 𝑌# → 𝑌 denote the weighted blowup of Y at the singularities, and let E
be the exceptional divisor (i.e., 𝐸 = 𝜋−1 (𝑍) where 𝑍 = 𝑌sing). We can also construct a stacky version
of 𝑌# as follows: For each 𝑥 ∈ 𝑍 , we have the corresponding exceptional divisor 𝐸𝑥 . Let X denote the
corresponding weighted cone in C𝑛+1. There is a (Zariski) open neighborhood 𝑈 ⊆ 𝑌 of x and an étale
morphism 𝑈 → 𝑋 . We can then pull back the stack 𝑋# to a stack 𝑈# and glue 𝑈# and 𝑌 − {𝑥} along the
Zariski open subset 𝑈 − {𝑥}. Doing this for each singular point defines the stack 𝑌#.

A similar construction works in the analytic category, where we view an analytic stack as a functor
on the category of complex analytic spaces. This allows for the possibility that, in Definition 1.1, Y is a
compact analytic, not necessarily algebraic space.

As in Definition 2.14, let 𝑋# be the weighted blowup of X, with 𝑋# the associated stack, and let 𝑋
be an arbitrary log resolution. Given a projective Y with isolated weighted homogeneous hypersurface
singularities, we define 𝑌# as before and let 𝜋 : 𝑌 → 𝑌 be a log resolution. To avoid confusion, we
denote the exceptional divisor of 𝜋 : 𝑋 → 𝑋 or 𝜋 : 𝑌 → 𝑌 by 𝐸 . We claim that, in the statement of
Lemmas 2.8 and 2.9, we can replace ordinary cohomology with stack cohomology. First, we recall the
following definition, due to Steenbrink [Ste77b, §1], [Ste77a, §2]:

Definition 2.15. Let W be an analytic space that is an orbifold ‘viewed as an analytic space’ (i.e., locally
𝑊 = 𝑊/𝐺, where G is a small subgroup of 𝐺𝐿(𝑛,C) in the sense of [Ste77a] and 𝑊 is a G-invariant
neighborhood of the origin on C𝑛). Let 𝑊0 be the open subset where W is (locally) a free quotient so
that, by hypothesis, 𝑊 −𝑊0 has codimension at least 2. Define Ω𝑝

𝑊 to be 𝑖∗Ω
𝑝
𝑊0

, where 𝑖 : 𝑊0 → 𝑊 is
the inclusion. If 𝜋 : 𝑊 → 𝑊 is a resolution of singularities, then Ω𝑝

𝑊 = 𝜋∗Ω
𝑝

𝑊
. If (locally) 𝑊 = 𝑊/𝐺

as above, then Ω𝑝
𝑊 = (Ω𝑝

𝑊
)𝐺 . If D is an orbifold normal crossing divisor of W in the obvious sense,

then Ω𝑝
𝑊 (log 𝐷) is defined similarly.

By [Ste77b, (1.9), (1.12)], the complex (Ω•
𝑊 , 𝑑) is a resolution of the constant sheaf C and, if W is

projective, the hypercohomology spectral sequence with 𝐸 𝑝,𝑞
1 = 𝐻𝑞 (𝑊 ;Ω𝑝

𝑊 ) =⇒ H𝑝+𝑞 (𝑊 ;Ω•
𝑊 ) �

𝐻 𝑝+𝑞 (𝑊 ;C) degenerates at 𝐸1. Likewise, if D is an orbifold normal crossing divisor of W, then
H𝑘 (𝑊 ;Ω•

𝑊 (log 𝐷)) � 𝐻𝑘 (𝑊 − 𝐷;C), and the analogous spectral sequence also degenerates at 𝐸1.

There is an extension of Lemma 2.1 to this situation:

Lemma 2.16. In the notation of Definition 2.14, for all 𝑝, 𝑞, there are isomorphisms

𝐻𝑞 (𝑋#;Ω𝑝

𝑋# (log 𝐸)) � 𝐻𝑞 (𝑋#;Ω𝑝

𝑋# (log 𝐸)) � 𝐻𝑞 (𝑋;Ω𝑝

𝑋
(log 𝐸));

𝐻𝑞 (𝑌#;Ω𝑝

𝑌 # (log 𝐸)) � 𝐻𝑞 (𝑌#;Ω𝑝

𝑌 # (log 𝐸)) � 𝐻𝑞 (𝑌 ;Ω𝑝

𝑌
(log 𝐸)),

where Ω𝑝

𝑋# (log 𝐸) and Ω𝑝

𝑌 # (log 𝐸) are the sheaves defined in Definition 2.15 for the spaces 𝑋# and 𝑌#.
Likewise, with similar definitions of Ω𝑝

𝑋# (log 𝐸) (−𝐸) and Ω𝑝

𝑌 # (log 𝐸) (−𝐸),

𝐻𝑞 (𝑋#;Ω𝑝

𝑋# (log 𝐸) (−𝐸)) � 𝐻𝑞 (𝑋#;Ω𝑝

𝑋# (log 𝐸) (−𝐸)) � 𝐻𝑞 (𝑋;Ω𝑝

𝑋
(log 𝐸) (−𝐸));

𝐻𝑞 (𝑌#;Ω𝑝

𝑌 # (log 𝐸) (−𝐸)) � 𝐻𝑞 (𝑌#;Ω𝑝

𝑌 # (log 𝐸) (−𝐸)) � 𝐻𝑞 (𝑌 ;Ω𝑝

𝑌
(log 𝐸) (−𝐸)).

Proof. These statements follow from the arguments of [FL22a, Lemma 3.13, Lemma 3.14] and
Lemma 2.1. �
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Thus, for example, in the situation of Lemma 2.9, we have the following:

Corollary 2.17. If all of the singularities of Y are weighted homogeneous isolated 1-rational singulari-
ties, then there is a commutative diagram

𝐻1(𝑌#;Ω𝑛−1
𝑌 # (log 𝐸) (−𝐸)) −−−−−−→ 𝐻0(𝑌 ; 𝑅1𝜋∗Ω𝑛−1

𝑌 # (log 𝐸) (−𝐸))

�
⏐⏐� ⏐⏐��

𝐻1(𝑌 ;Ω𝑛−1
𝑌

(log 𝐸) (−𝐸)) −−−−−−→ 𝐻0(𝑌 ; 𝑅1𝜋∗Ω𝑛−1
𝑌

(log 𝐸) (−𝐸))

�
⏐⏐� ⏐⏐��
T1
𝑌 −−−−−−→ 𝐻0(𝑌 ;𝑇1

𝑌 ).

Here, 𝐻0 (𝑌 ; 𝑅1𝜋∗Ω𝑛−1
𝑌 # (log 𝐸) (−𝐸)) is a direct sum of terms isomorphic to the corresponding local

terms 𝐻1(𝑋#;Ω𝑛−1
𝑋# (log 𝐸) (−𝐸)).

In the local setting, we note the following for future reference:

Lemma 2.18. There is an exact sequence

0 → Ω𝑘
𝐸 → Ω𝑘

𝑋# (log 𝐸) |𝐸 → Ω𝑘−1
𝐸 → 0.

Proof. Poincaré residue induces a surjection Ω1
𝑋
(log 𝐸) |𝐸 → O𝐸 whose kernel is easily checked to be

Ω1
𝐸 as 𝐸 is smooth. Taking the 𝑘 th exterior power gives the exact sequence. �

Remark 2.19. With E as in Definition 2.14, we can either think of E as a scheme or as a stack. We will
denote by 𝐻𝑖 (𝐸) = 𝐻𝑖 (𝐸 ;C) the usual singular cohomology. By the remarks at the end of Definition
2.15, there is a spectral sequence 𝐸 𝑝,𝑞

1 = 𝐻𝑞 (𝐸 ;Ω𝑝
𝐸 ) =⇒ 𝐻 𝑝+𝑞 (𝐸 ;C), and it degenerates at 𝐸1.

Moreover, the corresponding filtration defines a (pure) Hodge structure on 𝐻𝑖 (𝐸) [Ste77b]. The method
of proof of [FL22a, Lemma 3.13] shows that 𝐻𝑞 (𝐸 ;Ω𝑝

𝐸 ) � 𝐻𝑞 (𝐸 ;Ω𝑝
𝐸 ). Thus, in particular,

Gr𝑝𝐹 𝐻 𝑝+𝑞 (𝐸) � 𝐻𝑞 (𝐸 ;Ω𝑝
𝐸 ).

As noted in the introduction, the cohomology of the link L of the isolated singularity X carries a mixed
Hodge structure. (We will not try to give a stacky interpretation of L.) Arguments as in the case where
E is smooth show that

Gr𝑝𝐹 𝐻 𝑝+𝑞 (𝐿) � 𝐻𝑞 (𝐸 ;Ω𝑝

𝑋# (log 𝐸) |𝐸).

3. Local calculations

3.1. Numerology

In this section, we consider the local case. We keep the notation of the previous section: X is the affine
weighted cone over a hypersurface E in a weighted projective space 𝑊𝑃𝑛, with an isolated singularity
at 0, and 𝑋# is the weighted blowup, with 𝑋#, 𝐸 and 𝑊𝑃𝑛 the corresponding stacks. Let 𝑎1, . . . , 𝑎𝑛+1
be the C∗ weights, let d be the degree of E, and set 𝑤𝑖 = 𝑎𝑖/𝑑. Setting 𝑁 =

∑
𝑖 𝑎𝑖 − 𝑑, as a line bundle

on the stack 𝐸 ,

𝐾𝐸 = O𝐸 (−𝑁) = O𝐸 (𝑑 −
∑
𝑖

𝑎𝑖).
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Since
∑

𝑖 𝑤𝑖 = 𝑁/𝑑 + 1, the k-liminal condition is equivalent to

𝑘 =
∑
𝑖

𝑤𝑖 − 1 = 𝑁/𝑑 ⇐⇒ 𝑁 = 𝑑𝑘.

Thus, 𝐾𝐸 = O𝐸 (−𝑑𝑘). As for 𝐾𝑋# , we have 𝐾𝑋# = O𝑋# (𝑟𝐸) for some 𝑟 ∈ Z. By adjunction,

𝐾𝐸 = O𝐸 (−𝑑𝑘) = 𝐾𝑋# ⊗ O𝑋# (𝐸) |𝐸 = O𝑋# ((𝑟 + 1)𝐸) |𝐸 = O𝐸 (−(𝑟 + 1)𝐸).

Thus, 𝑟 + 1 = 𝑑𝑘 , 𝑟 = 𝑑𝑘 − 1, and

𝐾𝑋# = O𝑋# ((𝑑𝑘 − 1)𝐸) = O𝑋# ((𝑁 − 1)𝐸).

To simplify the notation, set

𝑎 = 𝑑 (𝑘 − 1) = 𝑁 − 𝑑 =
∑
𝑖

𝑎𝑖 − 2𝑑.

Thus, 𝑎 = 0 ⇐⇒ 𝑘 = 1 (i.e., X is 1-liminal). Moreover,

𝐾𝐸 (𝑎) = 𝐾𝐸 ⊗ O𝐸 (𝑎) = O𝐸 (−𝑑).

3.2. Some cohomology calculations

Assumption 3.1. From now on, we assume that X is a k-liminal weighted homogeneous isolated
hypersurface singularity with 𝑛 = dim 𝑋 ≥ 4 and 𝑘 ≥ 2. In particular, X is 1-rational, so that Lemma 2.9
and Corollary 2.17 apply.

Lemma 3.2. With notation as above, if 𝑗 ≤ 2 and 1 ≤ 𝑖 ≤ 𝑎 − 1, then

𝐻 𝑗 (𝐸 ;Ω𝑛−1
𝐸 (𝑖)) = 𝐻 𝑗 (𝐸 ;Ω𝑛−2

𝐸 (𝑖)) = 0.

For 𝑖 = 𝑎, we have 𝐻 𝑗 (𝐸 ;Ω𝑛−1
𝐸 (𝑎)) = 0 for 𝑗 ≤ 2 and 𝐻 𝑗 (𝐸 ;Ω𝑛−2

𝐸 (𝑎)) = 0 for 𝑗 = 0, 2, but
dim 𝐻1 (𝐸 ;Ω𝑛−2

𝐸 (𝑎)) = dim 𝐻1(𝐸 ;𝑇𝐸 (−𝑑)) = 1.

Proof. First, 𝐻 𝑗 (𝐸 ;Ω𝑛−1
𝐸 (𝑖)) = 𝐻 𝑗 (𝐸 ;𝐾𝐸 (𝑖)) = 𝐻 𝑗 (𝐸 ;O𝐸 (−𝑘𝑑 + 𝑖)). We have the exact sequence

0 → O𝑊𝑃𝑛 (𝑟) → O𝑊𝑃𝑛 (𝑟 + 𝑑) → O𝐸 (𝑟 + 𝑑) → 0.

Since 𝐻𝑖 (𝑊𝑃𝑛;O𝑊𝑃𝑛 (𝑟)) = 0 for 𝑖 = 1, 2, 3 and all r, 𝐻 𝑗 (𝐸 ;𝐾𝐸 (𝑖)) = 0 for 𝑗 = 1, 2 and all i. For
𝑗 = 0, since 0 ≤ 𝑖 ≤ 𝑎 − 1 = 𝑘𝑑 − 𝑑 − 1, −𝑘𝑑 + 𝑖 ≤ −𝑑 − 1 < 0, and hence, 𝐻0 (𝐸 ;𝐾𝐸 (𝑖)) =
𝐻0 (𝐸 ;O𝐸 (−𝑘𝑑 + 𝑖)) = 0 in this range as well.

For 𝐻 𝑗 (𝐸 ;Ω𝑛−2
𝐸 (𝑖)), note first that, as E has dimension 𝑛 − 1,

Ω𝑛−2
𝐸 (𝑖) � 𝑇𝐸 ⊗ 𝐾𝐸 (𝑖) = 𝑇𝐸 (−𝑘𝑑 + 𝑖).

From the normal bundle sequence

0 → 𝑇𝐸 → 𝑇𝑊𝑃𝑛 |𝐸 → O𝐸 (𝑑) → 0,

we therefore obtain

0 → 𝑇𝐸 (−𝑘𝑑 + 𝑖) → 𝑇𝑊𝑃𝑛 (−𝑘𝑑 + 𝑖) |𝐸 → O𝐸 (−𝑘𝑑 + 𝑑 + 𝑖) → 0.
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For 𝑖 ≤ 𝑎 − 1, −𝑘𝑑 + 𝑑 + 𝑖 ≤ −1. Then an argument as before shows that, for 𝑗 ≤ 2,

𝐻 𝑗 (𝐸 ;Ω𝑛−2
𝐸 (𝑖)) � 𝐻 𝑗 (𝐸 ;𝑇𝑊𝑃𝑛 (−𝑘𝑑 + 𝑖) |𝐸).

We have the Euler exact sequence

0 → O𝐸 →

𝑛+1⊕
𝑖=1

O𝐸 (𝑎𝑖) → 𝑇𝑊𝑃𝑛 |𝐸 → 0.

Still assuming that 𝑗 ≤ 2 and 𝑖 ≤ 𝑎 − 1, it suffices to show that

𝐻 𝑗+1(𝐸 ;O𝐸 (−𝑘𝑑 + 𝑖)) = 𝐻 𝑗 (𝐸 ;O𝐸 (−𝑘𝑑 + 𝑖 + 𝑎𝑖)) = 0

for 𝑗 ≤ 2. This is certainly true if 𝑛 ≥ 5, again using −𝑘𝑑 + 𝑖 + 𝑎𝑖 ≤ 𝑎𝑖 − 𝑑 ≤ −1 since X is not
smooth, and hence, 𝑎𝑖 < 𝑑. For 𝑛 = 4, 𝐻3(𝐸 ;O𝐸 (−𝑘𝑑 + 𝑖)) = 𝐻3 (𝐸 ;𝐾𝐸 (𝑖)) that is Serre dual to
𝐻0 (𝐸 ;O𝐸 (−𝑖)), so we are done as before since 𝑖 ≥ 1.

To prove the second statement, note that Ω𝑛−1
𝐸 (𝑎) = 𝐾𝐸 (𝑎) = O𝐸 (−𝑑) and 𝐻 𝑗 (𝐸 ;O𝐸 (−𝑑)) = 0 for

𝑗 ≤ 2 by the same reasons as before. Likewise, Ω𝑛−2
𝐸 (𝑎) � 𝑇𝐸 ⊗ 𝐾𝐸 (𝑎) = 𝑇𝐸 (−𝑑). Via the Euler exact

sequence

0 → O𝐸 (−𝑑) →
𝑛+1⊕
𝑖=1

O𝐸 (𝑎𝑖 − 𝑑) → 𝑇𝑊𝑃𝑛 (−𝑑) |𝐸 → 0,

we see that 𝐻 𝑗 (𝐸 ;𝑇𝑊𝑃𝑛 (−𝑑) |𝐸) = 0 for 𝑗 ≤ 2. Moreover, the normal bundle sequence gives

0 → 𝑇𝐸 (−𝑑) → 𝑇𝑊𝑃𝑛 (−𝑑) |𝐸 → O𝐸 → 0.

Thus, 𝐻0(𝐸 ;𝑇𝐸 (−𝑑)) = 𝐻2(𝐸 ;𝑇𝐸 (−𝑑)) = 0, but the coboundary map 𝐻0(O𝐸 ) → 𝐻1(𝐸 ;𝑇𝐸 (−𝑑)) is
an isomorphism. �

Corollary 3.3. Under Assumption 3.1,

(i) 𝐻0 (𝐸 ;Ω𝑛−1
𝑋# (log 𝐸) (−𝑖𝐸) |𝐸) = 0 for 1 ≤ 𝑖 ≤ 𝑎;

(ii) 𝐻1 (𝐸 ;Ω𝑛−1
𝑋# (log 𝐸) (−𝑖𝐸) |𝐸) = 0 for 1 ≤ 𝑖 < 𝑎;

(iii) dim 𝐻1 (𝐸 ;Ω𝑛−1
𝑋# (log 𝐸) (−𝑎𝐸) |𝐸) = 1.

Proof. By Lemma 2.18, there is an exact sequence

0 → Ω𝑛−1
𝐸 (𝑖) → Ω𝑛−1

𝑋# (log 𝐸) (−𝑖𝐸) |𝐸 → Ω𝑛−2
𝐸 (𝑖) → 0.

By Lemma 3.2, if 1 ≤ 𝑖 ≤ 𝑎, then 𝐻0(𝑋#;Ω𝑛−1
𝑋# (log 𝐸) (−𝑖𝐸) |𝐸) = 0, and

𝐻1(𝐸 ;Ω𝑛−1
𝑋# (log 𝐸) (−𝑖𝐸) |𝐸) � 𝐻1(𝐸 ;Ω𝑛−2

𝐸 (𝑖)),

which is 0 for 1 ≤ 𝑖 < 𝑎 and has dimension 1 for 𝑖 = 𝑎. �
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Theorem 3.4. Under Assumption 3.1,

𝐻0(𝑋;𝑇1
𝑋 ) � 𝐻1(𝑋#;Ω𝑛−1

𝑋# (log 𝐸) (−𝑎𝐸)).

Moreover, the natural map 𝐻1(𝑋#;Ω𝑛−1
𝑋# (log 𝐸) (−𝑎𝐸)) → 𝐻1 (𝐸 ;Ω𝑛−1

𝑋# (log 𝐸) (−𝑎𝐸) |𝐸) induces an
isomorphism

𝐻0(𝑋;𝑇1
𝑋 )/𝔪𝑥𝐻

0(𝑋;𝑇1
𝑋 ) � 𝐻1 (𝐸 ;Ω𝑛−1

𝑋# (log 𝐸) (−𝑎𝐸) |𝐸).

Proof. For the first part, we have an exact sequence

0 → Ω𝑛−1
𝑋# (log 𝐸) (−(𝑖 + 1)𝐸) → Ω𝑛−1

𝑋# (log 𝐸) (−𝑖𝐸) → Ω𝑛−1
𝑋# (log 𝐸) (−𝑖𝐸) |𝐸 → 0.

Thus, by Corollary 3.3, for 1 ≤ 𝑖 < 𝑎, we have an isomorphism

𝐻1(𝑋#;Ω𝑛−1
𝑋# (log 𝐸) (−(𝑖 + 1)𝐸) → 𝐻1 (𝑋#;Ω𝑛−1

𝑋# (log 𝐸) (−𝑖𝐸)),

and by induction, starting with the isomorphism 𝐻0(𝑋;𝑇1
𝑋 ) � 𝐻1(𝑋#;Ω𝑛−1

𝑋# (log 𝐸) (−𝐸)) of Lemma 2.9
and Corollary 2.17, we see that 𝐻0(𝑋;𝑇1

𝑋 ) � 𝐻1 (𝑋#;Ω𝑛−1
𝑋# (log 𝐸) (−𝑎𝐸)).

To see the final statement, we have an exact sequence

𝐻1(𝑋#;Ω𝑛−1
𝑋# (log 𝐸) (−(𝑎 + 1)𝐸)) → 𝐻1(𝑋#;Ω𝑛−1

𝑋# (log 𝐸) (−𝑎𝐸)) → 𝐻1(𝑋#;Ω𝑛−1
𝑋# (log 𝐸) (−𝑎𝐸) |𝐸),

and hence an injection

𝐻1 (𝑋#;Ω𝑛−1
𝑋# (log 𝐸)(−𝑎𝐸))

/
Im 𝐻1 (𝑋#;Ω𝑛−1

𝑋# (log 𝐸)(−(𝑎 + 1)𝐸)) → 𝐻1 (𝑋#;Ω𝑛−1
𝑋# (log 𝐸)(−𝑎𝐸) |𝐸).

By Corollary 3.3(iii), dim 𝐻1 (𝐸 ;Ω𝑛−1
𝑋# (log 𝐸) (−𝑎𝐸) |𝐸) = 1. Thus, if the map

𝐻0(𝑋;𝑇1
𝑋 )/𝔪𝑥𝐻

0(𝑋;𝑇1
𝑋 ) → 𝐻1 (𝐸 ;Ω𝑛−1

𝑋# (log 𝐸) (−𝑎𝐸) |𝐸)

is nonzero, it is an isomorphism. However, to prove that this map is nonzero, it is necessary to consider
the C∗ picture as in [FL22a, §3]: The vector bundle Ω𝑛−1

𝑋# (log 𝐸) on 𝑋# is of the form 𝜌∗𝑊 for some
vector bundle W on 𝐸 , where 𝜌 : 𝑋# → 𝐸 is the natural morphism, and O𝑋# (−𝐸) = 𝜌∗O𝐸 (1). Then

𝐻1(𝑋#;Ω𝑛−1
𝑋# (log 𝐸)) =

⊕
𝑟 ≥0

𝐻1 (𝐸 ;𝑊 (𝑟)) =
⊕
𝑟 ≥−𝑁

𝐻0(𝑋;𝑇1
𝑋 ) (𝑟) =

⊕
𝑟 ≥−𝑑

𝐻0 (𝑋;𝑇1
𝑋 ) (𝑟).

Here, the final equality holds because −𝑑 is the smallest weight occurring in 𝐻0 (𝑋;𝑇1
𝑋 ) and

−𝑁 = −𝑑𝑘 ≤ −𝑑. Note also that
⊕

𝑟 ≥−𝑑+1 𝐻
0 (𝑋;𝑇1

𝑋 ) (𝑟) = 𝔪𝑥𝐻
0(𝑋;𝑇1

𝑋 ). Taking the tensor product
with O𝑋# (−𝑖𝐸) has the effect of shifting the weight spaces by i since

𝜌∗𝑊 ⊗ O𝑋# (−𝑖𝐸) � 𝜌∗𝑊 ⊗ 𝜌∗O𝐸 (𝑖) = 𝜌∗(𝑊 ⊗ O𝐸 (𝑖)).

Thus,

𝐻1 (𝑋#;Ω𝑛−1
𝑋# (log 𝐸) (−𝑖𝐸)) =

⊕
𝑟 ≥0

𝐻1 (𝐸 ;𝑊 (𝑟 + 𝑖)) =
⊕
𝑟 ≥𝑖

𝐻1(𝐸 ;𝑊 (𝑟)) =
⊕

𝑟 ≥−𝑁+𝑖

𝐻0 (𝑋;𝑇1
𝑋 ) (𝑟).
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Here, −𝑑 ≥ −𝑁 + 𝑖 ⇐⇒ 𝑖 ≤ 𝑁 − 𝑑 = 𝑎. This recovers the fact that 𝐻1 (𝑋#;Ω𝑛−1
𝑋

(log 𝐸) (−𝑖𝐸)) �

𝐻0 (𝑋;𝑇1
𝑋 ) for 𝑖 ≤ 𝑎, whereas

𝐻1 (𝑋#;Ω𝑛−1
𝑋# (log 𝐸) (−(𝑎 + 1)𝐸)) =

⊕
𝑟 ≥−𝑑+1

𝐻0(𝑋;𝑇1
𝑋 ) (𝑟) = 𝔪𝑥𝐻

0(𝑋;𝑇1
𝑋 ),

as claimed. �

3.3. Definition of the nonlinear map

We now consider the analogue of [RT09, Lemma 4.10]. First, we have the subsheaf 𝑇𝑋# (− log 𝐸) ⊆ 𝑇𝑋#

(on the stack 𝑋#), which is the kernel of the map 𝑇𝑋# → 𝑁𝐸/𝑋# or, equivalently, is dual to Ω1
𝑋# (log 𝐸).

There is thus a commutative diagram

𝑇𝑋# (− log 𝐸) −−−−−−→ 𝑇𝑋#

�
⏐⏐� ⏐⏐��

Ω𝑛−1
𝑋# (log 𝐸) (−𝐸) ⊗ 𝐾−1

𝑋# −−−−−−→ Ω𝑛−1
𝑋# ⊗ 𝐾−1

𝑋# .

There are compatible isomorphisms

𝑇𝑋# (𝑑𝐸) � Ω𝑛−1
𝑋# ⊗ 𝐾−1

𝑋# ⊗ O𝑋# (𝑑𝐸) = Ω𝑛−1
𝑋# ((𝑑 − 𝑑𝑘 + 1)𝐸) = Ω𝑛−1

𝑋# (−𝑎𝐸 + 𝐸);

𝑇𝑋# (− log 𝐸) (𝑑𝐸) � Ω𝑛−1
𝑋# (log 𝐸) (−𝐸) ⊗ 𝐾−1

𝑋# ⊗ O𝑋# (𝑑𝐸)

= Ω𝑛−1
𝑋# (log 𝐸) ((𝑑 − 𝑑𝑘)𝐸) = Ω𝑛−1

𝑋# (log 𝐸) (−𝑎𝐸).

Taking 𝑘 th exterior powers,
∧𝑘 𝑇𝑋# is dual to Ω𝑘

𝑋# and hence is isomorphic to Ω𝑛−𝑘
𝑋# ⊗ 𝐾−1

𝑋# , and∧𝑘 𝑇𝑋# (− log 𝐸) is dual to Ω𝑘
𝑋# (log 𝐸) and hence is isomorphic to Ω𝑛−𝑘

𝑋# (log 𝐸) (−𝐸) ⊗ 𝐾−1
𝑋# . There are

compatible isomorphisms

𝑘∧
(𝑇𝑋# (𝑑𝐸)) � Ω𝑛−𝑘

𝑋# ⊗ 𝐾−1
𝑋# ⊗ O𝑋# (𝑑𝑘𝐸) = Ω𝑛−𝑘

𝑋# ⊗ O𝑋# (𝐸);
𝑘∧
(𝑇𝑋# (− log 𝐸) (𝑑𝐸)) � Ω𝑛−𝑘

𝑋# (log 𝐸) (−𝐸) ⊗ 𝐾−1
𝑋# ⊗ O𝑋# (𝑑𝑘𝐸) = Ω𝑛−𝑘

𝑋# (log 𝐸).

So we have a commutative diagram∧𝑘 (𝑇𝑋# (− log 𝐸) (𝑑𝐸)) �
∧𝑘

(
Ω𝑛−1

𝑋# (log 𝐸) (−𝑎𝐸)
)
−−−−−−→

∧𝑘
(
Ω𝑛−1

𝑋# (log 𝐸) (−𝑎𝐸) |𝐸
)

�
⏐⏐� ⏐⏐��

Ω𝑛−𝑘
𝑋# (log 𝐸) −−−−−−→ Ω𝑛−𝑘

𝑋# (log 𝐸) |𝐸.

There is also the induced map 𝑇𝑋# (− log 𝐸) → 𝑇𝐸 , and the following commutes:

𝑇𝑋# (− log 𝐸) −−−−−−→ 𝑇𝐸

�
⏐⏐� ⏐⏐��

Ω𝑛−1
𝑋# (log 𝐸) (−𝐸) ⊗ 𝐾−1

𝑋#
Res

−−−−−−→ Ω𝑛−2
𝐸 ⊗ 𝐾−1

𝐸 ,

using the adjunction isomorphism O𝑋# (−𝐸) ⊗ 𝐾−1
𝑋# |𝐸 = (𝐾𝑋# ⊗ O𝑋# (𝐸))−1 |𝐸 � 𝐾−1

𝐸 .
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The exact sequence of Lemma 2.18 yields an exact sequence

0 → Ω𝑛−1
𝐸 (𝑎) → Ω𝑛−1

𝑋# (log 𝐸) (−𝑎𝐸) |𝐸 → Ω𝑛−2
𝐸 (𝑎) → 0.

By Lemma 3.2, there is an induced isomorphism 𝐻1(𝐸 ;Ω𝑛−1
𝑋# (log 𝐸) (−𝑎𝐸) |𝐸) → 𝐻1 (𝐸 ;Ω𝑛−2

𝐸 (𝑎)).
Moreover,

Ω𝑛−2
𝐸 (𝑎) � 𝑇𝐸 ⊗ 𝐾𝐸 (𝑎) = 𝑇𝐸 (−𝑘𝑑 + 𝑎) = 𝑇𝐸 (−𝑑).

Taking 𝑘 th exterior powers,

𝑘∧
(𝑇𝐸 (−𝑑)) =

(
𝑘∧
𝑇𝐸

)
(−𝑘𝑑) =

(
𝑘∧
𝑇𝐸

)
⊗ 𝐾𝐸 � Ω𝑛−𝑘−1

𝐸 .

A combination of wedge product and cup product induces symmetric homogeneous degree k maps

𝜈𝑋# : 𝐻1 (𝑋#;Ω𝑛−1
𝑋# (log 𝐸) (−𝑎𝐸)) → 𝐻𝑘 (𝑋#;Ω𝑛−𝑘

𝑋# (log 𝐸));

𝜇𝑋# = 𝜈𝑋# |𝐸 : 𝐻1(𝐸 ;Ω𝑛−1
𝑋# (log 𝐸) (−𝑎𝐸) |𝐸) → 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘

𝑋# (log 𝐸) |𝐸),

and a commutative diagram (with nonlinear vertical maps)

𝐻1(𝑋#;Ω𝑛−1
𝑋# (log 𝐸) (−𝑎𝐸)) −−−−−−→ 𝐻1 (𝐸 ;Ω𝑛−1

𝑋# (log 𝐸) (−𝑎𝐸) |𝐸)

𝜈𝑋# ⏐⏐� ⏐⏐�𝜇𝑋#

𝐻𝑘 (𝑋#;Ω𝑛−𝑘
𝑋# (log 𝐸)) −−−−−−→ 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘

𝑋# (log 𝐸) |𝐸).

There are similarly compatible symmetric homogeneous degree k maps

𝜈′
𝑋# : 𝐻1(𝑋#;𝑇𝑋# (− log 𝐸) (𝑑𝐸)) → 𝐻𝑘 (𝑋#;

𝑘∧
(𝑇𝑋# (− log 𝐸) (𝑑𝐸))) � 𝐻𝑘 (𝑋#;Ω𝑛−𝑘

𝑋# (log 𝐸));

𝜇′
𝑋# : 𝐻1 (𝐸 ;𝑇𝐸 (−𝑑)) � 𝐻1(𝐸 ;Ω𝑛−2

𝐸 (𝑎)) → 𝐻𝑘 (𝐸 ;
𝑘∧
(𝑇𝐸 (−𝑑))) � 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘−1

𝐸 ).

The following diagram with nonlinear vertical maps commutes:

𝐻1(𝐸 ;Ω𝑛−1
𝑋# (log 𝐸) (−𝑎𝐸) |𝐸)

�
−−−−−−→ 𝐻1(𝐸 ;𝑇𝐸 (−𝑑)) � 𝐻1 (𝐸 ;Ω𝑛−2

𝐸 (𝑎))

𝜇𝑋# ⏐⏐� ⏐⏐�𝜇′

𝑋#

𝐻𝑘 (𝐸 ;Ω𝑛−𝑘
𝑋# (log 𝐸) |𝐸)

Res
−−−−−−→ 𝐻𝑘 (𝐸 ;

∧𝑘 (𝑇𝐸 (−𝑑))) � 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘−1
𝐸 ).

By Lemma 3.2, Corollary 3.3(iii) and Theorem 1.6,

dim 𝐻1 (𝐸 ;Ω𝑛−1
𝑋# (log 𝐸) (−𝑎𝐸) |𝐸) = dim 𝐻1 (𝐸 ;𝑇𝐸 (−𝑑)) = 1;

dim 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘
𝑋# (log 𝐸) |𝐸) = dim Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) = 1.

The map 𝐻𝑘 (𝑋#;Ω𝑛−𝑘
𝑋# (log 𝐸)) → 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘−1

𝐸 ) factors through the (surjective) map

𝐻𝑘 (𝑋#;Ω𝑛−𝑘
𝑋# (log 𝐸)) → 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘

𝐸 (log 𝐸) |𝐸) = Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿),
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and the map

𝐻𝑘 (𝐸 ;Ω𝑛−𝑘
𝑋# (log 𝐸) |𝐸) = Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿)

→ 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘−1
𝐸 ) = Gr𝑛−𝑘−1

𝐹 𝐻𝑛−1(𝐸) = Gr𝑛−𝑘𝐹 𝐻𝑛−1 (𝐸) (−1)

is an isomorphism in almost all cases. More precisely, let 𝐻𝑛−1
0 (𝐸) be the primitive cohomology of E

in dimension 𝑛 − 1, and let 𝐻𝑛−1−𝑘
0 (𝐸 ;Ω𝑘

𝐸 ) = Gr𝑘𝐹 𝐻𝑛−1
0 (𝐸) be the corresponding groups.

Lemma 3.5. If X is not an ordinary double point or if n is even, then the map Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) →
𝐻𝑘 (𝐸 ;Ω𝑛−𝑘−1

𝐸 ) is an isomorphism, and hence,

dim 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘−1
𝐸 ) = 1.

If X is an ordinary double point and 𝑛 = 2𝑘 + 1 is odd, then

Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) → 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘−1
𝐸 ) = Gr𝑛−𝑘−1

𝐹 𝐻𝑛−1(𝐸)

is injective with image 𝐻𝑘
0 (𝐸 ;Ω𝑘

𝐸 ) = C([𝐴] − [𝐵]), and hence, dim 𝐻𝑘
0 (𝐸 ;Ω𝑘

𝐸 ) = 1 .

Proof. As noted in Definition 2.4, if L is the link of the singularity, then dim Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) = 1. Then
Lemma 2.18 gives the exact sequence

Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐸) → Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) → Gr𝑛−𝑘−1
𝐹 𝐻𝑛−1 (𝐸) → Gr𝑛−𝑘𝐹 𝐻𝑛+1 (𝐸).

Since E is an orbifold weighted hypersurface in 𝑊𝑃𝑛, Gr𝑖𝐹 𝐻 𝑗 (𝐸) = 0 except for the cases 𝑗 = 2𝑖 or
𝑖 + 𝑗 = 𝑛 − 1. Thus, Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐸) = Gr𝑛−𝑘−1

𝐹 𝐻𝑛−1 (𝐸) = 0 unless 𝑛 = 2(𝑛 − 𝑘) (i.e., 𝑘 = 1
2𝑛) or

𝑛 + 1 = 2(𝑛 − 𝑘) (i.e., 𝑘 = 1
2 (𝑛 − 1)). The first case is excluded since we assumed that X is a singular

point, and the second case only arises if 𝑛 = 2𝑘 + 1 and X is an ordinary double point (Lemma 2.5).
This proves the first statement, and the second statement is the well-known computation of the primitive
cohomology of an even-dimensional quadric. �

Proposition 3.6. The map 𝜇𝑋# is not 0. Hence, there exist bases 𝑣 ∈ 𝐻1 (𝐸 ;Ω𝑛−1
𝑋# (log 𝐸) (−𝑎𝐸) |𝐸) and

𝜀 ∈ 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘
𝑋# (log 𝐸) |𝐸) of the two one-dimensional vector spaces and a nonzero 𝑐 ∈ C such that,

for all 𝜆 ∈ C,

𝜇𝑋# (𝜆𝑣) = 𝑐𝜆𝑘𝜀.

Proof. It suffices to prove that the map 𝜇′
𝑋# is nonzero. Taking the (𝑖 + 1)st exterior power of the normal

bundle sequence

0 → 𝑇𝐸 (−𝑑) → (𝑇𝑊𝑃𝑛 |𝐸) (−𝑑) → O𝐸 → 0

gives exact sequences

0 →

𝑖+1∧
𝑇𝐸 (−(𝑖 + 1)𝑑) →

𝑖+1∧
(𝑇𝑊𝑃𝑛 |𝐸) (−(𝑖 + 1)𝑑) →

𝑖∧
𝑇𝐸 (−𝑖𝑑) → 0, (*)

and thus a sequence of connecting homomorphisms

𝜕𝑖 : 𝐻𝑖 (𝐸 ;
𝑖∧
𝑇𝐸 (−𝑖𝑑)) → 𝐻𝑖+1(𝐸 ;

𝑖+1∧
𝑇𝐸 (−(𝑖 + 1)𝑑).

We claim the following:
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Claim 3.7. There exists a nonzero element 𝜂 ∈ 𝐻1 (𝐸 ;𝑇𝐸 (−𝑑)), necessarily a generator, such that
𝜇′
𝑋# (𝜂) = ±𝜕𝑘−1 ◦ · · · ◦ 𝜕1(𝜂).

Claim 3.8. The connecting homomorphism 𝜕𝑖 is an isomorphism for 1 ≤ 𝑖 ≤ 𝑘 − 2 and injective for
𝑖 = 𝑘 − 1.

Clearly, the two claims imply Proposition 3.6. �

Proof of Claim 3.7. The element 𝜂 = 𝜕0(1) ∈ 𝐻1 (𝐸 ;𝑇𝐸 (−𝑑)) is the extension class for the extension
0 → 𝑇𝐸 (−𝑑) → (𝑇𝑊𝑃𝑛 |𝐸) (−𝑑) → O𝐸 → 0. By the last line of the proof of Lemma 3.2, the
coboundary map 𝜕0 is injective, and hence, 𝜂 ≠ 0. Then a calculation shows that, up to sign,

∧𝜂 ∈ 𝐻1 (𝐸 ; 𝐻𝑜𝑚(

𝑖∧
𝑇𝐸 (−𝑖𝑑),

𝑖+1∧
𝑇𝐸 (−(𝑖 + 1)𝑑)))

is the corresponding extension class for the extension (∗). Since the connecting homomorphism is given
by cup product with the extension class, we see that

𝜇′
𝑋# (𝜂) = 𝜂𝑘 = ±𝜕𝑘−1 ◦ · · · ◦ 𝜕1(𝜂) ∈ 𝐻𝑘 (𝐸 ;

𝑘∧
𝑇𝐸 (−𝑘𝑑)). �

Proof of Claim 3.8. It suffices to show that 𝐻𝑖 (𝐸 ;
∧𝑖+1(𝑇𝑊𝑃𝑛 |𝐸) (−(𝑖 + 1)𝑑)) = 0 for 1 ≤ 𝑖 ≤ 𝑘 − 1.

First, note that

𝑖+1∧
(𝑇𝑊𝑃𝑛 |𝐸) (−(𝑖 + 1)𝑑)) =

(
Ω𝑛−𝑖−1

𝑊𝑃𝑛 |𝐸
) (∑

𝑘

𝑎𝑘 − (𝑖 + 1)𝑑
)
.

We have the exact sequence

0 → Ωℓ
𝑊 𝑃𝑛 (𝑟 − 𝑑) → Ωℓ

𝑊 𝑃𝑛 (𝑟) → (Ωℓ
𝑊 𝑃𝑛 |𝐸) (𝑟) → 0.

By Bott vanishing (or directly), 𝐻 𝑗 (𝐸 ; (Ωℓ
𝑊 𝑃𝑛 |𝐸) (𝑟)) = 0 as long as 1 ≤ 𝑗 ≤ 𝑛 − 2 and 𝑗 ≠ ℓ or ℓ + 1.

In our situation, 𝑖 ≤ 𝑘 − 1 < 𝑘 ≤ 1
2 (𝑛 − 1), and thus 𝑖 < 𝑛 − 𝑖 − 1. In particular, 𝑖 ≠ 𝑛 − 𝑖 − 1 or 𝑛 − 𝑖.

Thus, 𝐻𝑖 (𝐸 ;
∧𝑖+1(𝑇𝑊𝑃𝑛 |𝐸) (−(𝑖 + 1)𝑑)) = 0. �

Remark 3.9. The above calculations are connected with the computation of the Hodge filtration on E.
For example, in case X is a cone over the smooth degree d hypersurface E in P𝑛, then 𝐻0(P𝑛;𝐾P𝑛 ⊗ (𝑛−
𝑘)𝑑) = 𝐻0 (P𝑛;OP𝑛 (−𝑛 − 1 + 𝑑 (𝑘 + 1)) = 𝐻0 (P𝑛;OP𝑛 ) is identified via residues with 𝐹𝑛−𝑘𝐻𝑛 (𝐿) =
Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿).

4. The global setting

4.1. Deformation theory

We assume the following for the rest of this subsection:

Assumption 4.1. Y is a canonical Calabi–Yau variety of dimension 𝑛 ≥ 4, all of whose singularities
are k-liminal isolated weighted homogeneous hypersurface singularities, with 𝑘 ≥ 2, as the case 𝑘 = 1
has already been considered in Theorem 2.11. We freely use the notation of the previous sections,
especially that of Definition 2.14. In particular, 𝑌# is the weighted blowup at each point x of 𝑍 = 𝑌sing,
with exceptional divisor 𝐸𝑥 , and 𝑎𝑥 is the integer defined in §2.1. We let 𝑌# and 𝐸 =

∑
𝑥∈𝑍 𝐸 𝑥 be the

associated stacks. Let �𝑎𝐸 denote the divisor
∑

𝑥∈𝑍 𝑎𝑥𝐸 𝑥 .

The argument of Theorem 3.4 shows the following:
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Lemma 4.2. There is a commutative diagram

T1
𝑌

�
−−−−−−→ 𝐻1 (𝑌#;Ω𝑛−1

𝑌 # (log 𝐸) (−�𝑎𝐸))⏐⏐� ⏐⏐�
𝐻0(𝑌 ;𝑇1

𝑌 )
�

−−−−−−→ 𝐻0 (𝑌 ; 𝑅1𝜋∗Ω𝑛−1
𝑌 # (log 𝐸) (−�𝑎𝐸)).

We also have the subsheaf 𝑇𝑌 # (− log 𝐸) ⊆ 𝑇𝑌 # . As in §2, globally there is an isomorphism

𝑘∧(
Ω𝑛−1
𝑌 # (log 𝐸) (−�𝑎𝐸)

)
� Ω𝑛−𝑘

𝑌 # (log 𝐸).

Then the global form of the discussion in §3 yields the following:

Theorem 4.3. There is a commutative diagram

𝐻1(𝑌#;Ω𝑛−1
𝑌 # (log 𝐸) (−�𝑎𝐸)) −−−−−−→ 𝐻1(𝐸 ;Ω𝑛−1

𝑌 # (log 𝐸) (−�𝑎𝐸) |𝐸)

𝜈𝑌# ⏐⏐� ⏐⏐�𝜇𝑌 #

𝐻𝑘 (𝑌#;Ω𝑛−𝑘
𝑌 # (log 𝐸)) −−−−−−→ 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘

𝑌 # (log 𝐸) |𝐸).

Here, 𝜇𝑌 # is the sum of the local maps 𝜇𝑋# at each component of E, and 𝜈𝑌 # is also a homogeneous
map of degree k. Note that after we localize at a singular point x of Y,

dim 𝐻𝑘 (𝐸 𝑥 ;Ω𝑛−𝑘
𝑋# (log 𝐸 𝑥) |𝐸 𝑥) = dim Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿𝑥) = 1.

By Corollary 3.3(iii), dim 𝐻1(𝐸 𝑥 ;Ω𝑛−1
𝑌 # (log 𝐸) (−𝑎𝑥𝐸) |𝐸 𝑥) = 1 as well, and so the 𝜇𝑌 # in the diagram,

at each singular point x of Y, is a homogeneous degree k map between two one-dimensional vector
spaces. For every 𝑥 ∈ 𝑍 , fix an isomorphism 𝐻1(𝐸 𝑥 ;Ω𝑛−1

𝑌 # (log 𝐸) (−𝑎𝑥𝐸) |𝐸 𝑥) � C (i.e. a basis

vector 𝑣𝑥 ∈ 𝐻1(𝐸 𝑥 ;Ω𝑛−1
𝑌 # (log 𝐸) (−𝑎𝑥𝐸) |𝐸 𝑥)) and a basis vector 𝜀𝑥 ∈ Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿𝑥). It follows by

Proposition 3.6 that for every 𝑥 ∈ 𝑍 , there exists a nonzero 𝑐𝑥 ∈ C, depending only on the above choices,
such that, for every 𝜆 = (𝜆𝑥) ∈ C

𝑍 � 𝐻1(𝐸 ;Ω𝑛−1
𝑌 # (log 𝐸) (−�𝑎𝐸) |𝐸),

𝜇𝑌 # (𝜆) =
∑
𝑥∈𝑍

𝑐𝑥𝜆
𝑘
𝑥𝜀𝑥 .

Consider the following diagram, where the vertical arrows are homogeneous of degree k and the
bottom row is exact:

𝐻1(Ω𝑛−1
𝑌 # (log 𝐸) (−�𝑎𝐸)) −−−−−−→ 𝐻1(Ω𝑛−1

𝑌 # (log 𝐸) (−�𝑎𝐸) |𝐸)

𝜈𝑌 # ⏐⏐� ⏐⏐�𝜇𝑌 #

𝐻𝑘 (Ω𝑛−𝑘
𝑌 # (log 𝐸)) −−−−−−→ 𝐻𝑘 (Ω𝑛−𝑘

𝑌 # (log 𝐸) |𝐸)
𝜕

−−−−−−→ 𝐻𝑘+1(Ω𝑛−𝑘
𝑌 # (log 𝐸) (−𝐸)).

The above diagram then implies the following: if a class

𝛼 = (𝛼𝑥) ∈ 𝐻1 (𝐸 ;Ω𝑛−1
𝑌 # (log 𝐸) (−�𝑎𝐸) |𝐸)
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is the image of 𝛽 ∈ 𝐻1 (𝑌#;Ω𝑛−1
𝑌 # (log 𝐸) (−�𝑎𝐸)), then 𝜇𝑌 # (𝛼) is the image of

𝜈𝑌 # (𝛽) ∈ 𝐻𝑘 (𝑌#;Ω𝑛−𝑘
𝑌 # (log 𝐸)),

and hence, 𝜕 (𝜇𝑌 # (𝛼)) = 0 in 𝐻𝑘+1(Ω𝑛−𝑘
𝑌 # (log 𝐸) (−𝐸)).

Returning to the world of spaces, as opposed to stacks, consider a log resolution 𝜋 : 𝑌 → 𝑌 with
exceptional divisor, which we continue to denote by E. Then via the isomorphism

𝐻𝑘+1(𝑌#;Ω𝑛−𝑘
𝑌 # (log 𝐸) (−𝐸)) � 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸))

of Lemma 2.16, the coboundary 𝜕 (𝜇𝑌 # (𝛼)) defines an element of 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸)). More-

over, if 𝜕 (𝜇𝑋# (𝛼)) is of the form
∑

𝑥∈𝑍 𝑐𝑥𝜆
𝑘
𝑥𝜕 (𝜀𝑥), then it has the same form when viewed as an element

of 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸)), by the commutativity of the diagram

𝐻𝑘 (𝐸 ;Ω𝑛−𝑘
𝑌 # (log 𝐸) |𝐸)

𝜕
−−−−−−→ 𝐻𝑘+1(𝑌#;Ω𝑛−𝑘

𝑌 # (log 𝐸) (−𝐸))

�
⏐⏐� ⏐⏐��

𝐻𝑘 (𝐸 ;Ω𝑛−𝑘

𝑌
(log 𝐸) |𝐸)

𝜕
−−−−−−→ 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸)).

So finally, we obtain the following:

Theorem 4.4. For every 𝑥 ∈ 𝑍 = 𝑌sing, fix isomorphisms

𝐻0(𝑇1
𝑌 ,𝑥)/𝔪𝑥𝐻

0(𝑇1
𝑌 ,𝑥) � 𝐻1(𝐸𝑥 ;Ω𝑛−1

𝑋
(log 𝐸𝑥) (−𝑎𝑥𝐸𝑥) |𝐸𝑥) � C.

Write Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿𝑥) = 𝐻𝑘 (𝐸𝑥 ;Ω𝑛−𝑘

𝑌
(log 𝐸𝑥) |𝐸𝑥) = C · 𝜀𝑥 for some fixed choice of a generator 𝜀𝑥 . For

all 𝑥 ∈ 𝑍 , there exist 𝑐𝑥 ∈ C∗ depending only on the above identifications, with the following property:
Suppose that the class (𝜃𝑥) ∈

⊕
𝑥∈𝑌sing

𝐻0(𝑇1
𝑌 ,𝑥)/𝔪𝑥𝐻

0 (𝑇1
𝑌 ,𝑥) is in the image of 𝜃 ∈ T1

𝑌 , and let 𝜆𝑥 ∈ C

be the complex number corresponding to 𝜃𝑥 via the above identification. If 𝜕 : 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘

𝑌
(log 𝐸) |𝐸) →

𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸)) is the coboundary map, then

∑
𝑥∈𝑍

𝑐𝑥𝜆
𝑘
𝑥𝜕 (𝜀𝑥) = 0.

We can post-compose the coboundary map

𝜕 : Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) = 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘

𝑌
(log 𝐸) |𝐸) → 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸))

with the natural (injective) map

𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸)) → 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
).

Let 𝜑 : Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) = 𝐻𝑘 (𝐸 ;Ω𝑛−𝑘

𝑌
(log 𝐸) |𝐸) → 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
) be the above composition. This is

the same as the induced map on Gr𝑛−𝑘𝐹 of the natural map 𝐻𝑛 (𝐿) → 𝐻𝑛+1(𝑌 ), which is the Poincaré
dual of the map 𝐻𝑛−1(𝐿) → 𝐻𝑛−1 (𝑌 ).
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Corollary 4.5. With the notation and hypotheses of Theorem 4.4, and with 𝜑 : Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) →

𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
) the natural map as above, the following holds in 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
):∑

𝑥∈𝑍

𝑐𝑥𝜆
𝑘
𝑥𝜑(𝜀𝑥) = 0.

In particular, if a strong first-order smoothing of Y exists, then for all 𝑥 ∈ 𝑍 , there exists 𝜆𝑥 ∈ C∗ with∑
𝑥∈𝑍 𝑐𝑥𝜆

𝑘
𝑥𝜑(𝜀𝑥) = 0.

Remark 4.6. (i) By Poincaré duality, the map 𝐻𝑛 (𝐿) → 𝐻𝑛+1 (𝑌 ) is the same as the map 𝐻𝑛−1 (𝐿) →
𝐻𝑛−1 (𝑌 ), which factors as 𝐻𝑛−1 (𝐿) → 𝐻𝑛−1 (𝑌 ) → 𝐻𝑛−1 (𝑌 ). By Remark 2.2, we can identify
𝜕 : Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) → 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸)) with the corresponding map

Gr𝑛−𝑘𝐹 𝐻𝑛−1(𝐿) (−𝑛) → Gr𝑛−𝑘𝐹 𝐻𝑛−1 (𝑌 ) (−𝑛).

This gives an equivalent statement to Theorem 4.4 that only involves Y, not the choice of a resolution.
(ii) By Lemma 2.3, the map 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸)) → 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
) is injective. Thus,∑

𝑥∈𝑍 𝑐𝑥𝜆
𝑘
𝑥𝜑(𝜀𝑥) = 0 ⇐⇒

∑
𝑥∈𝑍 𝑐𝑥𝜆

𝑘
𝑥𝜕 (𝜀𝑥) = 0, so that Theorem 4.4 and Corollary 4.5 contain the

same information.

Remark 4.7. It is certainly possible for 𝜕 (𝜀𝑥) = 0. For example, suppose that dim𝑌 = 2𝑘 + 1 and the
singularities of Y are all k-liminal (i.e., ordinary double points). If Y is a Calabi–Yau hypersurface in
P2𝑘+2 with just a few singular points in general position, then they can be smoothed independently (i.e.,
for every 𝑥 ∈ 𝑍 , there exists a 𝜃 ∈ T1

𝑌 such that 𝜆𝑥 ≠ 0, but 𝜆𝑥′ = 0 for all 𝑥 ′ ≠ 𝑥). Then 𝜕 (𝜀𝑥) = 0 for
every 𝑥 ∈ 𝑍 .

Remark 4.8. As in Remark 2.12, we can also consider the Fano case, where Y has isolated
k-liminal weighted homogeneous hypersurface singularities and 𝜔−1

𝑌 is ample. In this case, the con-
struction produces an obstruction to a strong first-order smoothing; namely,

∑
𝑥∈𝑍 𝑐𝑥𝜆

𝑘
𝑥𝜕 (𝜀𝑥) ∈

𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸) ⊗ 𝜋∗𝜔−1

𝑌 ). By Serre duality, 𝐻𝑘+1(𝑌 ;Ω𝑛−𝑘

𝑌
(log 𝐸) (−𝐸) ⊗ 𝜋∗𝜔−1

𝑌 ) is dual to
𝐻𝑛−𝑘−1 (𝑌 ;Ω𝑘

𝑌
(log 𝐸) ⊗ 𝜋∗𝜔𝑌 ).

In many reasonable cases, however, 𝐻𝑛−𝑘−1(𝑌 ;Ω𝑘

𝑌
(log 𝐸) ⊗ 𝜋∗𝜔𝑌 ) = 0. For example, if there exists

a smooth Cartier divisor H on Y, thus not passing through the singular points, such that 𝜔𝑌 = O𝑌 (−𝐻),
and in addition 𝐻𝑛−𝑘−2(𝐻;Ω𝑘

𝐻 ) = 0, then the argument of Remark 2.12 shows that

𝐻𝑛−𝑘−1(𝑌 ;Ω𝑘

𝑌
(log 𝐸) ⊗ 𝜋∗𝜔𝑌 ) = 𝐻𝑛−𝑘−1(𝑌 ;Ω𝑘

𝑌
(log 𝐸) ⊗ O𝑌 (−𝐻)) = 0,

where we identify the divisor H on Y with its preimage 𝜋∗𝐻 on 𝑌 . For example, these hypotheses are
satisfied if Y is a hypersurface in P𝑛+1 of degree 𝑑 ≤ 𝑛 + 1. However, as soon as 𝑛 = 2𝑘 + 1 is odd
and 𝑛 ≥ 5, there exist such hypersurfaces with only nodes as singularities (the k-liminal case with
𝑘 = 1

2 (𝑛 − 1)) such that the map T1
𝑌 → 𝐻0 (𝑌 ;𝑇1

𝑌 ) =
⊕

𝑥∈𝑌sing
𝐻0 (𝑇1

𝑌 ,𝑥)/𝔪𝑥𝐻
0(𝑇1

𝑌 ,𝑥) is not surjective
(cf. for example, [FL22a, Remark 4.11(iv)]). Thus, the obstructions to the surjectivity of the map
T1
𝑌 → 𝐻0(𝑌 ;𝑇1

𝑌 ) are not detected by the nonlinear obstruction
∑

𝑥∈𝑍 𝑐𝑥𝜆
𝑘
𝑥𝜕 (𝜀𝑥). Of course, a nodal

hypersurface in P𝑛+1 is smoothable, but the above examples show that, even in the Fano case, the nodes
cannot always be smoothed independently.

4.2. Geometry of a smoothing

We make the following assumption throughout this subsection (except for Remark 4.14 at the end):

Assumption 4.9. Y denotes a projective variety, not necessarily satisfying 𝜔−1
𝑌 ample or 𝜔𝑌 � O𝑌 ,

with only isolated lci singular points (not necessarily weighted homogeneous). Denote by Z the singular
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locus of Y. Let 𝑓 : Y → Δ be a projective smoothing of Y (i.e., 𝑌0 = 𝑌 � 𝑓 −1(0) and the remaining
fibers 𝑌𝑡 = 𝑓 −1(𝑡), 𝑡 ≠ 0, are smooth). For 𝑥 ∈ 𝑍 , let 𝐿𝑥 denote the link at 𝑥, and let 𝑀𝑥 denote the
Milnor fiber at x. Finally, let 𝑀 =

⋃
𝑥∈𝑍 𝑀𝑥 and 𝐿 =

⋃
𝑥∈𝑍 𝐿𝑥 .

We have the Mayer–Vietoris sequence of mixed Hodge structures (where 𝐻𝑖 (𝑌𝑡 ) is given the limiting
mixed Hodge structure):

· · · → 𝐻𝑖−1(𝑀) → 𝐻𝑖 (𝑌, 𝑍) → 𝐻𝑖 (𝑌𝑡 ) → 𝐻𝑖 (𝑀) → · · · . (4.1)

In particular, just under the assumption that Y has isolated lci singularities, 𝐻𝑖 (𝑌, 𝑍) → 𝐻𝑖 (𝑌𝑡 ) is an
isomorphism except for the cases 𝑖 = 𝑛, 𝑛 + 1. There is a more precise result if we assume that the
singularities are k-Du Bois:

Lemma 4.10. Suppose that all singular points of Y are isolated lci k-Du Bois singularities. Then

(i) Gr𝑝𝐹 𝐻𝑛 (𝑀𝑥) = 0 for 𝑝 ≤ 𝑘 and Gr𝑛−𝑝𝐹 𝐻𝑛 (𝑀𝑥) = 0 for 𝑝 ≤ 𝑘 − 1.
(ii) For all i, if 𝑝 ≤ 𝑘 , then Gr𝑝𝐹 𝐻𝑖 (𝑌𝑡 ) = Gr𝑝𝐹 𝐻𝑖 (𝑌 ), and if 𝑝 ≤ 𝑘 − 1, then Gr𝑛−𝑝𝐹 𝐻𝑖 (𝑌𝑡 ) =

Gr𝑛−𝑝𝐹 𝐻𝑖 (𝑌 ).

Proof. The first statement follows from [FL24, §6] and the second from (i), (4.1), and strictness. �

Remark 4.11. Under the assumption of isolated lci k-Du Bois singularities as above (or more generally
isolated lci (𝑘 − 1)-rational singularities), the above implies that Gr𝑊2𝑛−𝑎 𝐻

𝑛 (𝑌𝑡 ) = 0 for all 𝑎 ≤ 2𝑘 − 1,
and hence that for all 𝑎 ≤ 2𝑘 − 1, Gr𝑊𝑎 𝐻𝑛 (𝑌𝑡 ) = 0 as well. Thus, if T is the monodromy operator acting
on 𝐻𝑛 (𝑌𝑡 ) and 𝑁 = log𝑇𝑚 for a sufficiently divisible power of T, then 𝑁𝑛−2𝑘+1 = 0.

Under the assumption of k-liminal singularities, the proof of Lemma 4.10 and [FL24, Corollary 6.14]
gives the following:

Lemma 4.12. In the above notation, if all singular points of Y are isolated k-liminal hypersurface
singularities, then

Gr𝑛−𝑘𝐹 𝐻𝑛 (𝑀𝑥) � Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿𝑥) = C · 𝜀𝑥

for some nonzero 𝜀𝑥 ∈ Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿𝑥). Moreover, there is an exact sequence

0 → Gr𝑛−𝑘𝐹 𝐻𝑛 (𝑌 ) → Gr𝑛−𝑘𝐹 𝐻𝑛 (𝑌𝑡 ) →
⊕
𝑥∈𝑍

C · 𝜀𝑥
𝜓
−→ Gr𝑛−𝑘𝐹 𝐻𝑛+1 (𝑌 ) → Gr𝑛−𝑘𝐹 𝐻𝑛+1(𝑌𝑡 ) → 0.

We also have the natural map 𝜑 : Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿) =
⊕

𝑥∈𝑍 C · 𝜀𝑥 → Gr𝑛−𝑘𝐹 𝐻𝑛+1 (𝑌 ), and there is a
commutative diagram

Gr𝑛−𝑘𝐹 𝐻𝑛 (𝑀)
�

−−−−−−→ Gr𝑛−𝑘𝐹 𝐻𝑛 (𝐿)

𝜓
⏐⏐� ⏐⏐�𝜑

Gr𝑛−𝑘𝐹 𝐻𝑛+1 (𝑌 ) −−−−−−→ Gr𝑛−𝑘𝐹 𝐻𝑛+1(𝑌 ).

By Lemma 2.3, Gr𝑛−𝑘𝐹 𝐻𝑛+1(𝑌 ) → Gr𝑛−𝑘𝐹 𝐻𝑛+1(𝑌 ) is injective. Thus, the dimensions of the kernel and
image of the map 𝜓 :

⊕
𝑥∈𝑍 C · 𝜀𝑥 → Gr𝑛−𝑘𝐹 𝐻𝑛+1 (𝑌 ) are the same as the dimensions of the kernel and

image of the map 𝜑 :
⊕

𝑥∈𝑍 C · 𝜀𝑥 → Gr𝑛−𝑘𝐹 𝐻𝑛+1 (𝑌 ). Then we have the following generalization of
[Fri91, Lemma 8.1(2)]:

Corollary 4.13. Still assuming that all singular points of Y are isolated k-liminal hypersurface sin-
gularities, in the above notation, let 𝑠′ = dim Ker{𝜑 :

⊕
𝑥∈𝑍 C · 𝜀𝑥 → Gr𝑛−𝑘𝐹 𝐻𝑛+1 (𝑌 )}, and let

𝑠′′ = #(𝑍) − 𝑠′ = dim Im 𝜑. Then
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(i) ℎ𝑛−𝑘,𝑘 (𝑌𝑡 ) = ℎ𝑘,𝑛−𝑘 (𝑌𝑡 ) = dim Gr𝑛−𝑘𝐹 𝐻𝑛 (𝑌𝑡 ) = dim Gr𝑛−𝑘𝐹 𝐻𝑛 (𝑌 ) + 𝑠′.
(ii) dim Gr𝑘𝐹 𝐻𝑛 (𝑌 ) = dim Gr𝑛−𝑘𝐹 𝐻𝑛 (𝑌 ) + 𝑠′.

(iii) ℎ𝑛−𝑘,𝑘+1 (𝑌𝑡 ) = dim Gr𝑛−𝑘𝐹 𝐻𝑛+1(𝑌𝑡 ) = dim Gr𝑛−𝑘𝐹 𝐻𝑛+1(𝑌 ) − 𝑠′′.

Proof. (i) and (iii) follow from the exact sequence in Lemma 4.12. As for (ii), by Lemma 4.10(ii),

dim Gr𝑘𝐹 𝐻𝑛 (𝑌 ) = dim Gr𝑘𝐹 𝐻𝑛 (𝑌𝑡 ) = dim Gr𝑛−𝑘𝐹 𝐻𝑛 (𝑌𝑡 ) = dim Gr𝑛−𝑘𝐹 𝐻𝑛 (𝑌 ) + 𝑠′,

using (i). �

Remark 4.14. Let Y be a compact analytic threefold with all singular points 1-liminal, hence ordinary
double points. Assume in addition that ℎ1 (O𝑌 ) = ℎ2 (O𝑌 ) = 0. For a canonical Calabi–Yau threefold,
since𝜔𝑌 � O𝑌 , this is a natural assumption to make: If ℎ1 (O𝑌 ) ≠ 0, Y is smooth by a result of Kawamata
[Kaw85, Theorem 8.3], and ℎ1(O𝑌 ) = 0 ⇐⇒ ℎ2 (O𝑌 ) = ℎ2 (𝜔𝑌 ) = 0 by Serre duality. Let 𝑌 ′ be a
small resolution of Y, and let [𝐶𝑥] ∈ 𝐻2 (𝑌 ′;Ω2

𝑌 ′ ) = 𝐻4(𝑌 ′) be the fundamental class of the exceptional
curve over the point 𝑥 ∈ 𝑍 . Setting 𝜓 : C𝑍 → 𝐻2 (𝑌 ′;Ω2

𝑌 ′ ) to be the natural map (𝑎𝑥) ↦→
∑

𝑥∈𝑍 𝑎𝑥 [𝐶𝑥],
let 𝑠′ = dim Ker𝜓 and 𝑠′′ = dim Im𝜓. Then arguments similar to those above show that

𝑏4 (𝑌 ) = 𝑏4 (𝑌
′) = 𝑏2 (𝑌

′) = 𝑏2 (𝑌 ) + 𝑠′′.

Moreover, if Y is smoothable and 𝑌𝑡 denotes a general smoothing, then

𝑏2 (𝑌𝑡 ) = 𝑏2(𝑌 ) = 𝑏2 (𝑌
′) − 𝑠′′;

𝑏3 (𝑌𝑡 ) = 𝑏3(𝑌
′) + 2𝑠′.

In particular, if Y is a 1-liminal canonical Calabi–Yau threefold and 𝜓 = 0, or equivalently 𝑠′′ = 0 in the
above notation (i.e., Y is Q-factorial), then Y is smoothable by Theorem 1.2 and the Kawamata–Ran–
Tian theorem, and the above formulas hold for 𝑌𝑡 .
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