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Perfect crystals are rare in nature. Real materials often contain crystal defects such as grain boundaries, 
dislocations, stacking faults, interfaces, surface reconstructions and point defects. These crystal defects 
and their dynamics strongly affect material properties and functionality. A major challenge in materials 
characterization is to determine the 3D atomic positions of crystal defects and monitor their dynamics. 
To tackle this challenge, we have developed atomic electron tomography (AET) to image the 3D crystal 
defects in materials at atomic resolution [1-4] using powerful computational algorithms [5, 6] More 
recently, we determined the 3D atomic arrangement of chemical order/disorder in an FePt nanoparticle 
with 22 pm precision [7]. The measured atomic positions and chemical species were used as direct input 
to quantum mechanical calculations to correlate crystal defects and chemical order/disorder with 
material properties at the single-atom level [7]. Moreover, using FePt nanoparticles as a model system, 
we advanced AET to study nucleation at 4D atomic resolution [8]. We revealed that early stage nuclei 
are irregularly shaped, each has a core of one to few atoms with the maximum order parameter, and the 
order parameter gradient points from the core to the boundary of the nucleus. We captured the structure 
and dynamics of the same nuclei undergoing growth, fluctuation, dissolution, merging and/or division, 
which are regulated by the order parameter distribution and its gradient. These experimental 
observations differ from classical nucleation theory (CNT) and to explain them we proposed the order 
parameter gradient (OPG) model [8]. We showed the OPG model generalizes CNT and energetically 
favours diffuse interfaces for small nuclei and sharp interfaces for large nuclei. We further corroborated 
this model using molecular dynamics simulations of heterogeneous and homogeneous nucleation in 
liquid-solid phase transitions of Pt. We anticipate that the OPG model is applicable to different 
nucleation processes and our experimental method opens the door to study the structure and dynamics of 
materials with 4D atomic resolution [9]. 
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Figure 1. Capturing 4D atomic motion with AET. a-c, 3D atomic models (Fe in red and Pt in blue) 
of an FePt nanoparticle with an accumulated annealing time of 9, 16 and 26 minutes, respectively. 
The 3D shape of the nanoparticle was similar from 9 to 16 minutes, but changed from 16 to 26 
minutes. d-f, The Pt-rich core of the nanoparticle remained the same for the three annealing times. 
The light and dark grey projections show the whole nanoparticle and the core, respectively. g-i, The 
same internal atomic layer of the nanoparticle along the [010] direction at the three annealing times 
(Fe in red and Pt in blue), where a fraction of the surface and sub-surface atoms were re-arranged to 
form L10 phases (ellipses), but the Pt-rich core of the nanoparticle remained the same. 
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