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Abstract

The combination of advances in knowledge, technology, changes in consumer preference and
low cost of manufacturing is accelerating the next technology revolution in crop, livestock and
fish production systems. This will have major implications for how, where and by whom food
will be produced in the future. This next technology revolution could benefit the producer
through substantial improvements in resource use and profitability, but also the environment
through reduced externalities. The consumer will ultimately benefit through more nutritious,
safe and affordable food diversity, which in turn will also contribute to the acceleration of the
next technology. It will create new opportunities in achieving progress towards many of the
Sustainable Development Goals, but it will require early recognition of trends and impact,
public research and policy guidance to avoid negative trade-offs. Unfortunately, the quantita-
tive predictability of future impacts will remain low and uncertain, while new chocks with
unexpected consequences will continue to interrupt current and future outcomes. However,
there is a continuing need for improving the predictability of shocks to future food systems
especially for ex-ante assessment for policy and planning.

Shocks to global food systems

Throughout history, societies have contended with how to produce sufficient food. Currently,
both economically developing and developed countries struggle to achieve and balance a wide
range of food-related goals such as food and nutrition security and safety, environmental sus-
tainability, wildland conservation, economic development and rural poverty alleviation
(Godfray et al., 2010). These challenges have become increasingly global in scale and in com-
plexity with the growth in international food trade.

Food systems have always been subject to short-term regional shocks such as inclement
weather, pests and diseases, and social conflicts, as well as longer-term stresses caused by cli-
mate change (Porter et al., 2014), population growth (Roser and Ortiz-Ospina, 2017), envir-
onmental degradation (Ferber, 2001; Smith et al., 2017) and political and economic
development. The 2008 food price crisis that led to widespread food riots in many countries
showed how regional shocks to food production and policies have global consequences not
only for food supply and distribution, but also for social and political systems (Berazneva
and Lee, 2013). There is an increasing concern about the impact of global climate change
on food production and its associated environmental, economic, social and political impacts
(Godfray et al., 2010). More recently, trade disputes and the COVID-19 crisis further highlight
the risks of massive disruptions in the globalized food supply chains, unveiling an underlying
vulnerability of agricultural systems.
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A new kind of emerging shocks to global food systems stems
from advanced technologies that are transforming food produc-
tion and agricultural systems at an unprecedented rate. Until
now, the technological changes such as irrigation, mechanization
and crop breeding have revolutionized food production, but these
changes generally came gradually and at different times in differ-
ent places, like the ‘Green Revolution’ during the last 60 years
(Evenson and Gollin, 2003). These technological changes often
focused on production (Evenson and Gollin, 2003), with harmful
consequences for the environment (Ferber, 2001; Smith et al.,
2017) and society (Ng et al., 2014). What will differentiate the
coming technological revolution in food systems from previous
developments will be its speed, breadth, reach and the corre-
sponding opportunities as well as challenges it will pose in feeding
the globe, as discussed in this Editorial.

Potential food system ‘game-changers’

Simultaneous advances in knowledge, technology and changes in
consumer preference have created a set of new food technologies.
Herrero et al. (2020) listed many emerging single technologies
with reference to their state in the ‘pipeline’ from research to ini-
tial implementation, but without considering the potential impact
on the society at large. In addition, many of the advances in tech-
nology listed by Herrero et al. (2020) will unlikely achieve much
widespread impact on food systems on their own, such as artificial
intelligence or big data. Only when these are combined and linked
to a specific domain and involved the stakeholders, they poten-
tially become ‘game-changers’. These ‘game-changers’ encompass
crop, livestock, aquaculture and fisheries systems and include:

(1) Artificial intelligence linked with Big Data, sensors and food
systems knowledge to increase productivity, optimize resource
use and minimize externalities in food supply chains,

(2) Autonomous acting technologies including robots and drones
throughout the food supply chain,

(3) Tailored genes for specific food production, nutritional and
environmental outcomes,

(4) Large-scale aquaculture both on-land and in the ocean,
(5) Novel food and feed from farmed single-cell organisms, algae

and insects, and designed food using synthetic biology, and
(6) Vertical farming with controlled-environment production of

crops, livestock and seafood.

Components within these technologies have been developed for
decades, but have reached or will reach soon a combined maturity
and affordability that will warrant fast and widespread implemen-
tation. For example, sub-technologies have experienced recent
breakthroughs in autonomous acting (like autonomous driving),
on-time sensory and picture recognition, high-speed data trans-
mission and processing, genetic manipulation, and energy (e.g.
solar) and light production (e.g. LEDs) – all combined with
much lower cost in manufacturing these technologies. As a con-
sequence, each of these six major technologies will likely take
off fast, disrupt the functioning of food production systems and
related systems with both positive and negative implications.
For example, the operation of crop, livestock and aquaculture sys-
tems will be substantially improved by artificial intelligence con-
necting remote, continuous, real-time and low-cost sensor
monitoring through production systems with autonomous inter-
ventions (Carvajal-Yepes et al., 2019). These technologies can
simultaneously improve resource use efficiency with reduced

environmental externalities, thus increasing the sustainability of
food and feed production and their acceptability by producers
and consumers alike.

Similarly, multiple, small autonomous robots and drones will
replace repetitive and hard labour, similar to past trends in
other manufacturing industries, e.g. car production, revolutioniz-
ing efficiency and challenge traditional food production, harvest-
ing, processing, packaging and distribution. Replacing farm
labour, which is the most expensive cost in many farm operations
(Mundlak, 2005), with such autonomous machines could change
the historic trend of increasing farm size. The prior approach of
increasing farm size required expensive and heavy machinery
that caused soil degradation, reducing crop growth and yield
(Unger and Kaspar, 1994), large mono-culture field units with
low biodiversity (Green et al., 2005), and increasing concentration
of livestock with local nutrient surplus and eutrophication of the
environment (Ferber, 2001; Smith et al., 2017). In the future, with
the introduction of autonomous-acting field technologies, larger
farms will not necessarily be more profitable or successful than
smaller farms (Asseng and Asche, 2019). Less dependency on
labour could also mitigate major food supply disruptions resulting
from recent events such as the COVID-19 pandemic and drastic
changes in immigration policies.

Increased productivity through tailored genes for crops and
fish is now possible, e.g. a genetically modified Atlantic salmon
was the first GMO animal, to be approved for sale in the USA.
The breeders of this new salmon claim that it has an increased
growth and improved feed conversion enabling a more efficient
food supply. There is a growing consumer interest in ‘plant-based
meat’ that consists of extracted plant protein, spices and binding
ingredients. Technological advances in synthetic biology and pre-
cision fermentation could lead to mass production of engineered
protein in factory fermentation facilities and cultivation of meat
cells for food and feed (Tubb and Seba, 2021). If widely accepted,
such technology could challenge traditional livestock production
systems, but not necessarily reducing greenhouse gas (GHG)
emissions while also increasing the demand for starch crops
such as maize (Lynch and Pierrehumbert, 2019). New technolo-
gies for large-scale production of seafood on land and in ocean
cages could increase seafood accessibility for consumers and pos-
sibly reduce pressure on wild fish stocks (Diana, 2009). Linking
new developments in aquaculture and livestock by producing
feed from algae could significantly reduce GHG emissions in live-
stock, the largest GHG emitter in agriculture (Roque et al., 2019).
Tailored genes can also enhance nutrient composition and value
of food and eventually lead to substantial improvements in nutri-
tion and ultimately human health (Glass and Fanzo, 2017), in
addition to increasing the food supply volume. Growing crops
in vertical farm factories with many stacked layers of crop produc-
tion under controlled conditions with artificial lighting have the
potential to produce large amounts of food with minimal land
requirement, independent of weather, climate change, soil and
location. In addition, there are strong environmental benefits
through the reuse of most of the water, no application of pesti-
cides and no fertilizer loss to the environment (Pinstrup-
Andersen, 2018). This technology could free agricultural land
and reduce the pressure on deforestation of rainforests due to
the expansion of land required for agricultural production. It
could also minimize transport and thus the carbon footprint by
producing food closer to the consumer. For example, the average
global wheat yield could theoretically increase by 6000 times per
area per year in a 100 layer vertical farm (Asseng et al., 2020).
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However, this is unlikely to be economically viable for broad-acre
crops due to the high energy costs for light and air-conditioning
(Asseng et al., 2020), but could well be viable for other more valu-
able crops, like vegetables (Eaves and Eaves, 2018).

Many unanswered questions

The outcomes, and whether these ‘game-changing’ technological
innovations are beneficial to society, will depend on consumer
preferences as well as policy regulation and economic factors.
Substantial uncertainty about the technology revolution relates
to whether or not new technologies will be considered ethical,
socially acceptable and equitable. New technologies are embraced
as major advancements for societies but may perpetuate societal
divides in agricultural workforces as well as between countries.
Policy regulation and economic factors will determine how
these new technologies are adopted and by whom.

A critical issue is whether Africa, Asia and Latin America that
are currently the major regions for food insecurity, poverty and
rapid demographic change will advance from technological solu-
tions for the required productivity increases, and if so, if they can
leapfrog technologies similar to the rapid adoption of cell phones
for telecommunication and the associated digital payment evolu-
tion. Public and private actors will play defining roles in small-
holder farmers’ access to ‘game-changing’ food technologies and
enabling factors such as effective infrastructure for feed delivery
and market access, maintaining new technologies (on the inputs
side), processing and marketing (on the output side), and access
to financing. Future governance at all levels, including local,
regional, national and international, will be important for a
socially responsible revolution in food and agricultural systems.

Predictability of food production

One of the key questions is if future food production will be able
to meet the demand of a growing world population given resource

and environmental constraints? More than two centuries ago,
Malthus famously predicted that it could not, thus limiting
both population growth and living standards (Malthus, 1798).
The failure to date of Malthus is a reminder of our historical
inability to anticipate how food production can change and
increase in response to technology and institutions, and how
the potential for future shortages creates incentives for such
technological and institutional changes.

At the turn of the century, the International Food Policy
Research Institute (IFPRI) used a sophisticated model of food
supply to project global production in 2020 for wheat, maize,
pork and aquaculture (farmed fish and shellfish) (Rosegrant
et al., 2001; Delgado et al., 2003). The wheat projections were
quite consistent with actual production (Fig. 1(a)), because the
essential elements of the global wheat supply and demand system
were captured by the IFPRI model while there were also no large
exogenous shocks nor large changes in the underlying drivers.

In contrast, maize production was 39% larger than projected
(Fig. 1(b)), largely because the US and EU government require-
ments to add ethanol gasoline – an institutional change not
anticipated in the model assumptions – created a large increase
in demand for maize. The pork projections over-estimated pro-
duction by 20% (Fig. 1(c)), mostly due to another exogenous
shock, i.e. African Swine Fever, that decimated China’s pork pro-
duction in 2019. However, the greatest difference between the
projected and actual production was for aquaculture for which
actual production exceeded the projections by 64% (Fig. 1(d)).
Models for this relatively new industry did not capture the impact
of unanticipated new technologies, the role of globalization and
international trade and policy on aquaculture and fisheries, des-
pite access to large amounts of data and broad food systems
knowledge.

The next technological revolution in food production systems
suggests that all future food production will continue to be diffi-
cult to predict quantitatively, with all types of foods potentially

Fig. 1. Global reported production (black line) and IFPRI projections (red dotted line and red symbol). Projections made by IFPRI in 2000 for the year 2020. (a)
Wheat, (b) maize, (c) pork and (d) farmed fish (including shellfish). Source (Rosegrant et al., 2001; Delgado et al., 2003; FAO, 2019; United States Department
of Agriculture (USDA), 2019).
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subject to as dramatic changes as occurred for aquaculture over
the past two decades. However, more accessible global data and
new AI tools to analyse these might improve the prediction of
some of these trends in the future.

Towards 2050

Herrero et al. (2021) suggested combining the list of food systems
innovations in Herrero et al. (2020) with multiple Sustainable
Development Goals (SDGs) through well-planned transition
pathways, carefully monitoring key indicators and through an
implementation of transparent science targets at local levels.
While a noble goal, achieving this in many situations might be
difficult, as policy has often been lacking behind technology
advancements, such as computing and the Internet, and might
even hinder future innovations. Future food production systems
and technology innovations will also happen regardless of SDGs
and the question will remain how to eventually guide these
through policies that lead to broad positive outcomes. The next
technology revolution needs to be considered in the context of
multiple food-related challenges, shocks and risks. These include
changing demographics, climate change, inequitable food distri-
bution, declining quality and adequacy of diets, accessibility of
healthy foods, food waste, food safety and zoonotic disease trans-
mission, antimicrobial resistance and the paradoxical growing ‘tri-
ple burden’ of malnutrition (hunger, insufficient nutrients, and
overweight and obesity) (Gomez et al., 2013). When combined,
this complex challenge requires a paradigm shift in which we
rethink how, where and what food is produced in the future.
How can the new ‘game-changing’ food system technologies be
employed to address the existing challenges and minimize poten-
tial negative outcomes? Some of the new food technologies create
an opportunity to consider food systems as an ecological system,
with transitions to circular agriculture from local to global scale.
They have the potential to increase and diversify production sys-
tems and minimize environmental degradation with food produc-
tion becoming carbon neutral, recycling water and minimizing
externalities. If successfully implemented, these technologies can
enable societies to produce healthy, nutritional and environmen-
tally friendly food for all. However, while the technology revolu-
tion by itself will disrupt many aspects of life, coupling technology
innovations with sociocultural and policy changes will be neces-
sary to make progress towards multiple SDGs (Barrett et al.,
2020).

Policy implications

Technological innovation will undoubtedly transform the global
food system, but which technologies have the greatest influence
will hinge on economics and business models, challenges on scal-
ing up technologies, consumer preferences and the decisions of
governments and international bodies about regulation and inter-
national agreements. A transformation of food systems through
technology innovations will require changes in the components
of food systems and values, regulations, policies, markets and gov-
ernments surrounding it (Herrero et al., 2020). Herrero et al.
(2020) identified a number of policies to accelerate technology
change including trust building among actors, transforming
mindsets, enabling social license and stakeholder dialogue, guar-
anteeing changes in policies and regulations, designing market
incentives, safeguarding against indirect, undesirable effect, ensur-
ing stable finance and developing transition pathways. In

addition, we see that the challenge for governance is to identify
market failures where private incentives for innovation fall short
or do not discourage innovation in technologies that are harmful.
Governance systems can respond by providing incentives for new
technologies that generate the greatest net benefits to society. They
can also assist with incentives for bundling of technologies with
positive social outcomes (Barrett et al., 2020). We suggest four
key questions and their potential solutions for food technology
policy.

Firstly, when do private market incentives lead to underinvest-
ment in basic science and technology that supports nutritional
security? There are many private incentives to develop premium
products for high-income consumers in niche markets and high-
volume, low-cost products for large numbers of medium and low-
income consumers in wealthier countries. However, it is less clear
that private firms are incentivized to pack nutritional content into
low-cost, high-volume products when breeding new crop var-
ieties, genetically modifying crops and fish, or when experiment-
ing with new processed foods, much less incentivized to
developing products accessible to the poorest segments of society.
Private incentives to innovate for nutritional and healthy foods
and against hunger are inadequate, making the role of publicly-
funded national and international food and agricultural centres
even more crucial.

Secondly, which innovations are likely to produce desirable
co-benefits for the environment and society and thus warrant
more support from the public sector? Global policy agendas are
diverse, with various nations attaching different weights to food
safety, nutritional security, ecological sustainability and economic
development. Identifying technologies with co-benefits in these
domains can help overcome disagreements about policy priorities
in negotiating trade agreements, technology transfer or inter-
national aid.

Thirdly, to what extent does delaying a needed climate policy
in some countries weaken private incentives for green innovation
in the food system? For example, carbon pricing would change the
relative values of different food technology innovations by
increasing the relative costs of GHG-producing technologies.
This delay forces private investment to not only bet on the success
of developing new technologies but also on the timing and strin-
gency of new policies.

Fourthly, how will societies engage and lead the technology
revolution in food production systems? Policymakers must priori-
tize future investments in human capacity-building. Countries
without the capacity to engage in technological advances will
have limited ability to realize technologies’ potential benefits. A
set of essential skills in each country will be vital to create or
maintain each country’s global integration. An educated public
is needed to weigh both the economic, environmental and ethical
implications and to help guide the next revolution in food supply
systems.
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