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Abstract
I develop a procedure for estimating local-area public opinion called stacked regression and poststratifica-
tion (SRP), a generalization of classical multilevel regression and poststratification (MRP). This procedure
employs a diverse ensemble of predictive models—including multilevel regression, LASSO, k-nearest
neighbors, random forest, and gradient boosting—to improve the cross-validated fit of the first-stage
predictions. InaMonteCarlo simulation, SRPsignificantlyoutperformsMRPwhen therearedeep interactions
in the data generating process, without requiring the researcher to specify a complex parametric model in
advance. In an empirical application, I show that SRP produces superior local public opinion estimates on a
broad range of issue areas, particularly when trained on large datasets.

Keywords: public opinion estimation, machine learning, ensemble methods

1 Introduction
Subnational public opinion data are o�en di�icult or costly to obtain. For political scientists who
focus on lower-level units of government (e.g. legislative districts, counties, cities), this lack of
local-area public opinion data can be a significant impediment to empirical research. And so, over
thepast twodecades,politicalmethodologistshave refined techniques forestimating subnational
public opinion data fromnational-level surveys. A now standard approach ismultilevel regression
and poststratification (MRP), first developed by Gelman and Little (1997) and refined by Park,
Gelman, and Bafumi (2004).
MRP proceeds in two stages. First, the researcher estimates a multilevel regression model

from individual-level survey data, using demographic and geographic variables to predict public
opinion. The predictions from this first-stagemodel can then be used to estimate average opinion
in each local area of interest. To do so, the researcher takes each demographic group’s predicted
opinion and computes a weighted average using the observed distribution of demographic
characteristics. This second stage is called poststratification.
MRP has enabled a flowering of new research on political representation in states (Lax and

Phillips 2012), Congressional districts (Warshaw and Rodden 2012), and cities (Tausanovitch and
Warshaw 2014). But the method is not without its critics. Buttice and Highton (2013), for instance,
find that MRP performs poorly in a number of empirical applications, particularly when the first-
stage model is a poor fit for the public opinion of interest. They find that MRP works best for
predicting opinion on cultural issues (like support for same-sex marriage), where there is greater
geographic heterogeneity in opinion. In these cases, public opinion is more strongly predicted by
geographic-level variables, yielding better poststratified estimates. But for opinions on economic
issues, MRP yields a poorer fit. The authors conclude by emphasizing the importance of model
selection, noting that “predictors that work well for cultural issues probably will not work well
for other issue domains and vice versa”. This finding echoes calls from other MRP scholars, who
urge researchers to construct a first-stage model that is well-suited to the topic of study (Lax and
Phillips 2009; Ghitza and Gelman 2013).
Fundamentally, MRP is an exercise in out-of-sample prediction, using observed opinions from

survey respondents to make inferences about the opinions of similar individuals who were not
surveyed. As such, the first-stage model should be selected on the basis of its out-of-sample
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predictive performance. Though classical MRP relies on multilevel regression models, there is no
reasonexante tobelieve that suchmodelswill performbest at this task; anymethod thatproduces
regularized predictions can serve as a first-stage model (Gelman 2018).
In this paper, I introduce a refinement of classical MRP, called Stacked Regression and

Poststratification (SRP). Rather than estimating public opinion from a singlemultilevel regression
model, this technique generates predictions from a “stacked” ensemble of models, including
regularized regression (LASSO), k-nearest neighbors, random forest, and gradient boosting. The
stacking procedure selects an ensemble model average that minimizes cross-validation error,
improving the ensemble’s ability to predict out-of-sample cases, and thereby yielding better
poststratified estimates.1 In both a Monte Carlo simulation and empirical application, I show
that this technique produces superior estimates of subnational public opinion, particularly when
estimated using surveys with large samples. I conclude with guidelines for best practice and
suggestions for future research.

2 The SRP Procedure
The SRP procedure di�ers from MRP in the first stage. Rather than predicting individual-level
opinion using a single multilevel regression model, SRP employs an ensemble model average
(EMA) from a diverse set of predictive models. This ensemble prediction is a weighted average
defined as follows, where fk (Xi ) denotes the predicted value frommodel k given covariates Xi :

f (Xi ) =
K∑
k=1

wk fk (Xi ). (1)

Within this framework, one can think of classical MRP as a special case of SRP where the weight
vector is constrained to wk = 1 for a prespecified multilevel regression model and zero for all
other models. SRP relaxes this constraint, and instead estimates the wk weights to minimize
cross-validated prediction error.
To estimate thewk weights, I use an approach called stacking, first proposed byWolpert (1992)

and refined by Leblanc and Tibshirani (1996) and Breiman (1996).2 This approach proceeds in two
steps. First, the researcher generates out-of-sample predictions from each base model through
k -fold cross-validation (holding out k -folds with n

k observations each, training the model on the
remaining data, and predicting the observations in each fold). This cross-validation step ensures
that the ensemblemodel average does not place toomuchweight on complexmodels that overfit
the training data.
Second, the researcher uses these out-of-sample predictions as the fk values in Equation (1),

estimating thewk weights that minimize prediction error. Because the base models’ predictions
tend to be highly collinear (a�er all, they are all predicting the same outcome), OLS or logistic
regression tend to yield highly unstable coe�icient estimates, so it is best practice to constrain
the weights to be nonnegative (wk ≥ 0) and sum to one (

∑
wk = 1) (Breiman 1996). The

weights can thenbeestimated throughahill-climbingalgorithm (Caruana etal.2004) or quadratic
programming (Grimmer,Messing, andWestwood2017). For continuousoutcomevariables, I select

1 Stacking is similar in nature to Bayesian Model Averaging (Montgomery, Hollenbach, and Ward 2012). The latter method
produces posterior predictive distributions through Bayesian updating, whereas stacking yields only point estimates.
Though there has been recent work extending stacking to average Bayesian predictive distributions (Yao et al. 2018), for
our purposes here point estimates will su�ice.

2 A separate strand of the machine learning literature refers to this method as the “Super Learner”; van der Laan, Polley,
and Hubbard (2007) prove that, asymptotically, the predictions from such ensemble model averages outperform any of
ensemble’s component models. This result, of course, does not guarantee that stacking will outperform its component
models in all cases, particularly when trained on finite samples, but it does suggest that its relative performance will
improve with larger datasets.

Joseph T. Ornstein ` Political Analysis 294

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
9.

43
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2019.43


Table 1. The SRP Procedure.

Step Procedure

1 Collect individual-level survey data on outcome of interest
and predictors.

2 Fit a diverse ensemble ofmodels to predict the outcomeof
interest, using demographic and geographic variables as
covariates.

3 Obtain out-of-sample predictions for each observation in
the dataset through cross-validation.

4 Use stacking to find the ensemble model weights that
minimize cross-validated prediction error.

5 Generate predictions for each respondent type
(demographic × geographic variables).

6 Poststratify by weighting these predictions against the
known frequency of each type at the subnational level.

theensemble thatminimizes rootmeansquarederror (RMSE); forbinaryoutcomes, Imaximize the
log-likelihood.
Ineachof theapplications that follow, I include fivedi�erentpredictivemodels inmyensemble.

These include multilevel regression, regularized regression (LASSO), K-Nearest Neighbors (KNN),
Random Forests (RF), and Gradient Boosting (GBM). I encourage readers who are unfamiliar
with these methods to consult Tibshirani (1996), Breiman (2001), and Montgomery and Olivella
(2018) for excellent primers. See the Supplementary Materials for a discussion of these models’
properties, their implementation, and why I chose to include them while omitting other, similar
machine learning techniques.
Once the ensemble weights are estimated, Equation (1) produces the first-stage predictions.

The local-area estimates can then be generated through poststratification as in classical MRP.
Table 1 summarizes the SRP procedure.

3 Monte Carlo Simulation
Howwell does SRP perform relative to classical MRP? And under what conditions does it perform
best? To address these questions, I conduct a Monte Carlo analysis, simulating a data generating
processwhere the outcome variable (y) is a function of two individual-level covariates (z1, z2), one
unit-level covariate (λ), anda stylizedgeographic location. TheDGP is linear-additive except in two
geographic regions, where the Z variables have a multiplicative e�ect.3 This produces a pattern
that one might expect to observe in real data, where the relationship between demography,
geography, and public opinion is not well captured by a linear and additively separable model
(e.g. income is strongly associatedwith voting Republican in Mississippi, but weakly associated in
Connecticut (Gelman et al. 2007)).
More formally, the data are generated through the following process. First, I create NM

individuals, where M is the number of subnational units, and N is the number of observations
per unit. Each individual has four latent (unobserved) characteristics, z1 through z4, drawn from
amultivariate normal distribution with mean zero and variance–covariance matrix equal to



1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1



.

3 Replication materials are available at Ornstein (2019).
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The variable z4 is used to assign each observation to a subnational unit, which ensures that
there is cross-unit variationon the latent characteristics. Each subnational unit, in turn, is assigned
a random latitude and longitude, drawn from a bivariate uniform distribution between (0, 0) and
(1, 1). Once I assign each observation a z vector and subnational unit, I generate the outcome
variable, y , using the following equation:

yi = z1i + z2i + z3i + θ(D 0
i z1i z2i − D

1
i z1i z3i ) + εi .

D 0 is a function that is decreasing in distance from (0,0), and D 1 is decreasing in distance
to (1,1), so that multiplicative e�ects are strongest near those points. εi is an iid normal error
term with mean zero and variance σ2. The parameter θ governs the strength of the three-way
interactione�ect.Whenθ = 0, theDGP is simply a linear-additive combinationof thedemographic
variables, but asθ increases, the conditional e�ectof geographybecomes stronger. Finally, I create
discretized versions of the demographic variables z1 through z3, called x1 through x3. Although
the outcome variable y is a function of the latent variables, Z , the researcher can only observe
the discrete variables X . In addition, the researcher cannot observe x3 at the individual level,
but instead observes its unit-level means (λm ), which are included as a predictor in the first-stage
model.
I repeatedly simulate this data generating process, varying the parameters ρ and θ. (See the

Supplementary Materials for a more detailed technical description of the Monte Carlo and the
combinations of parameter values used.) For each simulated population, I then draw a random
sample of size n and generate three sets of subnational estimates: disaggregation, classical MRP,
and SRP. The first-stage equation for the MRP estimation is a multilevel regression model of the
following form, where x1 and x2 are the individual-level covariates and αunitm is a unit-specific
intercept, itself a function of the unit-level covariate, λm :

yi = β
0 + αj [i ]

x1 + αk [i ]
x2 + αunitm + εi ;

αx1
j
∼ N (0,σ2

j );

αx2
k
∼ N (0,σ2

k );

αunitm ∼ N (βλ · λm ,σ2
unit).

For the first stage of the SRP, I fit a LASSO using the same predictors as the multilevel model
and I train KNN, random forest, and GBM using x1, x2, λm, latitude, and longitude as predictors.
I use fivefold cross-validation for parameter tuning, and then estimate ensemble model weights
through stacking.
Figure 1 illustrates the results of a representative run from the Monte Carlo simulation. Under

certain conditions, SRP dramatically outperforms both disaggregation and classical MRP. When
θ is large—and therefore the multilevel regression model is misspecified—the ensemble model
average is better able to predict individual-level opinion than multilevel regression alone, which
in turn produces better poststratified estimates.
Note that the component machine learning algorithms do not always perform strictly better

than multilevel regression. When θ is small—and thus the true DGP is linear-additive—complex
models provide no prediction advantage over ordinary least squares. Indeed, the flexibility of
methods like KNN become a detriment when the sample size of the survey is small, as KNN
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Figure 1. A representative simulation from theMonte Carlo analysis. Disaggregation,MRP, and SRP estimates
are plotted against true subnational unit means. Parameter values: θ = 5, ρ = 0.4, N = 15 000, M = 200,
n = 5000, σ2 = 5.

performspoorlywhen thenumberofpredictors is large relative to the sizeof the training set (Beyer
et al. 1999).4

Nevertheless, the benefits of SRP can be dramatic under some conditions. In cases where θ
and ρ are large, MRP performs only modestly better than disaggregation, while SRP produces
estimates that are well-correlated with the true unit means. Figure 2 illustrates these relative
performance gains for varying levels of θ. Even when SRP underperforms MRP, it never performs
poorly: theworst correlation produced across all simulationswas a 0.77 for SRP, compared to 0.78
for MRP and 0.25 for disaggregation.

4 Empirical Application
To demonstrate that SRP produces superior estimates in a wide variety of empirical applications,
I replicate the results from Buttice and Highton (2013), comparing the performance of SRP and
classical MRP. In that study, the authors use MRP to estimate state-level public opinion on 89
issues, drawn from two large-sample surveys of American public opinion, theNational Annenberg
Election Studies (NAES) and the Cooperative Congressional Election Studies (CCES). Because
these surveys collect such a large sample within each state, the authors treat the state-level
disaggregated means as the “true” values, and then test how well MRP performs at estimating
these values a�er drawing smaller, random samples from the survey (n = 1500 or n = 10 000).
For each issue area, they model public opinion using a multilevel regression model with sex, age,
race, andeducationas individual-level covariates, state-level covariates onpresidential vote share
and religious conservatism, and state- and region-specific intercepts.

4 More precisely, Beyer et al. (1999) show that KNN on high-dimensional data will perform poorly regardless of the size of
n , owing to the “curse of dimensionality”. Euclidean distance does not meaningfully measure “closeness” in spaces with
more than 10–15 dimensions.
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Figure 2. Relative performance of disaggregation, MRP, and SRP estimates, varying θ. Parameters Used:
ρ = 0.4, n = 5000,M = 200, N = 15 000, σ2 = 5. Points denote 10-run averages.

I replicate this procedure for each of the 89 issue areas using both classical MRP and SRP,
varying the size of the random sample drawn (n = 1500, 3000, 5000, and 10 000) and repeating
the process five times for each combination. The MRP first-stage model is the same as in the
original paper. The SRP ensemble includes a LASSO, KNN, random forest, and GBMmodel, using
the same covariates included in Buttice andHighton (2013). For the KNN, random forest, andGBM,
I substitute the latitude and longitude of each state’s centroid for state- and region-level indicator
variables. The stacking procedure typically selects weights that are mixtures of all five models. It
is very rare in this empirical application that one model dominated the ensemble; fewer than 8%
of ensembles yielded weights wherewk > 0.8 for any model k .
Figure 3 plots SRP’s performance compared to classical MRP, varying the size of the random

sampledrawn.Acrossall simulations, SRP improvescorrelation in79%ofcases, and reducesmean
average error (MAE) in 78% of cases. This performance improvement is the most consistent when
working with larger sample sizes (rows 3 and 4). When n = 10 000, SRP outperforms MRP in 88%
of cases.
For issue areaswhereMRPalreadyperformswell, the gains fromadoptingSRParemodest. This

is to be expected; when MRP produces a correlation of 0.9, there can be little improvement from
fitting a more sophisticated first-stage ensemble. But in cases where MRP performs poorly, the
gains from adopting SRP can be quite substantial. Examining Figure 3, one can observe numerous
cases where SRP produces large improvements in correlation or MAE, and very few cases where
it performs substantially worse. This is particularly true in Rows 3 and 4, where the estimates are
constructed from larger samples.
To consider theseperformance gains in perspective, Figure 4 reportsmean correlation andMAE

across simulations, varying sample size. Adopting SRP yields amodest but statistically significant
improvement across the board. In some places, this performance gain is comparable to a large
increase in sample size. For example, when n = 5000, adopting SRP over MRP increases the
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Figure 3. Plots in the le� column compare SRP and MRP correlations, varying sample size. Plots in the right
column compare Mean Absolute Error.

Figure 4.Mean performance of SRP and MRP across all simulations, varying sample size.

correlation from 0.68 to 0.72. This performance gain is comparable to doubling the sample size
to n = 10 000, a feat that is muchmore di�icult in practice. (Doing both is, of course, best of all.)
The core finding from Buttice and Highton (2013) is that MRP’s performance can be highly

variable when using national-level surveys with a typical sample size of n = 1500. This remains
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true for SRP, albeit to a lesser extent. As the empirical application demonstrates, SRP performs
best with large sample size. This is to be expected, given that more complex models require
more data to fit. But it suggests that SRP alone is insu�icient to expect good estimates from
small, unrepresentative public opinion surveys. Rather, researchers should be most confident in
estimates produced from large-sample surveys and cross-validated first-stage models.

5 Conclusion
InbothMonteCarlo andempirical applications, SRPproducesmodestbut consistentperformance
gains over classical MRP. These gains are largest in cases where the data generating process is
complex, with nonlinear interactions between demographic and geographic variables that are
unlikely to be specified in advance by the researcher’s model. In the empirical analysis, SRP
performs markedly better on issue areas where MRP performed poorly in Buttice and Highton
(2013).
Despite this improvement in prediction performance, there are two reasons why a researcher

might choose to forego SRP and employ classical MRP instead. The first involves “synthetic
poststratification”, a method proposed by Leemann and Wasserfallen (2017). This refinement
of MRP proceeds as if the joint distribution of individual-level covariates is simply the product
of their marginal distributions, allowing the researcher to include additional individual-level
predictor variables in the first-stage model. In the Supplementary Materials (Appendix A), I prove
that this procedure and classical MRP produce identical estimates, but only if the first-stage
model is linear-additive. This suggests that, for applications where the researcher must conduct
the poststratification stage synthetically —e.g. in countries that do not publish detailed census
microdata— it is prudent to use a linear-additive model for the first-stage predictions rather than
the ensemble methods proposed here.
The second cost of SRP is its added computational complexity; it takes significantly longer

to estimate an ensemble of models than it does to estimate a single regression model. This
is particularly true when gradient boosting is included in the ensemble, as it requires the
most computationally intensive parameter tuning of all the methods I survey here (see the
Supplementary Materials for details). To produce the results in this paper, I conducted several
thousand simulations, which required a significant amount of computation time. But for applied
researchers who need only to generate a single set of estimates, the added computation time is
negligible. The maximum time spent on a single run was 15 minutes, the majority of which was
spent tuning the GBM parameters. The average run time was closer to 3 minutes.
Given these results, I strongly recommend that researchers consider using SRP in place of MRP,

particularly when working with large (n > 5000) public opinion datasets like CCES or NAES. To
facilitate this, readersarewelcometoadaptmyreplicationcode for theiruse, and Ihavedeveloped
anRpackage (SRP) currently available onmywebsite. Ultimately, I hope that SRPwill prove tobe a
useful addition to theempirical social scientist’s toolkit, spurring further research into subnational
politics.
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