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Abstract

Objective: To examine statistical models that account for correlation between random
errors of different dietary assessment methods, in dietary validation studies.
Setting: In nutritional epidemiology, sub-studies on the accuracy of the dietary
questionnaire measurements are used to correct for biases in relative risk estimates
induced by dietary assessment errors. Generally, such validation studies are based on
the comparison of questionnaire measurements (Q ) with food consumption records
or 24-hour diet recalls (R ). In recent years, the statistical analysis of such studies has
been formalised more in terms of statistical models. This made the need of crucial
model assumptions more explicit. One key assumption is that random errors must be
uncorrelated between measurements Q and R, as well as between replicate
measurements R1 and R2 within the same individual. These assumptions may not hold
in practice, however. Therefore, more complex statistical models have been proposed
to validate measurements Q by simultaneous comparisons with measurements R plus
a biomarker M, accounting for correlations between the random errors of Q and R.
Conclusions: The more complex models accounting for random error correlations
may work only for validation studies that include markers of diet based on
physiological knowledge about the quantitative recovery, e.g. in urine, of specific
elements such as nitrogen or potassium, or stable isotopes administered to the study
subjects (e.g. the doubly labelled water method for assessment of energy
expenditure). This type of marker, however, eliminates the problem of correlation
of random errors between Q and R by simply taking the place of R, thus rendering
complex statistical models unnecessary.
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A central obstacle in nutritional epidemiology is the

relative inaccuracy of subjects’ habitual dietary intake

estimates for specific food groups and nutrients. Random

and uncorrelated measurement errors cause attenuation of

relative risk estimates, and decrease the statistical power of

studies. In addition, systematic (scaling) errors may cause

problems of comparability across studies, or across sub-

populations in multi-ethnic or multi-centre studies. To

adjust for biases in relative risk estimates caused by

measurement errors, it is increasingly being proposed that

epidemiological studies of diet and disease risk should

incorporate sub-studies for the validation and calibration

of food-frequency questionnaire assessments of subjects’

habitual dietary intake. In this paper, we review recent

developments in statistical methods used for such studies,

with special emphasis on structural equation modelling.

Particular attention is given to problems that arise because

random errors in dietary questionnaire measurements

cannot be assumed to be uncorrelated with those of

measurements obtained by weighed food consumption

records or 24-hour diet recalls.

The concepts of ‘validation’ and ‘calibration’

‘Validation’ is usually referred to as the evaluation of

whether a measuring instrument really measures what is

intended. When a gold standard measurement is available,

validation consists of a comparison between the gold

standard and a test measurement. If the errors in the test

measurement are sufficiently small, it is considered valid,

and may be substituted for the gold standard in future

studies. This simple definition of validation cannot be

applied in nutritional epidemiology, since a gold standard

measurement does not exist. We therefore expand the
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definition of validation to mean evaluation of the

measurement error properties of a test measurement.

Validation thus takes place within the context of a given

measurement error model. Increasingly complex

measurement error models have been proposed to

account for the various sources of error in dietary

assessment. The evolution of these models is reviewed

in this paper.

‘Calibration’ is, in general, the determination of the

relationship between two measurement scales. In our

case, these are the scales of measured diet and true

habitual diet. In nutritional epidemiology, the term

calibration is used for adjustments to the scale of

questionnaire measurements of diet, such that relative

risk estimates calculated for a quantitative difference in

dietary intake level become unbiased. With some

simplifying assumptions, calibration can be reduced to

the problem of estimating a ‘correction factor’ that can

be applied to naı̈ve estimates of relative risk using the

dietary assessment method in question1.

Validation and calibration studies have somewhat

different goals and imply different study designs1,2.

Nevertheless, calibration studies require certain assump-

tions about the independence of measurement errors, and

these assumptions may need to be verified in a validation

study. It may be useful to think of a validation study as

validating a particular measurement error model rather

than validating a particular measurement method.

Dietary assessment errors and their effects on

relative risk estimates

The dietary assessment instrument used most often in

large-scale epidemiological studies is the food-frequency

questionnaire. Initially, the measurement obtained from

the questionnaire, Q, was assumed to be linked to the true

habitual food intake value, T, and the measurement error,

eQ, by a simple measurement model which expresses

Q as the sum of two independent random variables:

Q ¼ T þ eQ: This is known as the ‘classical’ measure-

ment error model. Here the latent variable T, the true

intake, is assumed to have finite variance s2
T and errors are

assumed to have mean zero, constant variance and to be

uncorrelated when measurements are repeated on the

same subjects. More specifically, for a particular realisation

of the measurement Q on the ith individual and on

occasion j, the classical model can be written as sum of

two independent terms:

Qij ¼ T i þ eQ;ij ; ð1Þ

with

E½eQ;ij� ¼ 0

ðassumption of global unbiasedness on the group

levelÞ;

Cov½eQ;ij ; T � ¼ 0

ðassumption of no correlation of errors with true

intake levelsÞ; and

CovðeQ;ij ; eQ;i 0j 0 Þ ¼ 0 whenever i – i 0 or j – j 0

ðassumption of uncorrelated errorsÞ:

This model contains some strong assumptions that are

unlikely to hold in practice. To improve the model, three

major modifications were eventually proposed3–6.

First, the assumption of global unbiasedness ðE½eQ;ij� ¼

0Þ was dropped, as it was recognised that intake could be

either systematically overestimated or underestimated on a

group level. As an example, consider a questionnaire in

which questions concerning a non-negligible source of

alcohol (e.g. strong spirits) is absent; then clearly there is a

bias in the measuring instrument leading to a systematic

underestimation of alcohol consumption.

Second, it was recognised that also the assumption

of no correlation of errors with true intake levels

ðCov½eQ;ij ; T i� ¼ 0Þ may not hold in practice. It is possible,

for a variety of reasons, that individuals consuming great

quantities of alcohol tend to underestimate their alcohol

intake more than individuals with more moderate alcohol

intakes. A more accurate model should therefore include

a term to represent a covariance between the error eQ,ij

and Ti.

Third, it was recognised that even after accounting for a

possible covariance between eQ,ij and Ti, individuals who

respond to the questionnaire on multiple occasions may

vary in their tendency to under- or overestimate true

intake. This means that even those deviations from the

true value that are uncorrelated with true intake level T can

be decomposed into an individual specific bias dQ,i, which

is random only between individuals but not within, and a

portion gQ,ij, which varies randomly within individuals

from one occasion to another.

To accommodate the above departures from the original

assumptions, a decomposition of the error term eQ,ij

was postulated, including a linear relationship between

individuals’ questionnaire measurements and true intake

levels:

eQ;ij ¼ aQ þ bT i þ 1Q;ij ;

where the total random error 1Q,ij is decomposed into dQ,i

plus gQ,ij, and where E½dQ;i� ¼ 0; E½1ij� ¼ 0; VarðdQ;iÞ ¼

s2
dQ; VarðgQ;iÞ ¼ s2

gQ; Varð1Q;ijÞ ¼ s2
1Q ¼ s2

dQ þ s2
gQ; and

all terms may be assumed to be mutually uncorrelated.

This led to the following measurement model4:

Qij ¼ aQ þ bQT i þ 1Q;ij ; ð2Þ

with constant variance and uncorrelated error assump-

tions now holding for 1. This modified model implies a
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more complex covariance structure for Qij:

CovðQij ;QijÞ ¼ b2
Qs

2
T þ s2

1Q

¼ b2
Qs

2
T þ s2

dQ þ s2
gQ

and

CovðQij ;Qij 0 Þ ¼ b2
Qs

2
T þ s2

dQ for j – j 0:

The parameters aQ and bQ express constant and

proportional scaling biases, respectively. The term dQ,i,

which is systematic within subjects but varies randomly

between them, has been termed subject-specific bias7,8. It

is the presence of subject-specific biases that implies a

non-zero correlation for replicate questionnaire measure-

ments Qi1 and Qi2 taken from the same individual at

different time points.

Within epidemiological studies, the effects of errors in

dietary questionnaire assessment errors are several. First,

and most importantly, random errors 1Q cause attenuation

of relative risk estimates. Under the simplifying model

assumptions of approximate normality and a linear

measurement error model as under equation (2) above,

the magnitude of such bias depends on how the relative

risk (RR) is expressed. If relative risks are expressed

between quantile categories of dietary exposure, they will

be biased by rQT:

logðRRobsÞ ¼ rQT logðRRtrueÞ; ð3Þ

where rQT is the correlation coefficient between individ-

uals’ questionnaire assessments and true intake levels.

On the other hand, for absolute differences in dietary

exposure on a continuous scale, log relative risk estimates

will be biased by a factor

lQ ¼ ð1=bQÞr
2
QT ; ð4Þ

where r2
QT represents the attenuation effect due to random

errors, while 1=bQ is the inverse of the proportional

scaling bias in the dietary questionnaire assessments.

The design and analysis of validation and calibration

studies

Classical approaches

In practice, rQT or lQ can be estimated only by compari-

son of dietary questionnaire measurements with measure-

ments obtained by an alternative technique. The major

problem, however, is to find good reference measure-

ments for such a comparison.

For a long time, it was assumed that accurate reference

measurements could be obtained by asking subjects to

record their current intake on a number of specific days,

using weighed food consumption records, food consump-

tion diaries or 24-hour diet recalls. It was thought that as

long as food portions were assessed accurately by

weighing or using a scale of pictures, such records

would lead to highly accurate measurements of intake on

each given day. With respect to the subjects’ habitual

dietary intakes in the longer term, the only major source of

error left would then be due to within-subject, day-to-day

variations in the actual intake of foods and nutrients. It was

thus assumed that by increasing the number of recording

days the mean of multiple food records would gradually

converge to the individuals’ true habitual intake values9,10.

These considerations led to the formulation of the model:

Rij ¼ T i þ 1R;ij ; with E½1R� ¼ 0; CovðT ; 1RÞ ¼ 0;

Covð1R;ij ; 1R;ikÞ ¼ 0 ðj – kÞ:
ð5Þ

An additional assumption was statistical independence

between the random errors of food consumption records

and those of questionnaire assessments, hence:

Covð1R; 1QÞ ¼ 0: Based on the assumptions of the models

of equations (2) and (5), a simple procedure to estimate

the correlation rQT was to:

1. calculate the coefficient of correlation rQR between

measurements Q and the average of multiple days of

food records (R);

2. estimate the correlation rT R between R and true intake

levels, by means of an analysis of variance (to estimate

within- and between-subject variances in the food

records); and

3. to correct the crude estimate, rQR, for the correlation

between R and true intake levels (i.e. correcting for

attenuating effects due to residual within-subject (day-

to-day) variations in the average food record measure-

ments); that is11, rQT ¼ rQR/rT R.

Initially, the practical implementation of calibration

studies was described under the same assumptions as

those of validation studies, namely that mean true intake

levels of a population could be estimated correctly by

average weighed food records or 24-hour diet recalls, and

that random errors of such records or recalls would be

independent of random errors in the dietary questionnaire

(used for classification). In theory, the design of a

calibration study can be lighter than that of a validation

study, in that a single (non-replicated) reference

measurement Ri ¼ T i þ 1R;i per person (e.g. a single

day’s food consumption record or a single 24-hour diet

recall) would be sufficient to estimate lQ, whereas

validation studies would need at least one further

measurement (e.g. a replicate measurement Ri2 or a

biochemical marker of diet)1.

Validation in terms of structural equation models

In the mid-1990s, the statistical analysis of dietary

validation studies received renewed attention. It was

shown that statistical evaluation of dietary validation

studies, based on the comparison of questionnaire

measurements Q with replicate daily food consumption

records R, could be analysed conveniently by simul-

taneously taking into account the measurement errors in
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both Q and R expressed by equations (2) and (5): this

constitutes a simple structural equation model4 – 6.

Structural equation models have been developed exten-

sively in the field of psychometrics, which also suffers

from the lack of gold standard measurements. In many

situations, the number of unknown model parameters to

be estimated equals the number of independent means,

variances and covariances. Equating the theoretical and

sample moments then results in a set of equations that can

be solved directly to obtain the parameter estimates. This

is illustrated in Table 1. In other situations, where the

number of model parameters is smaller than the number of

independent elements in the covariance matrix, a fitting

algorithm can be used that is based on maximum

likelihood or on minimum squared differences between

the observed and theoretical moments.

The formulation of the measurement error problem

within the framework of structural equation modelling has

the considerable advantage of allowing generalisation to

more complex study designs, such as those incorporating

biomarkers of diet as a third type of measurement4–6.

Furthermore, the introduction of structural equation

modelling for dietary validation studies led to a greater

awareness of essential model assumptions needed to

allow estimation of the parameters of the error model. The

most important of these assumptions is that random errors

(1) must be statistically independent between at least three

measurements in the validation study, including the

questionnaire measurement. This assumption means that

correlations between any pair of these measurements

should be entirely due to the fact that these all relate to the

same latent variable – i.e. true intake – but not because

the same subjects tended to make similar errors, in amount

and direction, with each type of measurement. For

example, if the validation study is based on the

comparison of questionnaire measurements with multiple

food consumption records, random errors must be

assumed to be independent between measurements Q,

Ri and Rj. Alternatively, a validation study may be based on

the comparison between three different types of

measurement – e.g. from a questionnaire (Q ), food

consumption records (R ) and a biomarker (M ) –

assuming independence of random errors between the

three different types of measurement4,6,12. Besides

independence of random errors, the statistical models

show that at least one measurement (R ) must provide a

reference scale – i.e. Rij ¼ T i þ 1R;ij : Without these

assumptions, statistical models cannot provide unique

estimates for each of the unknown parameters in our

measurement models, and the statistical model is called

unidentifiable.

The problem of correlated random measurement

errors for different instruments

As indicated in the definition of the model represented by

equation (5), random errors for different instruments such

as questionnaires and food records were at first assumed

to be uncorrelated. However, since publication of the first

papers on the application of structural equation models to

the analysis of dietary validation studies, the assumption of

uncorrelated random errors between questionnaire

measurements Qi and replicate weighed food consump-

tion records Rij and Rik has been increasingly called into

question. Doubts about the general applicability of this

assumption were created especially by the comparison of

total energy intake estimates with measurements obtained

by the doubly labelled water technique13,14 or of protein

intake estimates with measurements based on 24-hour

urinary nitrogen excretion15. These comparisons showed

that, irrespective of the dietary assessment technique

used, obese individuals tend to underreport their total

food consumption more than lean subjects. Such

Table 1 Validation of questionnaire measurements by structural equation models: comparison of questionnaire assess-
ments (Q ) with replicate food consumption records (R1 and R2)

Q

R1

R2

2
664

Q R1 R2

b2
Qs

2
T þ s2

1Q

bQs
2
T s2

T þ s2
1R1

bQs
2
T s2

T s2
T þ s2

1R2

3
775

means

aQ þ bQmT

mT

mT

Q

R1

R2

2
664

Q R1 R2

3:32

1:50 2:55

1:36 1:47 2:53

3
775

means

9:68

6:25

6:15

Parameter estimates
mT ¼ 6.20 aQ ¼ 3.64 bQ ¼ 0.97

s2
T ¼ 1:47 s2

1R ¼ 1:07 s2
1Q ¼ 1:93

rQT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 þ ðs2
1Q=b

2
Qs

2
T Þ

s
¼ 0:69 l ¼

bQs
2
T

b2
Qs

2
T þ s2

1Q

¼ 0:43
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systematic differences in the subjects’ tendencies towards

underreporting will generally cause a positive correlation

between the random errors of foods and nutrient intakes

measured by questionnaires, food consumption records

and 24-hour diet recalls.

It can easily be shown that a correlation between

random errors 1Q and 1R will lead to an overestimation of

the calibration factor lQ, if the statistical models used to

estimate lQ do not simultaneously estimate (and hence

adjust for) this error correlation. A general consequence of

such bias in estimates of lQ is that calibration adjustments

to dietary questionnaire measurements will provide only a

partial correction for bias in relative risk estimates. The

magnitude of bias in the estimated calibration factor lQ

depends not only on the strength of the correlation

r1Q,1R between random errors of Q and R, but also on

the random error variances s2
1Q and s2

1R relative to the

variance s2
T of true intake levels, and hence on the

magnitude of the correlations rQT and rRT (Table 2).

The coefficient of correlation rQT between question-

naire measurements and true intake levels will also tend to

be overestimated if a positive correlation between random

errors 1Q and 1R is ignored by the statistical model used

for analysis. On the other hand, a positive correlation

between the random errors 1R,i1 and 1R,i2 of replicate

measurements R may cause an underestimation of the

correlation rQT. In most practical situations it will be

unclear which of these two biases, upwards or down-

wards, predominates. More extensive theoretical simu-

lations and sensitivity analyses, showing the magnitude of

bias in estimates of lQ and rQT when a correlation

between the random errors 1Q and 1R is ignored (i.e.

incorrectly assuming this correlation to be zero), have

been presented by Spiegelman et al.16, Wong et al.17 and

Kipnis et al.8.

Biochemical markers of diet: a solution for the

error correlation problem?

In order to avoid biases in the estimation of s2
T ; s

2
1Q and bQ

(and hence of rQT and lQ), statistical models should take

account of the correlation between the random errors in

Q and R, as well as between the random errors in replicate

measurements Ri1 and Ri2. A fundamental problem,

however, is that the number of error parameters to be

estimated – which include the error covariances

Covð1Q; 1RÞ and Covð1R;i1; 1R;i2Þ – will be larger than the

number of variances and covariances observed, as long as

the validation/calibration study is based on comparisons

between measurements of Q and R only. These statistical

models thus remain unidentifiable. To solve this identifia-

bility problem, a third type of measurement must be

found, for which random errors can be assumed to be

uncorrelated with those of Q and R, and for which random

errors are also uncorrelated if the measurements are

replicated over time in the same individuals. In practice,

the only category of measurements that may fulfil these

criteria is biochemical markers of dietary intake.

Much of the error occurring in the more traditional

measurements of diet may be due to subjects’ failure to

recall or report accurately their intakes. Biochemical

markers can be considered more ‘objective’ because they

do not depend on a subject’s report. It thus seems

reasonable to assume that random errors in biomarker

measurements will generally be independent of the

random errors in questionnaire measurements of dietary

intake or of food consumption records and 24-hour diet

recalls. However, the assumption of independence of

random errors in replicate marker measurements obtained

from the same individuals is often more problematic.

Two categories of biomarker of diet can be distin-

guished: those based on a concentration and those based

on recovery12,18. In the sections below, it is discussed

whether and how these markers of diet can be of use in

dietary validation/calibration studies, to overcome the

problem of correlated random errors between question-

naire measurements and food consumption records.

Use of concentration-based markers

Concentration-based markers, as their name indicates, are

based on the measurement of a concentration, at a given

point of time, of a specific compound. Concentration

measurements may be made in blood plasma (e.g. vitamin

C, specific carotenoids), within a given blood lipid fraction

(e.g. the relative fatty acid composition of circulating

phospholipids), in an adipose tissue biopsy (e.g. the

relative composition of fatty acids), in urine (e.g. sodium)

or in other tissues (e.g. red blood cells) and body fluids

(saliva). One key characteristic of this class of markers is

that they do not have a time dimension; that is, their levels

are measured and expressed without any time unit. A

second characteristic is that these markers generally do not

have the same quantitative relationship with dietary intake

levels for every individual in a given study population.

Concentration-based markers therefore cannot be trans-

lated into absolute intake levels per day, but at the very

best can provide only a correlate of dietary intake levels.

One consequence of this is that, if the objective is to

estimate constant and/or proportional scaling factors

aQ and bQ (for calibration), weighed food consumption

Table 2 Bias in estimates of the calibration factor lQ, when
random errors of questionnaire assessment and reference
measurements are correlated ðr1R ;1Q – 0Þ

rQT

0.3 0.5 0.7

rRT rRT rRT

0.3 0.5 0.3 0.5 0.3 0.5

r1R;1Q ¼ 0:2 3.02 2.10 2.10 1.60 1.65 1.35
r1R;1Q ¼ 0:5 6.06 3.75 3.75 2.50 2.62 1.99

ðMultiplicativeÞ bias ¼ 1 þ r1Q;1R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1=r2

QT Þ2 1�½ð1=r2
RT Þ2 1�

q
:
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records or 24-hour diet recalls must provide a reference

scale (i.e. by assuming aR ¼ 0 and bR ¼ 1:0).

Given the above, and dropping the subscripts for

simplicity, we write the measurement error models as:

Q ¼ aQ þ bQT þ 1Q;

R ¼ T þ 1R;

M1 ¼ aM þ bMT þ 1M1;

M2 ¼ aM þ bMT þ 1M2;

ð6Þ

where Covð1Q; 1M1Þ ¼ Covð1Q; 1M2Þ ¼ 0 and s2
1;M1 ¼

s2
1;M2: It should be noted that here we are no longer

assuming Covð1Q; 1RÞ ¼ 0 and Covð1M1; 1M2Þ ¼ 0: The

population means and covariance matrix for the measure-

ments Q, R, M1 and M2 are given in Table 3. Since the

measurements M1 and M2 have the same variance, and

because the covariances with measurements Q and R are

also the same for M1 and M2, the covariance matrix in

Table 3 contains only seven independent entries.

However, there are eight unknown parameters in the

model, so that the model is not identifiable.

The only way to make the model identifiable is to

assume one or more parameter to be known. The most

obvious additional assumption to be added would be

Covð1M1; 1M2Þ ¼ 0; as other assumptions – e.g.

Covð1Q; 1RÞ ¼ 0 or bM ¼ 1:0 – do not seem reasonable.

Unfortunately, however, the assumption Covð1M1; 1M2Þ ¼

0 is also unlikely to hold for concentration-based markers.

The reason to reject this assumption is that between-

subject variation in concentration-based markers is

generally determined not only by dietary intake of a

given compound, but also by variations in digestion and

absorption, distribution over body compartments,

endogenous synthesis and metabolism, and excretion.

For example, plasma levels of b-carotene depend not only

on intake levels, but also on factors affecting absorption

(e.g. depending on cooking method and on amounts of

co-ingested fats), internal metabolism (e.g. conversion

into retinol, retinal or retinoic acids, by endogenous

dioxygenases) and non-enzymatic internal breakdown of

b-carotene because of smoking and other factors that may

increase oxidative stress. Likewise, the fatty acid compo-

sition of plasma phospholipids or of adipose tissue

depends not only on the intakes of specific fatty acids, but

also on the internal synthesis of fatty acids from

carbohydrates, and on the elongation and (de)saturation

of polyunsaturated fatty acids. Generally, these non-

dietary determinants are very likely to vary systematically

between individuals, so that part of the random variations

in the marker (i.e. variations not determined by diet)

would tend to be correlated over time12,18.

Assuming that there is positive correlation between the

random errors 1Q and 1R, all that concentration-based

biomarkers can add to validation studies is the estimation

of an upper limit for rQT and lQ
12, although such

estimation may remain relatively imprecise if the marker

does not correlate strongly with true intake levels19.

Use of recovery-based markers

Recovery-based markers are based on precise and

quantitative knowledge of the physiological balance

between intake and output of a compound or chemical

element. One example is the urinary excretion of nitrogen

over a 24-hour period, which for any given individual in

energy and protein balance is known to be approximately

equal to 80% of nitrogen intake. Moreover, since nitrogen

is present in the diet mostly in the form of protein, whereas

the concentration of nitrogen in different types of protein

is relatively constant, the 24-hour urinary nitrogen

excretion can be translated into a valid estimate of an

individual’s daily protein intake. Another example is

urinary excretion of potassium, which also represents a

relatively constant proportion of potassium intake. Since a

very large proportion of potassium intake comes from

vegetables, the urinary potassium excretion can be used as

an approximate marker for total vegetable consumption20.

A third example is the doubly labelled water technique for

the assessment of daily total energy expenditure, which

for subjects in energy balance is very close to daily energy

intake. This technique is based on the measured difference

in recovery of [2H] and of [18O] in urine, after drinking a

known amount of water that is doubly labelled with these

two stable isotopes. From this difference in recovery, it can

be computed how much CO2 has been produced in the

body by metabolism, and hence how much energy the

body has produced21.

Since the recovery (or difference in recovery of two

different chemical elements, for the doubly labelled water

method) is known to be a fixed proportion of intake for

any given individual, the random variations in the marker

that may occur over time can be assumed to be

uncorrelated, provided that the time interval between

successive biological samples is sufficiently large. In

addition, since the quantitative relationship between

recovery-based markers and dietary intake is known

(especially for urinary nitrogen and the doubly labelled

water technique), these markers can also provide a valid

Table 3 Theoretical covariance matrix in validation studies with a
concentration-based biomarker

Q

R

M1

M2

2
6666664

Q R M1 M2

b2
Qs

2
T þ s2

1Q

s2
T þ s2

1Q;1R s2
T þ s2

1R

bQbMs2
T bMs2

T b2
Ms2

T þ s2
1M1

bQbMs2
T bMs2

T b2
Ms2

T þ s2
1M1;1M2 b2

Ms2
T þ s2

1M2

3
7777775

Parameters to be estimated
s2

T bQ bM s2
1Q

s2
1R s2

1M s2
1R ;1Q s2

1M1;1M2
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reference scale. We can thus write the following

measurement error models and model assumptions, for a

validation study based on the comparison of questionnaire

measurements (Q ) with weighed food records (R ) and

two replicate measurements of a recovery-based marker:

Q ¼ aQ þ bQT þ 1Q;

R ¼ T þ 1R ðalternatively; R ¼ aR þ bRT þ 1RÞ;

M1 ¼ T þ 1M1;

M2 ¼ T þ 1M2;

ð7Þ

where Covð1Q; 1M1Þ ¼ Covð1Q; 1M2Þ ¼ 0, s2
1;M1 ¼ s2

1;M2

and Covð1M1; 1M2Þ ¼ 0: The expected covariance matrix

and parameters to be estimated in these models are shown

in Table 4. Thus, for recovery-based markers, the only

non-zero error correlation is that between 1Q and 1R,

whereas for concentration-based markers non-zero

correlations are allowed between 1M1 and 1M2 as well as

between 1Q and 1R. It should also be noted that, using the

above model assumptions, both the marker and the

recording method are assumed to provide the same, valid

reference scale for intake measurements. It would be

possible to relax these assumptions, however, and to add

for instance constant and proportional scaling biases to

the measurement model for food consumption records

(parameters aR and bR), to be estimated in the validation

study.

For illustration, we applied this model to data from the

pilot-phase validation studies of the European Prospective

Investigation into Cancer and Nutrition (EPIC), for

measurements of protein intake in men and women in

Italy and in the Netherlands (Table 5). Measurements in

this study were obtained by a food-frequency question-

naire (Q ), by the average of 12 replicate 24-hour diet

recalls (R ) and by urinary nitrogen in two different urine

samples. As shown in Table 5, the model of equation (7)

gave mostly lower estimates for both rQT and lQ compared

with models without the biomarker, where the correlation

between random errors 1Q and 1R was simply assumed

to be zero. A similar analysis, using also urinary nitrogen

excretion as a marker of protein intake, was performed by

Plummer and Clayton6.

Discussion

We have reviewed developments over the last 10 years in

the statistical analysis of dietary validation and calibration

studies, with special emphasis on the use of structural

equation models.

A major complication in validation/calibration sub-

studies is that most probably random errors tend to be

positively correlated between measurements obtained by

food-frequency questionnaires and ‘reference’ measure-

ments obtained by recording methods. Biochemical

markers may solve this problem, but only for those

nutrients for which markers are available that have

uncorrelated random errors over time. Unfortunately, the

latter assumption will generally hold only for recovery

markers, and only very few such markers are available.

This suggests a limited use of more complex structural

equation models that take account of covariances

(correlations) between random errors in measurements

by food-frequency questionnaires and by recording

methods.

An interesting observation is that markers based on

recovery can also be translated into absolute daily intake

levels, and thus can provide a valid reference scale. A

paradoxical consequence of this is that such markers can

simply replace reference measurements (R ) based on

subjects’ reports: a structural equation model as in the

example of Table 4 would remain perfectly identifiable

after eliminating the measurements R from the covariance

matrix. This means that, paradoxically, the problem of

correlated measurement errors between measurements

from questionnaires and from recording methods would

be de facto eliminated, and the statistical analysis could

also be based on much simpler structural equation

models, as in the example of Table 1, comparing

questionnaire measurements directly with replicate

marker measurements. A recovery marker will simply

Table 4 Theoretical covariance matrix in validation studies with a
recovery-based biomarker, using structural equation models

Q

R

M1

M2

2
6666664

Q R M1 M2

b2
Qs

2
T þ s2

1Q

bQs
2
T þ s2

1Q1R s2
T þ s2

1R

bQs
2
T bRs

2
T s2

T þ s2
1M1

bQs
2
T bRs

2
T s2

T s2
T þ s2

1M2

3
7777775

Parameters to be estimated
s2

T bQ s2
1Q

s2
1R s2

1M s2
1R;1Q

Table 5 Estimates of the correlation coefficient rQT and the cali-
bration factor lQ, for questionnaire measurements of protein
intake; EPIC pilot-phase data*

Men Women

n rQT l n rQT l

Model with biomarkers
Italy 59 0.35 0.25 158 0.25 0.15
The Netherlands 68 0.36 0.25 68 0.51 0.44

Model without biomarkers
Italy 59 0.40 0.32 158 0.31 0.23
The Netherlands 68 0.64 0.43 68 0.50 0.39

* The data include two assessments by food-frequency questionnaire, at
the beginning and at the end of a one-year period; twelve 24-hour diet
recalls; and four urinary nitrogen measurements. For details of the study,
see Kaaks et al.23.
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eliminate the problem of correlation between random

errors 1Q and 1R of questionnaire assessments and

consumption records by taking the place of R, plus the

basic assumption that random errors in the marker are

uncorrelated with those in measurements Q.

The question then is how, in the absence of further

recovery-based markers for nutrients other than protein,

energy or potassium, further progress may be made in

the area of dietary validation and calibration studies.

One possible way out of the problem of correlated

random errors might be to assume that such correlation

diminishes strongly when intake estimates are adjusted

for total energy intake.

It is widely recognised that, before incriminating any

specific nutrient or food in the aetiology of a disease,

epidemiological studies should show that the nutrient or

food remains associated with disease risk after the

adjustment for total energy intake. The reason is that

total energy intake is itself determined by factors such as

body size, usual physical activity and metabolic efficiency,

which may each also have effects on disease risk22. To

account for the possible confounding effects of factors that

lead subjects to eat more, or less, of all possible foods and

nutrients, epidemiological analyses of diet–disease

associations should be adjusted for total energy intake.

Disease risk will thus no longer be related to absolute

intake levels of nutrients or foods but rather to a measure

of relative dietary composition, and methodological sub-

studies on measurement error should also focus more on

the validation or calibration of energy-adjusted intake

levels of nutrients or foods. An interesting additional

aspect of the total energy adjustment is that it might

decrease substantially the correlation between random

errors in different types of dietary intake assessment, if

such correlation of errors were due mainly to variations in

the degree of systematic underreporting by each assess-

ment method. This will be true especially if one can

assume that underreporting on average does not affect

one type of nutrient or food more than another. More

research should be done to verify if the latter assumption is

generally reasonable, or to check whether at least it leads

to a smaller degree of bias in estimates of rQT and lQ than

when random errors are assumed to be statistically

independent for the non-adjusted intake variables.
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