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 Abstract 

Introduction: Patients with cystic fibrosis experience frequent episodes of acute decline in 

lung function called pulmonary exacerbations (PEx). An existing clinical and place-based 

precision medicine algorithm that accurately predicts PEx could include racial and ethnic 

biases in clinical and geospatial training data, leading to unintentional exacerbation of health 

inequities. 

Methods: We estimated receiver operating characteristic (ROC) curves based on predictions 

from a nonstationary Gaussian stochastic process model for PEx within three, six, and twelve 

months among 26,392 individuals aged 6 years and above (2003-2017) from the U.S. CF 

Foundation Patient Registry (CFF-PR). We screened predictors to identify reasons for 

discriminatory model performance.  

Results: The precision medicine algorithm performed worse predicting a PEx among Black 

patients when compared to White patients or to patients of another race for all three 

prediction horizons. There was little to no difference in prediction accuracies among 

Hispanic and non-Hispanic patients for the same prediction horizons. Differences in F508del, 

smoking households, second-hand smoke exposure, primary and secondary road densities, 

distance and drive time to the CF center, and average number of clinical evaluations were 

key factors associated with race.  

Conclusions: Racial differences in prediction accuracies from our PEx precision medicine 

algorithm exist. Misclassification of future PEx were attributable to several underlying 

factors that correspond to race: CF mutation, location where the patient lives, and clinical 

awareness. Associations of our proxies with race for CF-related health outcomes can lead to 

systemic racism in data collection and in prediction accuracies from precision medicine 

algorithms constructed from it.  
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Introduction 

Cystic fibrosis (CF) is a disease that causes production of abnormally thick secreted fluids,
1–3

 

especially inside the lungs and the pancreas.
1–7

 As a result, CF lung disease progression is 

marked by recurring rapid declines in lung function in the form of acute respiratory events, 

clinically referred to as pulmonary exacerbation (PEx) events.
8–10

 Symptoms include 

coughing, sputum production, wheezing, chest tightness, difficulty breathing or shortness of 

breath, and fever.
11

 Precision medicine algorithms that predict these attenuated declines in 

CF have been developed in recent years.
12,13

 While many of these algorithms entail different 

approaches, their primary purpose is to direct care and resources to high-need CF patients at 

the right time.
14

 Development and targeted use of advanced personalized treatments such as 

ivacaftor and lumacaftor are highlights of the CF community embracing precision 

medicine.
15

 Precision medicine, however, permits discriminatory and harmful impacts of 

structural racism that could potentially impact groups that have been historically 

marginalized.
16

 Racial bias can be introduced in building and analyzing datasets, but they can 

also be the result of precision medicine research.
14

 

Sparking much of the latest interest in PEx prediction was the CF Foundation Learning 

Network’s adaptation of a data-driven definition of PEx. They considered changes in lung 

function, measured as forced expiratory volume in 1 s (FEV1) of % predicted, relative to 

baseline to identify PEx. The definition is known as the FEV1-indicated Exacerbation Signal 

(FIES) and is applied over time for each individual patient.
17

 We have developed a 

nonstationary Gaussian stochastic process model to predict PEx using demographic, 

encounter-level, and hospitalization data from the U.S. CF Foundation Patient Registry 

(CFF-PR).
13

 This precision medicine algorithm incorporates clinical measures and has been 

expanded to include place-based measures to forecast FIES risk
18

 including traffic (on the 

basis of primary road density and secondary road density of the ZIP code tabulation area 

(ZCTA)), community material deprivation, and greenspace. The algorithm then determines 

the probability a CF patient will experience a future PEx event from the date of an encounter 

by forecasting FIES risk.  The model has been shown to accurately predict rapid lung 

function declines up to two years from a clinical evaluation (Median area under the ROC 

curve 0.817, 95% Confidence Interval (CI): (0.814, 0.822)), serving as a useful clinical tool 

to identify for whom and when a FIES-defined PEx event is imminent.
19

 Earlier prediction 

and identification of a PEx event allows for earlier preventative interventions; therefore, the 
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accuracy of any precision health algorithm will influence an individual’s morbidity and 

mortality. 

Concerns around racial equity in many precision health algorithms have been introduced
20,21

 

because they include race as a predictor,
22

 but racial inequality is also present in real-world 

precision health algorithms that do not explicitly use race as a predictor.
23

 Group-level 

fairness is defined as the desired state of achieving similar model performance across 

subpopulations partitioned by protected attributes, such as race and ethnicity.
24

 Most 

precision medicine research today, however, does not incorporate group fairness adequately 

into the statistical evaluation process and may not even consider group bias for aspects such 

as variable measurement and design selection.
25–27

 Rather, researchers focus on the accuracy 

and interpretation of the algorithm being developed and are only evaluated based on 

individual fairness – similar individuals within a population being treated similarly.
28

  Even 

though symptom severity and frequency vary between individuals, precision medicine 

algorithms commonly use covariates associated with race and ethnicity
29

 that could induce 

differences in PEx prediction accuracies between racial and ethnic groups. Using predictors 

associated with race or ethnicity does not necessarily imply predictions will be unfair but we 

do not wish to see racial and ethnic differences in accuracies in PEx prediction from our 

precision medicine algorithm. We screened predictors from our PEx precision medicine 

algorithm to determine if they are correlated with race or ethnicity, as this is most likely how 

racial and ethnic differences are incorporated in prediction accuracies. 

Methods 

The CFF-PR collects information on CF patient encounters who receive care in CF 

Foundation-accredited care centers.
30

 Race and ethnicity information was collected using 

categories (White, Black or African American, Other, Asian, Native Hawaiian or other 

Pacific islander, American Indian or Alaskan native) defined by the CFF based on patient-

level clinical records from each site.
31

 We then further categorized patient’s race as either 

“White” if they identified as only White, “Black” if they identified as Black, and “Other” if 

any other race (besides White or Black) was selected.
32

 We defined a patient’s ethnicity 

whether they self-identified as either Hispanic or non-Hispanic. The CFF-PR cohort was 

primarily composed of White patients (White: n = 24,490 (92.8%), Black: n = 1,172 (4.4%), 

Other: n = 730 (2.8%)) and non-Hispanic patients (non-Hispanic: n = 23,392 (88.6%), 

Hispanic: n = 2,045 (7.7%)) with CF. There were 955 patients (3.6%) who did not report 
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their ethnicity, due to a combination of patients refusing to report and healthcare centers not 

collecting this information. We did not consider patients with unknown ethnicity since the 

rate of missingness differs within each racial group (White: n = 691 (2.6%), Other: n = 206 

(2.8%), Black: n = 58 (0.2%)). 

The precision medicine algorithm models personalized thresholds of rapid lung function 

decline.
13

 The algorithm is a non-stationary stochastic process model comprised of fixed 

effects (age, F508del, birth cohort, FEV1 at baseline, enzyme use, Pseudomonas aeruginosa, 

methicillin-resistant Staphylococcus aureus, Medicaid insurance use, CF-related diabetes 

mellitus, outpatient visits in last year, acute exacerbations in last year), between-patient 

heterogeneity, and a continuous-time integrated Brownian motion process to determine 

hyperlocal, dynamic predictive probabilities in lung function (FEV1) measurement. The 

algorithm was applied on data from 30,879 U.S. CFF-PR patients and the median (95% CI) 

area under the ROC curve estimates were 0.817 (0.814, 0.822). While the precision medicine 

algorithm has reasonable accuracy in personalized rapid lung function decline predictions, 

the algorithm has not been evaluated for group-fairness. 

We analyzed each predictor and outcome to determine if associations with race and ethnicity 

could be responsible for any model unfairness. Predictors considered include: gender (male, 

female), F508del mutation (homozygous, heterozygous, neither/unknown), insurance payor 

status (private or non-private), smoking status (smoker, non-smoker), smoking household 

(yes, no), secondhand smoke (yes, no), primary road density and secondary road density as a 

proxy for traffic exposure (total length of all roads in meters in the ZIP code divided by the 

total area in square meters of the ZIP code), a community material deprivation index
33

 (a 

census tract-level deprivation index based on five different census tract-level variables 

related to material deprivation, derived from the 2015 5-year American Community Survey), 

fraction of surrounding land characterized as greenspace (using the National Landcover 

Database), straight-line distance (in meters) and drive time (in 5-minute intervals) to the 

healthcare center, baseline age (patient’s age at first encounter), number of encounter visits, 

number of PEx events, and the amount of time since baseline age at encounter.  

Rapid lung function decline is defined by a decrease in FEV1 of more than 10% predicted 

from the maximum observed FEV1 within the past 12 months.
34,35

 We identified a PEx using 

predictions of rapid lung function decline based on FIES.
36–38

 FIES is determined by first 

defining the patient’s baseline FEV1 as the average of the highest two FEV1 measurements in 
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the past 12 months when not under intravenous antibiotic treatment.
39

 If only one valid FEV1 

was available, it was used as the baseline. A FIES-defined PEx event occurs when the FEV1% 

predicted declines at least 10% or more.
36

 The FIES definition excludes any lung function 

measurements within 28 days of a previous PEx to ensure accurate patient baseline FEV1. 

We calculated prediction accuracy by comparing the PEx probability from the precision 

medicine algorithm with whether a PEx eventually occurred for three-, six-, and twelve-

month prediction horizons. 

A receiver operating characteristic (ROC) curve
40

 was used to determine the optimal cutoff 

probability for a PEx occurrence. Group-specific ROC curves were then implemented using 

this optimal cutoff probability to achieve group-specific sensitivity and specificity. ROC 

curves were formulated by contrasting a patient’s PEx probability from the precision 

medicine algorithm to actual PEx outcomes for the prediction horizon at each clinical visit. 

Actual PEx outcomes were determined by whether the patient was clinically evaluated and 

confirmed to have at least one PEx within the prediction horizon. The area under the ROC 

curve (AUC), sensitivity, and specificity was calculated overall and for each group-specific 

subpopulation using Youden’s J statistic.
41

 The AUC was used as a benchmark for the PEx 

precision medicine algorithm performance.
42

 The 95% confidence intervals for sensitivity 

and specificity were obtained with 2,000 stratified bootstrap replicates. Statistical computing 

was performed in R version 4.2.3, specifically with the pROC (ver. 1.18.2) package to 

perform  ROC curve analyses.
43

 

Results 

The CFF-PR cohort consists of patients with CF (n = 26,392) aged 6 years of age or older 

monitored between January 3, 2003, and December 31, 2017. The cohort was 47.9% female 

(n = 12,634) with a median baseline age of 11.1 years (25
th

 percentile: 6.2, 75
th

 percentile: 

18.9). Each study participant was followed for a median of 7.8 years (25
th

 percentile: 3.7, 75
th

 

percentile: 12.4). Overall, 92.8% (n = 24,490) of patients self-identified as White and 4.4% 

(n = 1,172) self-identified as Black. Furthermore, 88.6% (n = 23,392) self-identified as non-

Hispanic and 7.7% (n = 2,045) self-identified as Hispanic. 2.6% (n = 691) of White patients, 

4.9% (n = 58) of Black patients, and 28.2% (n = 206) of patients who self-reported as another 

race did not self-report their ethnicity. Since the rate of missing reported ethnicity differs by 

race, we did not consider those who did not report their ethnicity. Different genetic mutations 

for CF were considered: 47.3% (n = 12,484) were F508del homozygous, 36.9% (n = 9,744) 
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were F508del heterozygous and the remaining 15.8% (n = 4,164) were neither F508del or 

had an unknown mutation. 

 

We examined predictors and the outcome to identify possible reasons for racial 

discriminatory performance in the PEx precision medicine algorithm. Newborn screening for 

CF has rapidly expanded through DNA tests for CF mutations so seeing differences by 

mutation and racial identification are not necessarily novel.
44

 From Figure 1, 49.2% (n = 

12,041) and 36.7% (n = 8,988) of White patients were predominately F508del homozygous 

or heterozygous, respectively, whereas 41.1% (n = 482) and 40.3% (n = 472) of Black 

patients were mainly F508del heterozygous or neither, respectively. The distribution of 

F508del was more balanced in patients who self-identified as another race, with 30.8% 

homozygous (n = 225), 37.5% heterozygous (n = 274), and 31.6% (n = 231) neither/unknown. 

Differences existed by racial group in the distribution of primary road density, secondary 

road density, drive time (in minutes) and straight-line distance (in kilometers) to the nearest 

healthcare center (Table 1). On average, Black patients lived in neighborhoods with higher 

densities of primary and secondary roadway, with shorter distances and shorter travel times to 

their CF care center. We did not see any racial differences in gender (Other: 49.0% female, 

Black: 48.5% female, White: 47.8% female; p=0.7183) or smoking status (p=0.8856), but 

there were racial differences in smoking households (Other: 4.7%, Black: 3.9%, White: 2.5%; 

p<0.0001) and second-hand smoke exposure (Black: 8.1%, Other: 6.4%, White: 5.7%; 

p=0.0020). Black patients were also less likely to have private health insurance (Black: 

28.2%, Other: 37.0%, White: 51.6%; p<0.0001). White patients tended to live in ZCTAs with 

higher average percentage of greenspace than both Black patients or patients who self-

identified as another race (White: 82.8%, Other: 72.3%, Black: 70.7%; p<0.0001). Black 

patients were more likely to live in neighborhoods that had a higher average community 

deprivation index (Black: 0.404, Other: 0.364, White: 0.335; p<0.0001). The average number 

of CF encounters was different by racial group, with White patients having a higher number 

of clinical visits on average (White: 38.1, Black: 31.3, Other: 29.6; p=0.035). Consequently, 

White patients had a higher average number of encounters with a PEx (White: 9.19, Black: 

8.37, Other: 6.77; p<0.0001) and a higher average number of encounters with no PEx (White: 

21.9, Black: 17.1, Other: 16.9; p<0.0001). The average number of CF encounters per year 

was lowest for Black patients (Other: 5.30, White: 5.25, Black: 4.95; p<0.0001). We did not 

see racial differences in the average rate of encounters with a PEx per year (White: 1.19, 

Black: 1.13, Other: 1.10; p=0.0154) and in the average rate of encounters with no PEx per 
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year (Other: 2.97, White: 2.87, Black: 2.74; p=0.0436). Black patients recorded fewer clinical 

visits per year when compared to other races. 

Group-specific AUC, sensitivity, and specificity was compared to the overall AUC 

sensitivity, and specificity to evaluate model performance between each racial and ethnic 

group (Figures 2-3 and Table S1 in the Supplement). Black patients had lower sensitivity (3-

month: 0.596, 95% CI: (0.582, 0.608); 6-month: 0.607, 95% CI: (0.595, 0.618); 12-month: 

0.608, 95% CI: (0.598, 0.619)) for every prediction horizon compared to White patients (3-

month: 0.627, 95% CI: (0.625, 0.630); 6-month: 0.628, 95% CI: (0.626, 0.630); 12-month: 

0.620, 95% CI: (0.618, 0.622)) and those who self-identified with another racial group (3-

month: 0.638, 95% CI: (0.620, 0.656); 6-month: 0.672, 95% CI: (0.657, 0.686); 12-month: 

0.623, 95% CI: (0.611, 0.636)). PEx predictions for Black patients also had lower specificity 

(3-month: 0.608, 95% CI: (0.595, 0.622); 6-month: 0.615, 95% CI: (0.604, 0.625); 12-month: 

0.622, 95% CI: (0.610, 0.635)) for every prediction horizon compared to White patients (3-

month: 0.641, 95% CI: (0.638, 0.643); 6-month: 0.653, 95% CI: (0.651, 0.656); 12-month: 

0.655, 95% CI: (0.653, 0.657)) and patients who self-identified with another race (3-month: 

0.611, 95% CI: (0.594, 0.626); 6-month: 0.586, 95% CI: (0.572, 0.602); 12-month: 0.627, 95% 

CI: (0.610, 0.643)). In each case, Black patients had the worst prediction performance from 

the PEx precision medicine algorithm in terms of AUC, sensitivity, and specificity. Actual 

PEx outcomes were determined using future clinical evaluations during the prediction 

horizon, but the results were also similar when actual PEx outcomes were instead defined 

only on the date of clinical evaluation during the prediction horizon (see Table S2 in the 

Supplement). 

 

Prior research work has shown disparities in pulmonary function exist between Hispanic and 

non-Hispanic patients with CF.
45

 Even though non-Hispanic patients represent 88.6% of the 

cohort, the PEx precision medicine algorithm had similar performance between Hispanic and 

non-Hispanic ethnic groups. AUC values are similar for Hispanic patients (3-month: 0.668, 

95% CI:(0.663, 0.673); 6-month: 0.678, 95% CI:(0.674, 0.682); 12-month: 0.678, 95% 

CI:(0.674, 0.683)) and non-Hispanic patients (3-month: 0.672, 95% CI:(0.671, 0.674); 6-

month: 0.682, 95% CI:(0.680, 0.683); 12-month: 0.679, 95% CI:(0.677, 0.680)). We also 

allowed group-specific optimal cutoffs and verified if changing the overall optimal cutoff 

improves model prediction accuracy. When allowing each group to have their own optimal 

cutoff, we saw similar performance from the PEx precision medicine algorithm for both 
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racial and ethnic groups (see Table S3 in the Supplement). Ultimately, we found no evidence 

of ethnic discrimination in model prediction performance from the PEx precision medicine 

algorithm. 

 

Discussion 

We characterized the accuracies of a precision medicine tool for PEx prediction by race and 

ethnicity, which demonstrates the need to optimize an algorithm by balancing both accuracy 

and group fairness. Our results show that racial, but not ethnic, differences in the PEx 

prediction algorithm accuracies exist when applied to the CFF-PR data. We conclude the PEx 

precision medicine algorithm is racially biased against Black patients with worse PEx 

predictions than those who self-identify with another race. These discrepancies are not due to 

the differences in sample size but rather by ignoring group-level fairness in prediction 

accuracies by racial group. Even though we see differences in model accuracies between 

Hispanic and non-Hispanic, groups of proportionately different sample sizes, the nature of 

the difference in model accuracy does not lend itself an unfair advantage to either group, 

since Hispanic had better sensitivity while non-Hispanic had better specificity. 

The same cannot be said for the discrepancy we see between the races, and we are left to 

wonder why the PEx prediction algorithm yields worse sensitivity and specificity to Black 

patients. The PEx prediction algorithm is formulated by treating each CF individual in the 

CFF-PR cohort equally, so the discriminatory performance of this algorithm must be caused 

by some underlying factors. We examined predictors and outcome variables to formulate 

three main reasons for discriminatory model performance in the PEx prediction algorithm: (i) 

Cystic Fibrosis Mutation: While the prediction algorithm is treated on individuals with CF, 

differences in F508del mutation exist in the cohort. Severity of CF disease and the frequency 

of PEx events change, in part, based on the F508del mutation,
2,29

 which varies between the 

races; (ii) Location: Black patients tended to live in locations with higher road densities. 

Increased roads in these areas usually lead to increased vehicle traffic and therefore are 

associated with increased air pollution exposure; (iii) Accessibility: Even though Black 

patients tended to live closer to their nearest health care center on average, and the drive time 

to arrive at their health care center is also lower on average, the encounter rates are 

noticeably lower for Black patients.  
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There are several potential reasons for the discrepancy – lack of interaction or trust in the 

healthcare system, socioeconomic status (SES) and affordability for essential health care 

services, accessibility, and the quality of health care, all of which have been studied more 

generally in environmental health research.
46,47

 More frequent clinic visits are associated with 

better lung function outcomes in CF,
13

 but there has been a shift in the care paradigm toward 

telehealth visits that were partially motivated to overcome barriers to access that were 

heightened during the COVID-19 pandemic.
48

 However, recent research on telehealth 

utilization in U.S. CF patients during the pandemic showed that individuals who identified as 

Black or Hispanic/Latino and those who reported having financial constraints were less likely 

to have a telehealth visit.
48

 Although individual-level proxies of SES (e.g., Medicaid/state 

insurance use) are linked to lung function and survival in CF, Albon and colleagues found no 

association between SES factors and telehealth utilization in the aforementioned study, and 

differences due to race/ethnicity persisted after SES adjustments. Coupling prior literature 

with our study findings, interventions to improve chronic disease management, including 

outcome prognostication, for Black people with CF may have suboptimal impact unless 

fairness is considered.   

The obstacles to algorithm fairness that we identified also pose challenges for therapeutics 

development, which are expected to grow in light of the changing demographics of CF 

worldwide.
49,50

 While there is generally a paucity of transparent (i.e., freely open) algorithms 

that are subjected to critical appraisal from and co-production by patient communities,
51

 the 

CF patient subgroups identified from our study at greatest risk for algorithmic bias have also 

historically been underrepresented in CF clinical research (e.g., identifying as non-white, 

rural, or socioeconomically disadvantaged)
52,53

. Although research participation among CF 

minority populations has been a longstanding challenge in CF, it is of greater importance in 

the modern era of care, given the need to develop therapies for the remaining 5-6% of the US 

CF population for whom highly effective modulator therapies are currently unavailable.
54

 

Individuals who have ultra-rare mutations that are not FDA approved for modulator 

treatment tend to identify as Black/African American or non-white Hispanic, and they have 

the lower average lung function, compared to white counterparts.
55

  

A larger issue that is raised from this research is how to address group-level fairness in CF 

precision medicine tools. Although unintentional, both (i) associations of model predictors 

with race and (ii) associations of our proxies for health outcomes with race can lead to 

prediction algorithms that could replicate systemic racism in the data and the system used to 
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create it. Clinical implementation of this PEx prediction tool could possibly enhance racial 

disparities in access to care for CF patients. Individual-level fairness and group-level fairness 

cannot be maximized simultaneously in a prediction algorithm
28

. Therefore, we must 

examine the tradeoff in the accuracy of the PEx prediction algorithm with respect to group-

level fairness
14

. Addressing group-level fairness in precision medicine models, particularly in 

respiratory diseases like CF, is essential to ensure that these tools benefit all patients 

equitably, irrespective of their race, ethnicity, or socioeconomic background. There have 

been some methods suggested to effectively address bias and factors to consider for inclusion 

or exclusion in these models. These suggestions include (i) diverse data representation which 

ensures that the data used to train precision medicine models are representative of the diverse 

patient population affected by the condition
22

; (ii) bias detection and correction which may 

require using advanced statistical tools to detect and correct biases in the model
56

; (iii) group 

specific model adjustment allows developing separate models for groups with distinct 

characteristics or adjusting models to account for known disparities
21

. 

There is a critical lack of evaluation of racial and ethnic fairness in precision health medicine 

within CF patients. Discrepancies of the PEx prediction algorithm on the CFF-PR cohort by 

racial and ethnic group must raise the awareness of group-level bias in precision medicine 

algorithm development in CF research. We hope to invite discussions on how to promote 

ways of addressing group-level fairness in statistical modeling research. By not addressing 

group-fairness, researchers run the risk of developing statistical models that puts those from 

minority populations at a strong disadvantage when it comes to model accuracy and 

performance, further exacerbating racial inequalities in CF outcomes and care. Precision 

medicine tools can then be developed to better meet the needs of healthcare professionals and 

promote equitable patient care. 
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Figure 1: F508del mutation by racial group in the U.S. Cystic Fibrosis Foundation Patient 

Registry (CFF-PR) analysis cohort. 
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Table 1: Counts and averages of each predictor with 95% confidence intervals among the 

racial groups in the U.S. Cystic Fibrosis Foundation Patient Registry (CFF-PR) analysis 

cohort. 

 Black White Other p-value 

Sample Size 1,172 

(4.4%) 

24,490 

(92.8%) 

730 

(2.8%) 

 

Gender F: 569 

(48.5%) 

M: 603 

(51.5%) 

F: 11,707 

(47.8%) 

M: 12,783 

(52.2%) 

F: 358 

(49.0%) 

M: 372 

(51.0%) 

0.7183 

Private Health 

Insurance 

330 

(28.2%) 

12,647 

(51.6%) 

270 

(37.0%) 

<0.000

1 

Secondhand Smoke 95 

(8.1%) 

1,394 

(5.7%) 

47 

(6.4%) 

0.0020 

Living in Smoking 

Household 

46 

(3.9%) 

608 

(2.5%) 

34 

(4.7%) 

<0.000

1 

Primary Road Density 

(kilometer/square 

meter) 

1.38 

(1.17, 1.60) 

0.99 

(0.95, 1.03) 

0.81 

(0.62, 0.99) 

0.0001 

Secondary Road 

Density 

(kilometer/square 

meter) 

2.35 

(2.10, 2.60) 

1.92 

(1.87, 1.97) 

1.14 

(0.89, 1.40) 

<0.000

1 

Greenspace Percent of 

Zip Code Tabulation 

Area (ZCTA) 

70.7% 

(69.2, 72.2) 

82.8% 

(82.6, 83.1) 

72.3% 

(70.3, 74.3) 

<0.000

1 

Community 

Deprivation Index 

0.404 

(0.397, 0.410) 

0.335 

(0.333, 0.336) 

0.364 

(0.355, 0.372) 

<0.000

1 

Straight-line Distance 

to Center (kilometers) 

111.4 

(90.9, 131.9) 

170.6 

(165.0, 176.3) 

155.3 

(124.8, 185.8) 

<0.000

1 

Drivetime to 

Healthcare Center 

(minutes) 

36.2 

(35.1, 37.4) 

45.6 

(45.4, 45.8) 

41.1 

(39.8, 42.5) 

<0.000

1 
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Average Number of 

Encounters 

31.3 

(29.7, 32.8) 

38.1 

(37.7, 38.5) 

29.6 

(27.6, 31.5) 

0.035 

Average Number of 

Encounters per Year 

4.95 

(4.66, 5.24) 

5.25 

(5.20, 5.30) 

5.30 

(5.07, 5.53) 

<0.000

1 

Average Number of 

Encounters with an 

Exacerbation (PEx) 

8.37 

(7.82, 8.92) 

9.19 

(9.07, 9.31) 

6.77 

(6.18, 7.36) 

<0.000

1 

Average Number of 

Encounters with an 

Exacerbation (PEx) per 

Year 

1.13 

(1.07, 1.18) 

1.19 

(1.18, 1.20) 

1.10 

(1.03, 1.18) 

0.0154 

Average Number of 

Encounters with No 

Exacerbation (PEx) 

17.1 

(16.3, 17.9) 

21.9 

(21.6, 22.1) 

16.9 

(15.9, 18.0) 

<0.000

1 

Average Number of 

Encounters with No 

Exacerbation (PEx) per 

Year 

2.74 

(2.56, 2.93) 

2.87 

(2.85, 2.89) 

2.97 

(2.84, 3.09) 

0.0436 
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Figure 2: Area under the Receiver Operating Characteristic (ROC) curve (AUC) for the 

three-, six-, and twelve-month prediction horizons by racial and ethnic group. Overall AUC is 

indicated by the horizontal line. Group-specific AUC and their respective 95% confidence 

interval are displayed as points and lines. 
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Figure 3: Optimal sensitivities and specificities by racial and ethnic group achieved by the 

precision medicine algorithm for three-, six-, and twelve-month exacerbation prediction. The 

average optimal sensitivity (0.623) and average optimal specificity (0.648) are indicated by 

the horizontal lines. 
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