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In this work, a transition process in a hypersonic flow over a cold-wall compression ramp
is studied using direct numerical simulation (DNS) and global stability analysis (GSA).
The free-stream Mach number and the Reynolds number based on the flat-plate length
are 7.7 and 8.6 × 105, respectively. The shock-induced pressure rise causes the boundary
layer to separate on the flat plate, forming a separation bubble around the corner. Without
introducing any external disturbances, the DNS captures the transition to turbulence
downstream of flow reattachment. The DNS results agree well with the experimental
data as well as theoretical predictions. To uncover the intrinsic instability in the flow
system, GSA is employed to investigate the three-dimensionality of the two-dimensional
base flow. Several stationary and oscillatory unstable modes are revealed, which result in
spanwise periodicity inside and downstream of the separation bubble. The GSA and DNS
results indicate that the intrinsic instability of the flow system triggers the formation of
streamwise counter-rotating vortices and boundary-layer streaks near reattachment. The
downstream transition to turbulence starts from the breakdown of the streamwise vortices
and streaks. Moreover, the second harmonic of the most unstable global mode and a
broadband low-frequency unsteadiness occur in the saturated flow, which has a significant
influence on the transition process. In summary, the present study demonstrates a transition
process in a hypersonic compression-ramp flow as a result of the intrinsic instability of the
flow system.
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1. Introduction

The interaction between a shock wave and a boundary layer is ubiquitous in
supersonic and hypersonic flows around a high-speed vehicle. Typical configurations
involving shock-wave/boundary-layer interaction (SWBLI) are compression-ramp flow,
shock impingement on a flat plate, double-cone flow, etc. (Gaitonde 2015). Taking
compression-ramp flow for example, when the pressure rise induced by the ramp shock
is sufficiently large, the boundary layer on the flat plate can no longer resist the adverse
pressure gradient and thus separates ahead of the corner. When the interaction strength is
further enhanced, a large separation bubble can be generated, forming a complex shock
system in the flow field.

Flow instabilities in SWBLI have been of great interest in recent decades owing to their
importance in understanding the laminar–turbulent transition in supersonic and hypersonic
flows. However, the flow instability in SWBLI seems to be less discussed than that in
high-speed boundary layers due to the complex flow structure, e.g. flow separation. In
general, mechanisms that are responsible for destabilising the flow are different for weakly
and strongly separated flows. It is known that a separated flow has the potential to support
self-sustained global instability (Theofilis 2011). Therefore, a globally stable flow can turn
to an unstable one by enhancing the interaction strength, as shown by Hildebrand et al.
(2018) and Hao et al. (2021).

For an incipiently or weakly separated flow, global instability may be absent in
the flow system, namely, the flow is globally stable (Hildebrand et al. 2018; Sidharth
et al. 2018). In such flows, convective mechanisms contribute to the amplification of
external disturbances. Balakumar, Zhao & Atkins (2005) studied a two-dimensional (2-D)
compression-ramp flow at Mach 5.373 and examined the evolution of second-mode
disturbances. It was shown that the disturbances grow exponentially upstream and
downstream of the separated region but remain neutral across the separated region. Using
high-speed schlieren, Butler & Laurence (2021) experimentally revealed the propagation
of second-mode disturbances in an incipiently separated flow over a cone/flare. In addition,
numerous experimental (de Luca et al. 1995; Simeonides & Haase 1995; Chuvakhov et al.
2017; Currao et al. 2020) and numerical (de la Chevalerie et al. 1997; Navarro-Martinez
& Tutty 2005) studies have reported the presence of three-dimensionality in the form
of streamwise streaks near flow reattachment, which is conventionally referred to as
the footprint of Görtler-like vortices. Possible sources of disturbances are leading-edge
imperfections and free-stream turbulence. Employing an input–output analysis, Dwivedi
et al. (2019) showed that the amplification of upstream disturbances can result in the
formation of streamwise streaks in a globally stable compression-ramp flow. However,
they demonstrated that baroclinic effects arising from the interaction of upstream
pressure perturbations with base-flow density gradients, rather than centrifugal effects
near reattachment, are responsible for the production of streamwise vorticity. Another
convective mechanism leading to the formation of streamwise streaks is transient growth,
as shown in Dwivedi et al. (2020) for the case of shock impingement on a flat plate.

Apart from the aforementioned convective mechanisms, instabilities intrinsic to the flow
system can also promote transition in SWBLI. In a significantly separated flow (i.e. a very
strong interaction), self-excited instability may occur (Theofilis 2011; Hildebrand et al.
2018; Hao et al. 2021). Global stability analysis (GSA) considers the linear stability of
small-amplitude perturbations superposed on a steady base flow without assumptions on
the spatial variation of the base flow and the directionality of perturbation waves. This
makes GSA suitable for studying the stability of flows with separation (Sidharth et al.
2017, 2018). By performing GSA for a double-wedge flow at Mach 5, Sidharth et al. (2018)
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showed that the global instability gives rise to the formation of streamwise temperature
streaks on the adiabatic wall. The identified unstable mode was shown to originate from the
streamwise deceleration of the recirculating flow in the separation bubble. Hao et al. (2021)
found that the occurrence of global instability is closely linked with the onset of secondary
separation (Shvedchenko 2009) beneath the primary separation bubble. Cao et al. (2021b)
studied a hypersonic compression-ramp flow at Mach 7.7 using direct numerical simulation
(DNS) and GSA and demonstrated the presence of streamwise heat-flux streaks in the
absence of external disturbances. Additionally, they revealed that the intrinsic instability
triggers a broadband low-frequency unsteadiness inside and downstream of the separated
flow. For the case of shock impingement on a flat plate, Hildebrand et al. (2018) showed
that, for sufficiently large oblique shock angles, the separation bubble is unstable to
three-dimensional (3-D) perturbations, and the global mode drives the formation of long
streamwise streaks downstream of the bubble. As the intrinsic instability also plays an
important role in destabilising the flow system, it is able to affect the transition process in
SWBLI.

Studies concerning transitional SWBLI are not sparse (Simeonides & Haase 1995;
Benay et al. 2006; Sandham et al. 2014; Knight & Mortazavi 2018; Currao et al. 2020).
However, there are difficulties in explaining the transition mechanisms responsible for
the observed phenomena. As mentioned previously, both convective mechanisms (e.g.
first/second mode, transient growth, baroclinic effect, etc.) and intrinsic instabilities
provide potential paths for the transition to turbulence. In experiments performed at
high-speed facilities (e.g. shock tunnel), it is almost inevitable to encounter external
disturbances (e.g. free-stream turbulence, surface roughness), which bring difficulty
in separating convective and intrinsic instabilities. For example, Benay et al. (2006)
experimentally studied transitional flows (Mach 5) over a hollow cylinder/flare at
different Reynolds numbers. Transition was detected both in the absence and presence
of streamwise streaks. They therefore pointed out that it is necessary to distinguish the
streamwise streaks from the convective instability waves in order to explore the transition
nature. Recently, Lugrin et al. (2021b) investigated the experiments of Benay et al.
(2006) using a high-fidelity simulation and revealed several possible transition paths via
perturbing the incoming flow with a white noise. However, their study only focused on
the convective instabilities and ignored the intrinsic instability. Another example is in
Currao et al. (2020) for the interaction of a flat-plate boundary layer with an impinging
shock. The shock-induced transition was shown to occur inside the separated region.
While Currao et al. (2020) suggested that Görtler instability triggered by the concave
nature of the bubble at separation is the main mechanism leading to the boundary-layer
transition, Fu et al. (2021) demonstrated the transition to turbulence without the need for
any inflow free-stream disturbances by performing DNS for this interaction. The above
evidence indicates that the transition to turbulence in the flow involving SWBLI is highly
case dependent. Therefore, efforts should be put into different cases to gain a deeper
understanding of the transition mechanisms in SWBLI.

In the present study, we focus on the laminar–turbulent transition triggered by the
intrinsic instability of a hypersonic compression-ramp flow. GSA and DNS are employed
to identify the intrinsic instability and explore the transition process, respectively.
Available experimental data resulting from the experimental campaign conducted in the
shock tunnel TH2 at the Shock Wave Laboratory of RWTH Aachen University (Roghelia
et al. 2017; A. Roghelia, private communication 2017) will be used to validate the
numerical results. This work is an extension of our previous study (Cao et al. 2021b),
where the streamwise surface heat-flux streaks and low-frequency unsteadiness were
shown to originate from the instability intrinsic to the separation bubble. Hence, in this
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paper, we further investigate the whole transition process as a result of the intrinsic
instability.

The rest of the paper is organised as follows. Details about the DNS of
compression-ramp flow are given in § 2, where the numerical results are compared with
the experimental data and theoretical predictions. In § 3, GSA is performed for the 2-D
base flow to uncover the globally unstable modes in the flow system. The GSA results are
also verified by the DNS data. In § 4, the transition process downstream of reattachment
is described with an emphasis on the influence of flow unsteadiness. Conclusions are
provided in § 5.

2. DNS of the compression-ramp flow

2.1. Numerical method
DNS achieved by a finite-difference method of high-order accuracy in space and time and
with shock capturing ability is applied to study the hypersonic compression-ramp flow
problem. The 3-D Navier–Stokes equations for unsteady, compressible flow are employed
in a conservative form

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= ∂Fν

∂x
+ ∂Gν

∂y
+ ∂Hν

∂z
, (2.1)

where F, G and H are the inviscid fluxes, and Fν , Gν and Hν denote the viscous fluxes.
U = (ρ, ρu, ρv, ρw, ρe)T is the vector of conservative variables, ρ is the density, u, v and
w are the flow velocities, e is the total energy per unit mass and T denotes the transpose of
the matrix. The equation system is closed by the perfect gas law relating pressure, density
and temperature, as well as Sutherland’s law for calculating the viscosity.

In terms of the numerical methods, time integration is performed by an explicit
third-order total variation diminishing Runge–Kutta scheme. A weighted essentially
non-oscillatory finite-difference scheme of fifth-order is applied for the discretisation
of the inviscid fluxes, based on the work of Jiang & Shu (1996). A sixth-order
central-difference scheme is used to approximate the viscous fluxes. Details about the
numerical schemes may be found in Hermes, Klioutchnikov & Olivier (2012), Gageik,
Klioutchnikov & Olivier (2015) and Cao (2021). The DNS solver has been validated and
successfully applied to study hypersonic compression-ramp flows (Cao, Klioutchnikov &
Olivier 2019; Cao 2021; Cao et al. 2021a,b).

2.2. Two-dimensional base flow
The numerically considered flow conditions and compression-ramp geometry are based on
those used in the experimental campaign conducted in the shock tunnel TH2 at the Shock
Wave Laboratory of RWTH Aachen University. Details about the experimental facility
and set-up can be found in Roghelia et al. (2017). The compression ramp comprises a flat
plate with a sharp leading edge and a ramp with a deflection angle of 15◦. The length of
flat plate is L = 100 mm. To examine the complete transition process, the length of ramp
used in the present numerical simulation is 220 mm. Table 1 lists the flow conditions at
TH2 (A. Roghelia, private communication 2017). The free-stream Mach number (M∞)
and Reynolds number (Re∞,L) are 7.7 and 8.6 × 105, respectively. The total enthalpy h0
is relatively low allowing the use of the calorically perfect gas assumption. Owing to the
short running time of the shock tunnel, an isothermal wall condition is applied, and the
wall temperature (Tw) is given by 293 K, which corresponds to a wall-to-total temperature
ratio of 0.18.
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M∞ (–) Re∞ (m−1) h0 (MJ kg−1) T∞ (K) p∞ (Pa) U∞ (m s−1) Tw (K)

7.7 8.6 × 106 1.7 125 1550 1726 293

Table 1. Flow conditions at the shock tunnel TH2 (Roghelia et al. (2017) and A. Roghelia, private
communication 2017).

In the 2-D simulation for the base flow, the number of grid points in the streamwise (x)
and vertical (y) directions is 4080 and 320, respectively. Preliminary simulations showed a
converged 2-D base flow for this mesh resolution. For the subsequent 3-D simulation, 480
grid points are equi-spaced in the spanwise (z) direction over a width of 30 mm, yielding
a total number of grid points of 4080 × 320 × 480 ≈ 627 million. In the x direction, the
mesh is clustered near the leading edge and on the ramp. In the y direction, the mesh
is clustered near the wall, and the minimum mesh spacing is �yw = 3.8 × 10−6 m. It
is noted that the mesh over the ramp is perpendicular to the wall. The set-up described
above yields the following non-dimensional wall units at a position near the outflow
boundary (x/L = 3.0): x+ = 13.1, y+

w = 0.9, z+ = 14.0. It should be mentioned that a
turbulent boundary layer is established prior to the outflow region (see below), and the
number of grid points inside the boundary layer (in the y-direction) is approximately
160 at x/L = 3.0.

In terms of boundary conditions, free-stream parameters are prescribed at the inflow
and upper boundaries. A zero-gradient extrapolation condition is used for the outflow
boundary. For the no-slip wall, isothermal conditions are specified with the wall
temperature being 293 K. Periodic boundary conditions are applied in the spanwise
direction for the 3-D simulation.

The 2-D base flow is visualised in figure 1 using the Mach number contour and
numerical schlieren. Owing to the pressure rise induced by the ramp shock, a separation
bubble forms around the corner with the separation and reattachment points located at
x/L = 0.49 and x/L = 1.26, respectively. The separation shock generated at the separation
position interacts with the reattachment shock at the triple point (T), resulting in a slip
line and an expansion fan that impinges on the wall. Note that the leading-edge shock
resulting from the viscous interaction (Anderson 2006) is relatively weak compared with
the separation, reattachment and ramp shocks, as seen in the Mach number contour. In the
following, 3-D simulation is performed on the basis of the 2-D base flow.

2.3. Establishment of 3-D flow
The initial 3-D flow field is generated by extending the above 2-D solution in the spanwise
direction. The initial spanwise velocity is set to zero. It has been demonstrated in our
previous work (Cao et al. 2021a) that the growth of instability waves can arise from
the extremely low-level perturbations provided by numerical round-off error. No external
disturbances are introduced at the inflow or at the wall, which enables the examination of
intrinsic instabilities in the fluid-dynamic system.

To ensure the stability of numerical simulation, the time step is set as 4.6 × 10−9 s.
Starting from tU∞/L = 0, the 3-D simulation is run up to tU∞/L = 41. The sampling
time interval for collecting the data is �tU∞/L = 0.006, corresponding to a sampling
frequency of fs = 2.88 MHz (fsL/U∞ = 167).
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Figure 1. Base-flow visualisation: (a) Mach number contour; (b) numerical schlieren. Here, T denotes the
triple point, where the separation shock interacts with the reattachment shock.

To capture the growth of three-dimensionality, we consider the temporal evolution of
the quadratic mean of spanwise velocity at a streamwise position, which is defined as

Aw =

√√√√√ 1
NyNz

Ny∑
j=1

Nz∑
k=1

(w/U∞)2
j,k, (2.2)

where Ny and Nz denote the number of grid points in the y and z directions, respectively.
Figure 2(a) shows the temporal history of Aw at x/L = 1.05. Similar to Cao et al. (2021b),
this streamwise position was chosen because Aw is largest there compared with all other
streamwise positions. It should be mentioned that this position is located in the separated
region as the instability core lies inside the separation bubble (Sidharth et al. 2018; Cao
et al. 2021b). The slope of the dotted line shown in figure 2(a) corresponds to the growth
rate of the most unstable mode identified by GSA, which is shown later. After an initial
transient period, Aw starts to grow exponentially at tU∞/L ≈ 3.5. The exponential growth
ends at tU∞/L ≈ 6.5, from which on Aw reaches its asymptotic level. This indicates that
a saturated flow is achieved in the separation bubble.

Figure 2(b) plots the temporal history of the wall Stanton number at x/L = 1.45 and
z/L = 0.15. The wall Stanton number is defined as

St = qw

ρ∞U∞cp(Taw − Tw)
. (2.3)

Here, qw denotes the surface heat flux, cp is the specific heat capacity and Taw is the
adiabatic wall temperature. It is noted that the chosen position is the peak-heating position
in the vicinity of reattachment. As seen, the Stanton number remains nearly constant until
tU∞/L ≈ 6.5, which corresponds to the end of the exponential growth for Aw. This means
that the change of the wall Stanton number downstream of reattachment is closely linked
to the separation bubble flow, as demonstrated by Cao et al. (2021b). Subsequently, the
Stanton number exhibits an unsteady feature due to the intrinsic instability (see below).

Figure 3 presents the instantaneous wall Stanton number distribution at tU∞/L = 6,
16 and 41. Separation and reattachment positions are highlighted by iso-lines of zero
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Figure 2. (a) Temporal evolution of spanwise velocity (2.2) at x/L = 1.05. The slope of the dotted line
represents the growth rate of the most unstable mode predicted by GSA, which is shown later. (b) Temporal
history of the wall Stanton number at x/L = 1.45 and z/L = 0.15, which is located at the centre line of wall.

0.003

0

y
x

z

(a) (b) (c)

Figure 3. Instantaneous wall Stanton number distribution at (a) tU∞/L = 6, (b) tU∞/L = 16 and (c)
tU∞/L = 41. Black solid lines denote iso-lines of Cf = 0.

skin-friction coefficient (Cf ). Weak three-dimensionality can be observed in the vicinity
of flow reattachment at tU∞/L = 6. At tU∞/L = 16, the wall Stanton number distribution
deviates significantly from figure 3(a) and appears similar to that at tU∞/L = 41. Based
on the previous discussions, it can be concluded that the 3-D flow is fully established
prior to tU∞/L = 16. To avoid potential transient effects, we use the time period from
tU∞/L = 16 to 41 to conduct the time-averaging process in the following.

2.4. Validation of DNS results
The DNS results are validated below by comparing with experimental data
and theoretical predictions. Figure 4(a) compares the surface pressure coefficient
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Figure 4. (a) Streamwise distribution of the spanwise- and time-averaged surface pressure coefficient Cp, in
comparison with experimental data and the inviscid solution based on the oblique shock theory. (b) Streamwise
distribution of the spanwise- and time-averaged St, the spanwise-averaged St at t/U∞/L = 41 as well as
the St for the 2-D base flow. The shaded grey region represents the envelope of the spanwise variation of
time-averaged St. All experimental data are measured along the centre line of the model (A. Roghelia, private
communication 2017).

Cp = ( pw − p∞)/0.5ρ∞U2∞ with the experimental measurement (A. Roghelia, private
communication 2017) and the inviscid solution based on the oblique shock theory. In
general, the pressure plateau induced by boundary-layer separation and the pressure rise
downstream of reattachment are in good agreement with the experimental data. The
pressure decrease at x/L ≈ 2 is caused by the impingement of the expansion fan emanating
from the triple point (see figure 1b). As expected, the surface pressure at the rear part of
ramp matches the inviscid solution because this position is located far away from the
interaction zone.

The comparison of the wall Stanton number is illustrated in figure 4(b). The black
line represents the spanwise-averaged Stanton number at tU∞/L = 41, and the red line
represents the spanwise- and time-averaged Stanton number. Excellent agreement can be
found upstream and inside the separation bubble. The size of the separation bubble is also
well captured by the DNS. Downstream of reattachment, a heating peak is generated at
approximately x/L = 1.45 as a result of flow reattachment. An evident increase in the
wall Stanton number starting at x/L = 1.8∼1.9 can be found both in the experimental
and numerical data. This is indicative of transition from a laminar state to a turbulent
state. In contrast to the 3-D flow, the 2-D base flow exhibits a purely laminar state in the
entire domain. Moreover, owing to the presence of 3-D phenomena, the separation bubble
is slightly enlarged in the 3-D simulation. Therefore, disagreement (e.g. in surface heat

941 A8-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

27
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.277


Transition to turbulence in hypersonic compression-ramp flow

6

4

2

0 0.1 0.2 0.3

St
 (×

1
0

–
3
)

z/L
Figure 5. Spanwise distribution of the time-averaged wall Stanton number (red dash dotted line) and the
instantaneous wall Stanton number at tU∞/L = 41 (black solid line). The numerical results are taken at
x/L = 1.45.

(a) (b)

2
0
 m

m

Figure 6. (a) Infrared image and (b) numerical Stanton number map showing the heat-flux streaks on the ramp
surface. Both the experimental and numerical maps are time averaged. The peak heating position (x/L = 1.45)
is highlighted by triangles.

transfer and separation bubble size) may arise when one uses a 2-D solution to predict the
flow in a real situation.

The discrepancy of St downstream of reattachment between the experimental and 3-D
numerical results could be due to the following reasons. First, while the experimental
data were measured along the centre line of the model, the DNS data shown in
figure 4(b) are averaged in the spanwise direction. Figure 5 provides the spanwise
distribution of St at x/L = 1.45 for the time-averaged and instantaneous flows. It is
apparent that a considerable variation of St exists in the spanwise direction, especially for
the instantaneous flow. The shaded grey region in figure 4(b) represents the envelope of
the spanwise variation of time-averaged St in the DNS data. Obviously, most experimental
data fall in the grey region. Note also that the total uncertainty of the experimental Stanton
number is approximately 10 % (Roghelia et al. 2017). Second, the presence of external
disturbances in the experiment may affect the formation of surface heat-flux streaks, which
is not considered in the DNS.

In addition to the measurement of surface pressure and wall Stanton number along
the centre line of the model, infrared imaging was used to obtain a surface temperature
map on the ramp. Figure 6 compares this experimental surface temperature map with the
numerical Stanton number distribution. Both the experimental and DNS data are time
averaged. Similar streak pattern can be observed between the experimental and numerical
results. The peak-heating position also matches, as implied in figure 4(b). It should be
noted that there is a slight discrepancy in the spanwise wavelength of the streaks. The
reasons might be as follows. First, the window used for time averaging is different in
the experiment (0.25 ms) and DNS (1.45 ms). Note that the flow is highly unsteady. In
addition, the external disturbances existing in the experiments may affect the formation of
heat-flux streaks, as mentioned above.
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Figure 7. (a) Velocity and temperature profiles for the laminar boundary layer upstream of separation,
in comparison with the similarity solution of the compressible boundary-layer equations. (b) The
van-Driest-transformed mean velocity profile at x/L = 0.4 and 3.0. The dotted lines represent the
linear-sublayer and log-law relations. (c) Mean temperature profile at x/L = 3.0, in comparison with the
relations proposed by Walz (1969) and Duan & Martin (2011).

To further validate the DNS results from a theoretical point of view, we compare
both the laminar and turbulent boundary-layer profiles with theoretical predictions. As
mentioned previously, the undisturbed boundary layer upstream of separation is laminar,
and the boundary layer on the rear part of ramp (e.g. at x/L = 3.0) is turbulent. Firstly, the
laminar boundary-layer profile is compared with the similarity solution of compressible
boundary-layer equations (White 2006) in figure 7(a). Both velocity and temperature
profiles agree well with the similarity solution. Note that the slight discrepancy in the
profiles results from the fact that the streamwise pressure gradient is assumed to be zero in
the boundary-layer equations, while a favourable pressure gradient exists in the DNS due
to the viscous interaction near the leading edge of the flat plate.

In figure 7(b), transformed streamwise velocity profiles at x/L = 0.4 and 3.0 are plotted
in a rescaled wall-normal coordinate. Here, the streamwise velocity is normalised as

u+ = ūs

ūτ

, (2.4)

with ūs being the velocity in the wall-parallel direction and ūτ = √
τ̄w/ρ̄w the friction

velocity. The overline ‘-’ denotes a spanwise- and time-averaged quantity. Then, the
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streamwise velocity is transformed using van Driest transformation as the flow is
compressible

u+
c =

∫ u+

0

√
T̄w

T̄
du+. (2.5)

The dotted lines represent the relations for the linear sublayer and the logarithmic overlap
region

u+ = y+, u+ = 1
κ

ln( y+) + C, (2.6a,b)

where κ = 0.41 and C = 5.2. At x/L = 0.4, the velocity profile is typical of a laminar
profile. At x/L = 3.0, the velocity profile exhibits typical features for a turbulent boundary
layer. Note that, in the viscous sublayer, u+ = y+ is only satisfied until y+ ≈ 2. This
is because of the low wall-to-total temperature ratio and is consistent with the results
of Duan, Beekman & Martin (2010). They studied Mach 5 turbulent boundary layers at
cold walls and found that the region of the viscous sublayer shrinks significantly with
decreasing wall temperature. Nevertheless, the velocity profile at x/L = 3.0 overlays the
laminar profile until y+ ≈ 10, indicating a well-resolved viscous sublayer. Furthermore,
the velocity profile in the log-law region also matches the theoretical curve.

Figure 7(c) presents the spanwise- and time-averaged temperature profile at x/L = 3.0.
One of the commonly used temperature–velocity relations is Walz’s equation (Walz 1969)

T̄
T̄e

= T̄w

T̄e
+ T̄aw − T̄w

T̄e

(
ūs

ūe

)
+ T̄e − T̄aw

T̄e

(
ūs

ūe

)2

. (2.7)

As shown in figure 7(c), the DNS results do not match Walz’s relation because this relation
was originally built for the boundary layer over an adiabatic wall. By considering the effect
of the wall temperature, Duan & Martin (2011) modified (2.7) using their DNS data

T̄
T̄e

= T̄w

T̄e
+ T̄aw − T̄w

T̄e
f
(

ūs

ūe

)
+ T̄e − T̄aw

T̄e

(
ūs

ūe

)2

, (2.8)

where

f
(

ūs

ūe

)
= 0.1741

(
ūs

ūe

)2

+ 0.8259
(

ūs

ūe

)
. (2.9)

It is apparent that the present DNS data agree well with the modified relation of Duan &
Martin (2011). The deviation is less than 2 %. To summarise, the laminar and turbulent
boundary layers on the cold wall are well resolved by the present DNS. In the following,
we start describing the transition process. As the transition to turbulence is triggered by the
self-excited instability in the flow system, GSA is firstly employed to examine the intrinsic
instability with respect to the 2-D base flow.

3. GSA of the compression-ramp flow

The stability of the 2-D base flow subject to small-amplitude perturbations that are
periodic in the spanwise direction is examined using an in-house GSA solver (Hao et al.
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2021; Cao et al. 2021b). The governing equation (2.1) is linearised by decomposing U into
a 2-D base flow U2-D and a 3-D small-amplitude perturbation U′ as

U(x, y, z, t) = U2-D(x, y) + U′(x, y, z, t). (3.1)

The linearised Navier–Stokes equations are discretised using a second-order finite-volume
method. Near discontinuities, the linearised inviscid fluxes are calculated using the
modified Steger–Warming scheme (MacCormack 2014), whereas a central scheme is
adopted in smooth regions. The linearised viscous fluxes are computed using the
second-order central difference. The vector of perturbed conservative variables is assumed
to be in the following modal form:

U′(x, y, z, t) = Û(x, y) exp[−i(ωr + iωi)t + iβz] + c.c., (3.2)

where Û = (ρ̂, ρ̂u, ρ̂v, ρ̂w, ρ̂e)T is the eigenfunction, ωr is the angular frequency, ωi is
the growth rate and β is the spanwise wavenumber. The corresponding frequency and
spanwise wavelength are defined by

f = ωr

2π
, λz = 2π

β
. (3.3a,b)

Substituting (3.2) into the linearised Navier–Stokes equations leads to an eigenvalue
problem for a given β, which is solved using the implicit restarted Arnoldi method
implemented in ARPACK (Sorensen et al. 1996–2008). The boundary conditions are
consistent with those in the 2-D base-flow simulation except that sponge layers are placed
near the far field and outflow boundaries to ensure no reflection of perturbations (Mani
2012). See Hao et al. (2021) for more details.

To reduce the computational cost, the 2-D base flow is simulated on a coarser grid
(750 × 350), and the ramp length is reduced to 100 mm. Grid independence was verified
using a finer grid. In total, three stationary and seven oscillating modes are captured by the
GSA, which indicates that the considered flow conditions are far beyond the global stability
boundary. Figure 8 shows the non-dimensional growth rates and frequencies of the first
two most unstable modes (modes 1 and 2) as a function of the spanwise wavelength. The
largest growth rate of mode 1 occurs at λz/L = 0.055, denoted by the vertical dash-dot
lines, which is used to determine the slope of the straight line in figure 2(a). Excellent
agreement is obtained between the GSA and DNS. It is indicated that, in the DNS, mode 1
dominates the evolution of perturbations until nonlinear saturation. The peak growth rate
of mode 2 is lower than that of mode 1 and shifted to a smaller spanwise wavelength. Mode
1 is stationary when λz/L � 0.028, whereas mode 2 is oscillating with the wavelength at
λz/L = 0.015∼0.455. The eigenvalue spectrum at λz/L = 0.055 is shown in figure 9. Six
additional pairs of complex conjugates (oscillating unstable modes) can be seen with the
corresponding frequency (fL/U∞) ranging from 0.476 to 1.668. The spatial structure of
modes 1 and 2 at λz/L = 0.055 is shown in the Appendix.

To make a closer comparison between the GSA and DNS, figure 10 presents the
iso-surfaces of |w/U∞| = 0.006 at tU∞/L = 6 in the exponential growth stage obtained
from the DNS. Also shown in this figure are the contours of spanwise velocity in the
x–y plane at z/L = 0.14 and the z–y plane at x/L = 1.05 at the same time instant. The
spanwise velocity is mostly confined within the separation region with an average spanwise
wavelength of 0.056, which agrees well with the GSA prediction.

For each eigenvalue, the GSA solver returns a normalised complex eigenfunction. A
scaling factor can be determined by dividing the largest spanwise velocity in figure 10(c)
by the largest magnitude of the spanwise velocity perturbation of the most unstable mode
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Figure 8. (a) Growth rates and (b) frequencies of the first two most unstable modes as a function of the
spanwise wavelength.
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Figure 9. Eigenvalue spectrum at λz/L = 0.055 corresponding to the largest growth rate of the most unstable

mode.
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Figure 10. (a) Iso-surfaces of w/U∞ = −0.006 (blue) and w/U∞ = 0.006 (red) obtained from the DNS at
the time instant tU∞/L = 6. The numerical schlieren is added at z/L = 0 to highlight the position of the
separation bubble. (b–c) Instantaneous distribution of spanwise velocity (w/U∞) at tU∞/L = 6 in the x–y
plane at z/L = 0.14 and the z–y plane at x/L = 1.05. Closed circles in panel (b) mark the separation and
reattachment positions.
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Figure 11. (a,b) Contours of the spanwise velocity perturbations in the x–y plane at z/L = 0.12 and z–y plane
at x/L = 1.05. (c) Iso-surfaces of |w′/U∞| = 0.006. (d) Iso-surfaces of |u′/U∞| = 0.015. The perturbation
field is constructed using the eigenfunction of mode 1 at λz/L = 0.055 with the amplitude corresponding to
tU∞/L = 6.

(i.e. mode 1 at λz/L = 0.055) along a wall-normal slice at the same streamwise location.
The eigenfunction of mode 1 is then multiplied by the scaling factor and extends to five
periods in the spanwise direction to construct a 3-D perturbation field corresponding to
tU∞/L = 6.

Figures 11(a) and 11(b) show the contours of the spanwise velocity perturbations in
the x–y plane at z/L = 0.12 and the z–y plane at x/L = 1.05, respectively. Note that the
locations of the separation and reattachment points denoted by the closed circles are
obtained from the 2-D base flow, which has a slightly smaller separation region than
the 3-D saturated flow in the DNS. Figures 11(c) and 11(d) plot the iso-surfaces of
the streamwise and spanwise velocity perturbations extracted from the 3-D perturbation
field. The good agreement between the GSA and DNS confirms the validity of both
methods. In contrast to w′, u′ stretches downstream along the reattaching boundary layer,
leading to spanwise alternating acceleration and deceleration in the streamwise direction.
Similar behaviours were also observed by Hildebrand et al. (2018) for an oblique-shock
impingement on a flat plate.

The change in the flow topology due to the global instability can be examined by the
linear superposition of the 2-D base flow and the 3-D perturbation field (Theofilis, Hein &
Dallmann 2000). At tU∞/L = 6, the perturbation amplitude is not large enough to alter the
reattached flow significantly, as shown in figure 3(a). Here, we focus on the topological
change downstream of flow reattachment at tU∞/L = 7 by further amplifying the 3-D
perturbation field according to (3.2) using the largest growth rate of mode 1. Figure 12
shows the contours of the perturbed streamwise velocities in three wall-normal planes
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Figure 12. Contours of the perturbed streamwise velocities in three wall-normal planes extracted at (a)
x/L = 1.27, (b) x/L = 1.45 and (c) x/L = 1.60 superimposed with the in-plane streamlines. The perturbed
flow field is constructed using the eigenfunction of mode 1 at λz/L = 0.055 with the amplitude corresponding
to tU∞/L = 7. The cutoff levels are u/U∞ < 0 and u/U∞ > 0.92.

extracted at x/L = 1.27, 1.45 and 1.60 superimposed with the in-plane streamlines. Note
that only the regions with 0 � u/U∞ � 0.92 are displayed. Note also that yn denotes the
wall-normal coordinate starting from the wall. The station with x/L = 1.27 is located
immediately downstream of the 2-D reattachment point. However, the global instability
induces local regions of reversed flow embedded in the reattaching boundary layer, which
indicates that the reattachment line is no longer straight but has a zigzag pattern. The
meandering reattachment line can also be observed in the saturated flow (see DNS results
in figure 3). Meanwhile, the edge of the reattaching boundary layer becomes corrugated.
At x/L = 1.45 and 1.60, streamwise vortices can be seen with the peak–valley structure
corresponding to the upwash and downwash motions. The GSA confirms that streamwise
vortices can be generated due to the global instability of the flow system, which can persist
along the compression ramp and eventually break down into turbulence.

Although the linear GSA predicts the main flow features (e.g. spanwise periodicity,
streamwise vortices) for the considered compression-ramp flow, there are certain nonlinear
effects that are not revealed by the GSA. In fact, the DNS results indicate the occurrence
of higher harmonic of spanwise wavelength. For instance, it can be estimated from
figure 3(b,c) that the typical wavelength of heat-flux streaks is approximately λz/L =
0.027. This value is approximately half of the wavelength of the most unstable global
mode (mode 1). Figure 13 compares the spanwise velocity fields obtained from the
DNS at tU∞/L = 6 and tU∞/L = 7.2. Note again that the linear growth stage ends at
tU∞/L = 6.5. The streamwise position is x/L = 1.15 for figure 13(a–b) and x/L = 1.27
(reattachment position) for figure 13(c–d). It is clear that only mode 1 is present at
tU∞/L = 6. However, a new mode occurs near the wall after the linear growth stage.
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Figure 13. Instantaneous distributions of spanwise velocity on the z–y planes at (a–b) x/L = 1.15 and (c–d)
x/L = 1.27. The time instants are (a,c) tU∞/L = 6, (b,d) tU∞/L = 7.2.
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Figure 14. Power spectral density of the spanwise velocity on a wall-parallel plane (yn/L = 0.0015) at (a)
tU∞/L = 6 and (b) tU∞/L = 7.2.

As a result, the spanwise wavelength is doubled near the wall. To further examine the
streamwise location of this mode, a fast Fourier transform for the spanwise velocity
fields on a wall-parallel plane (yn/L = 0.0015) at tU∞/L = 6 and 7.2 is carried out. The
resulting power spectral density (PSD) contours as a function of spanwise wavelength
and streamwise location are presented in figure 14. Obviously, the dominant wavelength at
tU∞/L = 6 is in the range λz/L = 0.05∼0.06, corresponding to mode 1. At tU∞/L = 7.2,
however, another high-energy mode can be found at λz/L = 0.027, which corresponds
to the second harmonic of mode 1. Moreover, the second harmonic extends further
downstream of reattachment, while mode 1 is mainly confined in the separation bubble.
This means that the second harmonic dominates the spanwise periodicity in the near-wall
region downstream of reattachment. This explains the observed wavelength of surface
heat-flux streaks in the saturated flow.

4. Transition to turbulence downstream of reattachment

4.1. Influence of low-frequency unsteadiness
The oscillatory unstable modes revealed by the GSA imply the presence of unsteady
flow. According to the DNS results, the saturated flow exhibits a strong unsteadiness both
inside and downstream of the separation bubble. For a similar compression-ramp flow
with a lower Reynolds number, Cao et al. (2021b) demonstrated that the flow unsteadiness
can be attributed to the intrinsic instability of the flow system. With this view, the flow
unsteadiness and its effects on the transition process are first addressed in this section.
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Figure 15. Contour of the time-averaged wall Stanton number. Here, C denotes the corner (x/L = 1), R
corresponds to the spanwise-averaged reattachment position (x/L = 1.27), P represents the peak-heating
position (x/L = 1.45) and T indicates the onset of transition.

To facilitate the following discussion, it is necessary to highlight some critical positions
in the flow field. Figure 15 shows the time-averaged wall Stanton number on the ramp
and marks several positions; C denotes the corner (x/L = 1); R corresponds to the
spanwise-averaged reattachment position (x/L = 1.27); P represents the peak-heating
position (x/L = 1.45) and T indicates the onset of transition (x/L = 1.76, estimated from
figure 4b).

Figure 16(a) presents the temporal history of the reattachment position (xR) in the centre
line of the wall, in comparison with the wall Stanton number signal shown in figure 2(b). In
general, there exists an opposite trend for the two signals. When the reattachment position
moves downstream, the Stanton number decreases, and vice versa. This is consistent with
the results of Cao et al. (2021b), who found that the pulsation of the reattachment position
is accompanied by the variation of downstream surface heat flux. Figure 16(b) compares
the temporal history of the wall Stanton number and the boundary-layer displacement
thickness (δ1) at the same position (x/L = 1.45, z/L = 0.15). Similar to figure 16(a), a
generally opposite trend can also be observed. In other words, a high heat flux on the
wall corresponds to a thin boundary layer above this position, and vice versa. This is not
surprising because the thinning of the boundary layer induces a high temperature gradient
on the cold wall. Concerning the spatial distribution of the surface heat flux, its streak
pattern indicates that there exist streamwise-elongated high- and low-momentum streaks
for the boundary layer above the wall. Therefore, like the surface heat-flux streaks, the
boundary-layer streaks also exhibit an unsteady feature. The complicated spatio-temporal
distribution of the reattached boundary layer has a significant influence on the transition
process, as is shown later.

To characterise the streamwise propagation of the unsteadiness, a two-point
spatio-temporal correlation is employed to evaluate the wall Stanton number signal

Rnm(τ ) = St′n(t) · St′m(t + τ)√
St′2n ·

√
St′2m

, (4.1)

where the subscript n denotes the reference point: x/L = 1.6, z/L = 0.15; the subscript
m corresponds to the position varying in the streamwise or spanwise direction; St′ =
St − St is the fluctuation quantity (St is the time-averaged St at local streamwise or
spanwise position) and τ is the time delay. The resulting correlation maps are shown in
figure 17. The vertical coordinates are given by �x = x/L − 1.6 and �z = z/L − 0.15.
A strong correlation is found in the streamwise direction, whereas the correlation in the
spanwise direction is quite weak. This means that the unsteadiness primarily travels in
the streamwise direction. The slope of the black line shown in figure 17(a) indicates the
travelling speed of the unsteadiness, which is evaluated approximately by 0.5U∞.
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Figure 16. (a) Temporal history of the reattachment position (solid line) in the centre line of the wall
(z/L = 0.15), in comparison with the wall Stanton number signal (dash dotted line) at x/L = 1.45, z/L = 0.15
(extracted from figure 2b). (b) Temporal history of the boundary-layer displacement thickness (solid line) and
wall Stanton number signal (dash dotted line) at x/L = 1.45 and z/L = 0.15.
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Figure 17. Two-point temporal correlation map of the wall Stanton number in the (a) streamwise and (b)
spanwise directions. The reference point is located at x/L = 1.60, z/L = 0.15.

Figure 18 presents the PSD of the wall Stanton number signal shown in figure 16
as well as the spanwise-averaged PSD at x/L = 1.45. Welch’s method (Welch 1967) is
employed for the spectral estimation with three segments and 50 % overlap. A Hamming
window is used for weighting the data on each segment prior to fast Fourier transform
processing. The above setting yields the length of an individual segment as 12.5L/U∞. It
is apparent that the wall Stanton number signal has a broadband low-frequency feature.
The dominant non-dimensional frequencies (Strouhal number) are of the order of 0.1.
The spanwise-averaged PSD has a similar distribution to the PSD at z/L = 0.15, which
indicates that the dominant frequencies at different spanwise positions are nearly the same.

The influence of low-frequency unsteadiness on the transition process can be further
illustrated by showing the wall pressure signal at different streamwise positions in
figure 19. The chosen positions are x/L = 1.45, 1.80, 2.10 and 3.00 along the centre
line of the wall. As seen, no high-frequency fluctuation exists at x/L = 1.45, indicating
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Figure 18. PSD of the wall Stanton number signal shown in figure 16 (solid line) and the spanwise-averaged

PSD (dash dotted line) at x/L = 1.45.

a laminar state for the boundary layer. At x/L = 1.80, high-frequency fluctuation packets
intermittently occur in the pressure signal. By roughly counting the number of fluctuation
packets, the frequency for the occurrence of a packet is approximately fL/U∞ = 7/25 =
0.28, which is consistent with the typical frequency of the flow unsteadiness (see
figure 18). At x/L = 2.10, the pressure signal exhibits a high-frequency feature at most
time instants, although the intermittent appearance of fluctuation packets is still present.
This means that the flow is highly transitional here. A turbulent boundary layer at
x/L = 3.00 is indicated by the pressure signal shown in figure 19(d).

4.2. Breakdown of streamwise vortices
As mentioned previously, the unsteady heat-flux streaks on the wall are the footprint of
unsteady boundary-layer streaks above the wall, and the unsteadiness can be traced back
to the reattaching flow. The streak pattern for the reattached boundary layer is further
visualised in the following. Figure 20 illustrates the streamwise velocity contour (u/U∞)
in the wall-normal plane at x/L = 1.27, 1.35, 1.45, 1.50 and 1.60 for the time instant
tU∞/L = 41 superimposed with the in-plane streamlines. Note that the contour outside
the boundary layer is removed by cutting off the levels of u/U∞ > 0.92. As x/L = 1.27 is
the spanwise-averaged reattachment position, both reverse and reattached flows are present
in figure 20(a). Downstream of reattachment (figure 20b–e), the distorted boundary layer
exhibits spanwise corrugation, and the high- and low-momentum portions persist in the
streamwise direction. This is consistent with previous GSA predictions (see figures 11 and
12). Therefore, it is concluded that the occurrence of streamwise-elongated boundary-layer
streaks is triggered by the intrinsic instability in the flow system.

Further evidence can be found by comparing the in-plane streamlines in figures 12 and
20. It is apparent that counter-rotating vortices are present downstream of reattachment.
Between two adjacent vortex pairs, the boundary layer is compressed towards the wall,
causing a large temperature gradient and thus a hot region on the wall. At the centre of a
vortex pair, the upwash motion brings low-momentum flow away from the wall, producing
a cold region on the wall. It should be mentioned that the change in the flow direction at the
upper side of both figures 12 and 20 is induced by the flow reattachment and downstream
growth of the boundary layer. The consistent vortical structure between the GSA and DNS
results indicates that the global instability plays an important role in the formation of
streamwise vortices and heat-flux streaks. It is further noted that there are three distinct
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Figure 19. Temporal history of the wall pressure at different streamwise positions along the centre line of the
wall. (a–d) Correspond to the signal at x/L = 1.45, 1.80, 2.10 and 3.00.

vortex pairs in figure 20, whereas only one and a half vortex pairs can be observed in
figure 12. In other words, the number of vortices or streaks in the saturated flow (DNS
data) is twice of that in the flow governed by the linear instability (GSA data). This is
due to the emergence of the second harmonic of the most unstable mode, as discussed
previously.

To visualise the breakdown of the streamwise vortices, the instantaneous distribution of
streamwise vorticity on the wall-parallel plane at yn/L = 0.005 is shown in figure 21. The
streamwise vorticity is defined as

ωs = ∂w
∂yn

− ∂un

∂z
, (4.2)

where un denotes the wall-normal velocity component. Owing to the flow unsteadiness,
the distributions of ωs at tU∞/L = 40 and 41 differ from each other. The boundary
layer tends to be homogeneous upstream of x/L = 2.3 at tU∞/L = 41, whereas it is still
transitional up to x/L = 2.5 at tU∞/L = 40. In general, the typical breakdown position
can be estimated at x/L = 1.7∼1.8, which is consistent with the aforementioned position
for the onset of transition (see figure 4). On the other hand, the streak patterns at the two
time instants share some similarities. For example, the evolution of the streamwise streaks
in both figures starts from the reattachment region (around x/L = 1.27). Moreover, each
streak consists of a vorticity pair, which represents a pair of counter-rotating vortices.

Subsequently, the Q-criterion is employed to visualise the flow structures, Q is the
second invariant of the velocity gradient tensor. As shown in figure 22, the vortical
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Figure 20. Instantaneous (tU∞/L = 41) streamwise velocity contour in the wall-normal plane at different
streamwise positions superimposed with in-plane streamlines. (a–e) Correspond to x/L = 1.27, 1.35, 1.45,
1.50 and 1.60, respectively. The cutoff levels are u/U∞ < 0 and u/U∞ > 0.92.
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Figure 21. Instantaneous distribution of the streamwise vorticity (ωs, non-dimensional) on the wall-parallel
plane at yn/L = 0.005 for the time instants (a) tU∞/L = 40 and (b) tU∞/L = 41.

structure originates from the separation bubble flow and evolves in the streamwise
direction. Affected by the flow unsteadiness, the onset of transition differs for each
streamwise vortical streak. Interestingly, vortical structures with a ‘hairpin’ shape
can be observed in the transitional region (see the enlarged views in figure 22b,d).
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Figure 22. Instantaneous visualisation of the vortical structure on the basis of the Q-criterion. The iso-surface
of Q = 50 coloured by the velocity magnitude U = √

u2 + v2 + w2 is shown in all panels. Panels (b,d) are
enlarged views of panels (a,c), respectively. The time instant is tU∞/L = 40 for (a–b) and tU∞/L = 41 for
(c–d). Numerical schlieren is added to highlight the separation bubble and shock structure.

This structure resembles the varicose mode of streak breakdown in a flat-plate boundary
layer (Ovchinnikov, Choudhari & Piomelli 2008; Schlatter et al. 2008). In short, the above
facts demonstrate that the transition process in the considered compression-ramp flow is
initiated by its intrinsic instability and accomplished via the breakdown of streamwise
vortices.

5. Conclusion

In the present work, DNS and GSA were performed for a hypersonic compression-ramp
flow, where the transition to turbulence has been detected in shock tunnel experiments. The
free-stream Mach number and the Reynolds number based on the flat-plate length are 7.7
and 8.6 × 105, respectively. Owing to the strong SWBLI, a large separation bubble forms
around the corner. Without introducing any external disturbances to the DNS, the flow
system was shown to be intrinsically unstable, causing the formation of surface heat-flux
streaks and the transition to turbulence downstream of reattachment. The DNS results were
verified using experimental data and theoretical predictions.

The global stability of the 2-D base flow was examined by the GSA. Three stationary and
seven oscillatory unstable modes were revealed. The most unstable mode is a stationary
one with its growth rate peaking at the spanwise wavelength λz/L = 0.055. This mode
dominates the linear growth stage in the DNS. The frequency of the oscillatory modes
(fL/U∞) ranges from 0.474 to 1.668. By superimposing the 3-D perturbation field of
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the most unstable mode on the base flow, a spanwise corrugation of the reattaching
shear layer and reattached boundary layer was uncovered, accompanied by the formation
of streamwise vortices. Similar structures were extracted from the DNS results. The
comparison between the DNS and GSA results demonstrated that the occurrence of
streamwise boundary-layer streaks and streamwise vortices downstream of reattachment
is triggered by the intrinsic instability in the flow system.

In addition, the DNS results indicated the occurrence of the second harmonic of the
most unstable global mode, which was not revealed by the linear GSA. It was shown that
the second harmonic dominates the spanwise periodicity in near-wall shear flows after
flow saturation. As a result, the spanwise wavelength of streamwise vortices and surface
heat-flux streaks in the saturated flow is approximately half of the most unstable mode
predicted by the GSA. Consistent with the result of Cao et al. (2021b), the saturated flow
exhibits a broadband low-frequency unsteadiness. The boundary-layer streaks and surface
heat-flux streaks mainly oscillate in the streamwise direction with a typical Strouhal
number of the order of 0.1. This unsteadiness has a significant influence on the transition
process. For example, the transition length exhibits a temporal-spatial dependence. It was
shown that the transition to turbulence starts from the breakdown of streamwise vortices.
Hairpin vortical structures were identified in the transitioning flow.

It is interesting to note that self-excited instability is ubiquitous in separated flows
involving SWBLI. Examples are compression-ramp flow (Egorov, Neiland & Shredchenko
2011; Sidharth et al. 2017), shock impingement on a flat plate (Robinet 2007; Nichols
et al. 2017), double-wedge flow (Sidharth et al. 2018), double-cone flow (Hao et al. 2022)
and flow over a hollow cylinder/flare (Brown et al. 2009; Lugrin et al. 2021a). Both
stationary and oscillatory global modes were revealed using GSA (see, e.g. Nichols et al.
2017; Sidharth et al. 2018; Hao et al. 2022). The formation of streamwise streaks and
low-frequency unsteadiness in such flows are closely linked to the intrinsic instability.
Hence, intrinsic instability provides a viable scenario for the transition to turbulence in
separated flows, as highlighted in the present study.

However, in an intrinsically stable flow, the convective mechanism can dominate the
formation of streamwise streaks, as shown by Dwivedi et al. (2019). As the introduction of
upstream disturbances is inevitable in high-speed wind tunnel experiments, both intrinsic
and convective instabilities may play a role. Because the numerical and experimental
results in the present study agree well, it might be possible that the experimental flow is
dominated by the intrinsic instability. Nevertheless, the influence of upstream disturbances
on the formation of streamwise streaks and transition process in the considered flow needs
to be further investigated. A comprehensive study of the combined effects of intrinsic
and convective instabilities on SWBLI contributes to the understanding of transition in
experiments and flight tests.
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Figure 23. Shape of (a–f ) mode 1 and (g–l) mode 2 at λz/L = 0.055 coloured by the real parts of different
perturbation variables. The contour levels are evenly spaced between ±0.1 of the maximum amplitude.

Appendix. Shape of GSA modes 1 and 2 at λz/L = 0.055

Figure 23 presents the spatial structure of modes 1 and 2 at λz/L = 0.055 constructed by
the real parts of different perturbation variables.
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