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Alterations in intestinal microbiota composition and function have been linked to conditions
including functional gastrointestinal disorders, obesity and diabetes. The gut microbiome
encodes metabolic capability in excess of that encoded by the human genome, and bacte-
rially produced enzymes are important for releasing nutrients from complex dietary ingredi-
ents. Previous culture-based studies had indicated that the gut microbiota of older people
was different from that of younger adults, but the detailed findings were contradictory.
Small-scale studies had also shown that the microbiota composition could be altered by diet-
ary intervention or supplementation. We showed that the core microbiota and aggregate
composition in 161 seniors was distinct from that of younger persons. To further investigate
the reasons for this variation, we analysed the microbiota composition of 178 elderly sub-
jects for whom the dietary intake data were available. The data revealed distinct microbiota
composition groups, which overlapped with distinct dietary patterns that were governed by
where people lived: at home, in rehabilitation or in long-term residential care. These diet–
microbiota separations correlated with cluster analysis of NMR-derived faecal metabolites
and shotgun metagenomic data. Major separations in the microbiota correlated with selec-
ted clinical measurements. It should thus be possible to programme the microbiota to enrich
bacterial species and activities that promote healthier ageing. A number of other studies
have investigated the effect of certain dietary components and their ability to modulate
the microbiota composition to promote health. This review will discuss dietary interventions
conducted thus far, especially those in elderly populations and highlight their impact on the
intestinal microbiota.

Diet: Microbiota: Health: Ageing

Gut microbiota and its relevance for health

Until recently the human organism has been treated as
an exclusively eukaryotic metazoan, whereby the studies
of nutrition, health and non-infectious disease were chal-
lenging but well defined in terms of cells and external fac-
tors. A technological revolution spurred by innovations
in DNA sequencing technology after the Human
Genome Project ironically provided insights into the

complex community of bacteria that lives on and in the
human body. It has been estimated that these bacteria
outnumber human cells by a factor of 10 and human
genes by a factor of 100(1), and it is now widely accepted
that these bacterial communities co-evolved with human
subjects and other metazoans in a mutualistic if not truly
symbiotic way. The evidence for this stems from the link-
age of perturbed microbial communities with a range of
symptoms, pathophysiologies and diseases. A microbial
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mechanism that might be involved in multiple such con-
ditions is the documented ability of bacteria to convert
dietary ingredients into bioavailable and/or bioactive
metabolites, whose lack, due to altered microbiota, leads
to symptomology. This paradigm can have more subtle
long-term effects, including CVD, colorectal cancer and
malnutrition. Expressed most simply, health studies re-
stricted to diet and host alone have missed a major player
in a holistic understanding of how diet affects health and
disease. This review briefly summarises what we know
about the composition and function of the gut microbiota,
how it changes over the lifespan, how it relates to health
and disease, and how realistic it might be to accomplish
large-scale remodelling of the microbiota by dietary sup-
plementation, in order to improve health.

Gut microbiota and its development throughout life

The collection of bacteria in a particular environment or
site is termed the microbiota; the related and often con-
fused term ‘microbiome’ refers to the collection of
genes or coding capacity that a particular microbiota
harbours. As noted earlier, our knowledge of the
human microbiome and gut microbiome has expanded
dramatically in the past decade because of culture-
independent methodologies, whose main features and
appropriateness for different research questions were re-
cently reviewed(2). Although it is well established that
the mucosal and faecal microbiota differ in compo-
sition(3–5), most of our knowledge of gut microbiota is
actually derived from studying faecal samples, for prag-
matic reasons: colonoscopic biopsy sampling of healthy
individuals is not ethical, whereas faecal samples are
readily available. Estimates of the complexity of the fae-
cal microbiota vary somewhat depending on the analyti-
cal method used, and the bioinformatic processing of the
data, but the community is dominated by ten major divi-
sions or phyla(6), among which phylum Bacteroidetes and
phylum Firmicutes together often constitute more than
90 % of the total population(7,8). The other major phyla
are Proteobacteria, Actinobacteria, Verrucomicobia
and Lentisphaera(6–9) (see Fig. 1). Two archaeal species,
Methanobrevibacter smithii, predominantly, and
Methanosphaera stadtmanae, are present in proportions
not usually exceeding 1 % in total(10). Development of
lower error amplicon sequencing strategies for ribosomal
RNA genes has recently estimated that there are about
195 bacterial strains in the faecal gut microbiota, repre-
senting about 101 species(11). It has been proposed that
the gut microbiota of an individual can be assigned to
one of the three so-called enterotypes, Bacteroides,
Prevotella or Ruminococcus, depending on the abun-
dance of these microbial genera(12). There is some evi-
dence that rather than a single dominating microbial
type, microbiota datasets from large cohorts form gradi-
ents rather than discrete clusters(13,14).

Initial studies of the faecal microbiota focused primar-
ily on healthy adults and suggested that the dominant
organisms were stably maintained in individuals(15),
an observation that has recently been confirmed(11).

This stability only occurred if the subjects were not re-
ceiving antibiotic treatment, and independent studies
have amply demonstrated the significant alteration to
microbiota composition caused by antibiotic ther-
apy(16–18). Although the faecal microbiota composition
is stable in healthy adults, the two extremes of life, in-
fancy and old age, are characterised by a gut microbiota
in flux (reviewed also in(19)). Infants are born essentially
devoid of microbes, but are colonised by a series of
displacements and successions for the first 2 years of
life, until an adult-like microbiota has formed(20–23).
A distinguishing feature in the infant gut microbiota is
the predominance of phylum Actinobacteria, specifically
Bifidobacterium spp.(24). However, the neonatal gut
microbiota is very influenced by the mode of delivery,
whereby infants delivered by a caesarean section initially
have a gut microbiota more similar to the maternal skin
and physical surroundings than a vaginal microbiota(25).
There is considerable interest in the connection between
the composition of the infant gut microbiota and late-life
risk for asthma, allergy and autoimmune-type diseases
(reviewed in(26)), particularly because of the soaring
rate of births by caesarean section in many countries(27).
Also of particular interest is feeding modality, because
human milk oligosaccharides are optimally degraded
and metabolised by particular bifidobacteria present in
greater levels in healthy vaginally delivered infants(28),
supporting the link between breast-feeding and particular
bifidobacterial species and strains.

In old age, a process occurs that superficially resembles
a mirror image of neonatal gut colonisation. Culture-
dependent studies had suggested that the faecal micro-
biota of older subjects was different from that of younger
adults (summarised in(29)) but unifying trends in different
studies, in different countries, were not identified(30).
Although the proportion of Bacteroidetes appeared elev-
ated in some studies(31), it was reduced, and Bacteroides
species diversity was reduced, in others(32). Advancing
age in human subjects is often accompanied by frailty,
but also by persistent activation of the innate immune

Fig. 1. (colour online) Phylum-level composition of the human
adult faecal microbiota, derived from aggregated data of sixteen
healthy controls. Phylogenetic assignments were made using the
Ribosomal Database Project classifier as previously described(9).
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system, the so-called inflammaging, thatmay contribute to
frailty(33). It was therefore interesting that altered micro-
biota was reported in frail older subjects(34), although
the number of subjects was relatively small. Proportions
of lactobacilli were significantly depleted (twenty-sixfold),
while the abundance was also reduced for the Bacteroides/
Prevotella group (threefold) and the Faecalibacterium
prausnitzii group (fourfold)(34). Testing the hypothesis
that altered gut microbiota in the elderly might be asso-
ciated with health loss including frailty and inflammation
was one of the aims of the ELDERMET project in Cork,
Ireland (see later). Other groups using other culture-
independent methods have also identified differences be-
tween the gut microbiota of younger v. older subjects.
Rajilic-Stojanovic et al. reported increases in proportions
of Actinobacteria (Actinomycetes and Atopobium), strep-
tococci and lactobacilli in ten older subjects compared
with ten younger, and reductions in proteobacteria and
Bacteroides(6). The same phylogenetic microarray was
used by Biagi et al. to study microbiota changes in older
subjects and centenarians(35). In the cluster containing
the highest number of centenarians, the microbiota was
characterised by higher proportions of Proteobacteria
and Bacilli, and decreased levels of Clostridium cluster
XIVa bacteria. Decreased Bacteroides abundance was
not associated with ageing, and centenarians tended to
harbour Archaea more frequently than the elderly or
young adults(35).

Gut microbiota alterations in disease

One of the drivers for research into gut microbiota is the
fact that alterations in the normal composition or func-
tion have been linked to a wide range of diseases
(reviewed in(36,37)). It is beyond the scope of this review
todescribe indetail the evidence for these linkages.Thedis-
eases with the strongest evidence for microbiota linkages
include obesity (see later), inflammatory bowel disease
(IBD), type-2 diabetes, disease-related malnutrition, and
there is increasing evidence for a colorectal cancer linkage.
IBD can be described as an abnormal immune response to
normal gut bacteria, inwhich pre-disposing genetic factors
combinewith environmental factors(38,39). Themicrobiota
is different in IBD patients compared with controls(40,41),
and loss of F. prausnitzii, which ameliorates symptoms in
animal models of colitis(42), is a feature of the altered
microbiota of some IBD patients. Microbiota alterations
have been reported in type-2 diabetes(43,44), and although
mechanistic links have yet to be determined, it is relevant
that faecalmicrobiota transplantation has proven effective
for treating glucose insensitivity in patients withmetabolic
syndrome(45). Gordon and co-workers reported an in-
triguing synergy between a particular microbiota (asso-
ciated with the severe malnutritional wasting disease
Kwashiorkor) and environmental factors (nutrition and
disease burden) toproduce full symptomsof thedisease(46).
Colon cancer is the number two ranking cancer diagnosis
globally(47), and there is an emerging literature linking
the gut microbiota as a risk factor for colorectal cancer,
particularly Fusobacterium nucelatum(48–52). For this and

most of the other disease linkages, the precise microbial
species andmechanisms are unknown. Once they are iden-
tified, the potential for nutrition to modulate lifetime risk
for these diseases will be an exciting research endeavour.

The interaction of gut microbes with nutrition

The gut microbiota influences a number of nutrition-
related functions, from digestion and energy provision,
fermentation, lipid storage, to the production of specific
micronutrients (Fig. 2)(53). The preponderance of re-
search focus has concentrated on dietary carbohydrate
and lipid metabolism and their direct effects on the gut
microbiota, but the gut microbiota also contributes to
total host micronutrient production and status including
a number of essential B vitamins (including folate,
riboflavin, vitamin B12, niacin and pyridoxine(54)) and
vitamin K(55,56). In addition, other activities of the gut
microbiota may have indirect diet-dependent interac-
tions. For example, recent evidence suggests that differ-
ences in host genotype that affect the mucus
carbohydrate composition of the distal gut interact with
diet to alter the composition and function of resident
microbes in a diet-dependent manner(57).

The gut microbiota and its metabolic activities respond
to and alter according to habitual diet; this has been
shown across a number of population subgroups, includ-
ing the elderly. Age-related dietary changes can occur for
several reasons, including loss of oral mechanical func-
tion, taste and appetite. These changes may result in an
increased consumption of low-nutrient dense/high-fat/
sugar foods and a reduction in dietary intakes of plant-
based foods. The ELDERMET study recently reported
different intestinal microbial populations among those
aged over 65 years who consume a diet enriched in animal
products and food with high glycaemic index. These indi-
viduals contained a greater abundance of Bacteroides and
Alistipes species in their microbiota while those consum-
ing a healthier diet (high in plant-based foods) harboured
an abundance of bacteria from the genus Prevotella(58).

These findings are in agreement with other findings,
albeit in different population groups(59,60). In the
ELDERMET cohort, change of living environment from
community to long-term residential care was associated
with a dramatic change in dietary quality and diversity
(indicated by a low Healthy Food Diversity index) which
correlated with a subsequent reduction in gut microbiota
diversity. In addition, thosewith poorer dietary andmicro-
biota diversity had a concomitant decrease in functional
independence (i.e. theyweremore frail), theyhad increased
levels of serum cytokinemarkers of inflammation, lowered
concentrations of SCFA in their faeces, as well as negative
correlations with other clinical parameters(58).

Gut microbiota and lipid storage/metabolism

The gut microbiota is thought to influence lipid storage
by affecting nutrient acquisition and energy regulation
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of the host, thereby playing a role in the development
of obesity, insulin resistance and diabetes (for a detailed
review, see(61)). As a product of fermentation, some gut
microbes produce SCFA, which are important energy
sources for the host. SCFA have been shown to regulate
glucose homoeostasis by regulating the secretion of a num-
ber of gastrointestinal hormones including glucose-
dependent insulinotropic polypeptide, glucagon-like pep-
tide 1 (an incretin hormone, responsible for increased
insulin secretion)(62) and glucagon-like peptide 2, and pep-
tide YY(63). However, the molecular pathways underpin-
ning these beneficial effects of SCFA are largely
unknown. In addition, free fatty-acid receptors, located
on the colonic enteroendocrine L-cells known as free
fatty-acid receptor 2 and free fatty-acid receptor 3 (also
known as G-protein-coupled receptor (GPR)43 and
GPR41), are responsible for the release of glucagon-like
peptide 1 among other anorectic hormones(64). In
a recent study, Kimura et al.(65) showed that the SCFA
receptor GPR43 links the metabolic activity of the
gut microbiota with host body energy homoeostasis.
GPR43-deficient mice were obese on a normal diet,
whereas mice overexpressing GPR43 (and specifically
in adipose tissue) remained lean even when fed a high-fat
diet. A normal phenotype prevailed in those raised under
germ-free conditions or after antibiotic treatment; how-
ever, SCFA-mediated activation of GPR43-suppressed
insulin signalling in adipocytes, which inhibited lipid
accumulation in adipose tissue and promoted the
metabolism of unincorporated lipids and glucose in other

tissues. These findings establish GPR43 as a sensor for
excessive dietary energy, thereby controlling body energy
utilisation while maintaining metabolic homoeostasis.

There are three main theories as to how the microbiota
might be a determining factor for obesity: energy harvest,
signalling and inflammation–adipogenesis. The earliest
propounded of these theories was that the obesogenic
microbiota was characterised by an altered Firmicutes:
Bacteroidetes ratio. In fact, the contribution of various
bacterial groups to the development of obesity in human
subjects remains controversial with conflicting evidence
regarding the representation of Bacteroidetes in obese
and non-obese individuals. A study conducted with
obese and non-obese adults on low-energy diets revealed
that the relative proportion of Bacteroidetes was lower in
obese individuals compared with lean subjects(66).
However, a subsequent study byDuncan et al.(67) detected
no difference in the proportion of Bacteroidetesmeasured
in faecal samples from obese and lean individuals on
weight-loss diets but did note a reduction in butyrate pro-
ducing Firmicutes in obese subjects. In contrast, Schwiertz
et al.(68) found that the ratio of Firmicutes to Bacteroidetes
changed in favour of the Bacteroidetes in overweight and
obese subjects while recently Simoes et al.(69) showed that
intakes of energy,MUFA, n-3 PUFA, n-6 PUFA and sol-
uble fibre had significant associations with the stool bac-
terial numbers. In particular, increased energy intake
was associated with reduced faecal proportions of
Bacteroides spp. inmonozygous twins. Finally, a recent in-
terrogation of data from the Human Microbiome Project

Fig. 2. (colour online) Interaction between diet, gut microbiota and nutritional status (taken with
permission from(53)). LPS, lipopolysaccharide.
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and MetaHIT (an eight-country cooperation between
Europe and China investigating the role of the metagen-
ome in nutritional status and chronic disease risk) from
healthy and obese individuals confirmed differences in
phylum-level taxonomic composition variability between
lean and obese subjects but no association was found be-
tween BMI and taxonomic composition(70). The authors
concluded that the effect of the microbiome on obesity
may not, in fact be mediated through its taxonomic com-
position but rather its function, because a discrepancy
can exist between closely and distant-related taxa, at a
functional level. It is also important to note that the gut
microbiota is potentially variable in composition and
function and modifiable, depending on diet at the time of
analysis; therefore, transient changes in diet affect the
gut microbiota; however, longer term effects (of dietary
modulation on the gut microbiota) are largely unknown.
A10-ddietary intervention caused alteration in the superfi-
cial configuration of the microbiota but not in entero-
types(60), and short-term switch to solely plant or animal
diets caused similar general trends in Bacteroidetes and
Firmicute abundance(71).

While the role of the intestinal microbiota in the
aetiology of obesity has been elegantly demonstrated in
animal models, human studies as yet have failed to con-
comitantly support the notion of significant phylum-level
differences between obese and non-obese individuals and
conclude that microbiota variation alone is not likely to
cause obesity but overeating and disproportionate con-
sumption of certain food items has the potential to
alter the microbiota to one associated with increased en-
ergy harvest and reduced diversity. Although distinct
taxonomic profiles have been established for lean and
obese human in some populations, the relative contribu-
tions of the microbiota and diet to lean and obese pheno-
types are most likely multi-faceted and regulated by a
number of processes(72,73).

It is important to note that the comparison of mi-
crobial communities between seemingly disparate pheno-
type groups merely provides a descriptive platform and
cannot, at this point, infer causality. Notwithstanding
the primary influencing factors in relation to obesity
(diet, lifestyle and genetics), human metagenomic bio-
markers have shown much better discriminatory poten-
tial between lean and obese individuals compared to
human genome markers, which only show modest varia-
bility(74). In fact, the specific metagenomic species have
been identified which are associated with lower weight
gain(75). Furthermore, individuals with low bacterial
gene counts are associated with reduced bacterial diver-
sity, and increased inflammation and disease incidence
(including type-2 diabetes and IBD)(76). Therefore, low
bacterial gene richness may determine the efficacy of
dietary intervention in altering clinical phenotypes.

Gut microbiota and obesity/energy harvest

Evidence from animal models suggests that the micro-
biota is an important environmental factor effecting
energy harvest and storage. The aetiology of

microbiota-induced obesity was established by Backhed
et al.(77) who found that inoculation of germ-free mice
with conventional-raised mouse microbiota resulted in
insulin resistance and increased body fat despite reduced
food intake; this appeared to occur by promoting
monosaccharide absorption and inducing de novo hepatic
lipogenesis. Turnbaugh et al.(78) confirmed this obesity-
induced effect of transplantation of obese microbiota in
germ-free animals and concluded that the microbiota is
a significant contributing factor in the pathophysiology
of obesity. However, a later study investigating the influ-
ence of different diets (low-fat, high-fat and Western
diets) on body composition in germ-free and conven-
tional mice concluded that the absence of gut micro-
biota does not provide a general protection from
diet-induced obesity and that diet composition affects
gut microbial composition to a larger extent than pre-
viously thought(79).

Furthermore, evidence that diet plays a pivotal role in
the maintenance of a lean-type microbiota has previously
been established. Ridaur et al.(80) showed that the micro-
biota of obese mice could be transformed to that of lean-
counterparts by cohousing, resulting in phenotypic res-
cue. Transformation was primarily associated with in-
vasion by members of the Bacteroides species; a
decreased abundance of which has been associated with
increased energy harvest in human subjects(73) and obes-
ity(72,81,82). However, only a diet low in saturated fat and
high in fruit and vegetables was responsible for the main-
tenance of the lean phenotype, whereas those consuming
a diet high in saturated fat and low in fruit and vegetables
did not maintain the lean phenotype(80). Fleissner
et al.(79) also demonstrated alteration in the faecal micro-
biota composition of conventional mice fed high-fat and
Western diets, with the proportion of Firmicutes increas-
ing at the expense of the Bacteroidetes with both diets.
This infers a diet-dependent effect of successful micro-
biota transformation and establishes the transmissible
and modifiable interactions between diet and intestinal
microbiota and their influence on the host biology.

Gut microbiota, inflammation and adipogenesis

Low-grade, systemic inflammation, initiated by high-fat
feeding has been shown to alter the gut microbiota.
The first animal study to investigate the effect of high-
fat feeding on systemic endotoxemia was conducted by
Cani et al.(83) and identified plasma lipopolysaccharide
(LPS) as a major causative factor of systemic inflamma-
tion. In addition, this diet-induced increase in LPS ap-
peared to increase the proportion of LPS-containing
bacterial species in the gut. These findings suggest that
the bacterial LPS production could trigger metabolic dis-
eases characterised by insulin resistance and chronic low-
grade inflammation, including obesity and diabetes.

Endotoxemia, namely activation of host-derived
inflammatory mediators that induce systemic low-grade
inflammation, occurs in obesity, the source and mechan-
ism of which remains controversial. The gut microbiota
has been proposed as a source of endotoxin or LPS
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which by virtue of being a major component of the
Gram-negative bacterial cell wall could potentially influ-
ence intestinal permeability with changes in gut bacterial
composition(84). In addition, obese or diabetic subjects,
or individuals consuming a high-fat diet, have double
the circulating levels of serum LPS due to decreased alka-
line phosphatase activity (an enzyme involved in intesti-
nal LPS cleavage), increased chylomicron formation
and decreased gut barrier integrity(85). Such changes are
thought to activate the endocannabinoid system, which
consists of bioactive lipids that bind to cannabinoid
receptors and promote cell signalling (and are widely
expressed in tissues that control the energy balance, i.e.
pancreas, muscle, gut, adipose tissue, liver and hypo-
thalamus)(86). This system is thought to regulate gut
barrier function and energy homoeostasis(87) and is par-
ticularly sensitive to dietary fat levels; dysregulation is
thought to promote adipogenesis and obesity in patho-
logical situations(88,89) and may be directly associated
with specific changes in the composition of the gut
microbiota(87,90).

Prebiotic interventions in older people

Functional foods such as probiotics and prebiotics are
beneficial to the host by promoting health and preventing
disease(91). Probiotics are live microorganisms while pre-
biotics are non-digestible food ingredients which selec-
tively stimulate the growth and/or activity of one or a
limited number of bacteria in the colon(92). Prebiotics,
given their non-viable nature, offer some technological
advantages and may be simpler to exploit than ‘living’
probiotics, allowing them to be readily incorporated
into drinks, confectionary and a range of food products
where they are also used to replace sugar, and improve
texture and palatability(93). Their inclusion can also im-
prove the nutritional status of a product, e.g. the in-
clusion of inulin in the manufacturing of ice creams
and spreads results in a reduced fat content in the
finished product(92). These factors coupled with their
health benefits make prebiotics ideal components to in-
corporate into diets of target populations, from infants
to the elderly.

There has been a significant increase in the annual
publication rate of studies describing prebiotics and
their potential to improve health over the last 20 years,
investigating the effects on inflammation, immune sys-
tem, infections, blood lipids and mineral absorp-
tion(94,95). Many prebiotics have been investigated
because of their ability to cause a bifidogenic effect in
human subjects(96). Fermentation of prebiotics by some
microorganisms that are considered beneficial, such as
bifidobacteria and lactobacilli, indirectly leads to the pro-
duction of SCFA by other gut bacteria; these SCFA have
been shown to have both immunomodulatory and anti-
inflammatory effects(97).

Most prebiotic studies in human subjects have focused
on oligosaccharides and inulin, and so the effects
reported in elderly subjects are generally concerned
with these compounds. Inulin supplementation in a

study of constipated elderly subjects led to an increase
in faecal Bifidobacterium proportions, and also resulted
in a laxative effect when compared to lactose(98). A
study in France(99) observed increased bifidobacteria
and cholesterol excretion (in the stool) in an elderly
population receiving fructo-oligosaccharide; baseline
levels returned 4 weeks after the wash-out period.
Another study with fructo-oligosaccharide ingestion in
elderly nursing home patients confirmed its bifidogenic
effect and also reported a decrease in IL-6 mRNA in per-
ipheral blood monocytes, indicating its potential to influ-
ence the immune system(100). Effects in elderly subjects
receiving a galacto-oligosaccharide mixture showed an
increase in bifidobacteria levels, a decrease in
pro-inflammatory cytokine levels (IL-1b, IL-6 and
TNFα) and an increase in IL-10, an anti-inflammatory
cytokine(101). Some studies have indicated that prebiotics
such as fructo-oligosaccharide may also influence the
antibody response in healthy elderly subjects vaccinated
against influenza, but results are conflicting at present(94).

The potential positive effects of these prebiotics have
also been demonstrated in particular study populations.
For example, galacto-oligosaccharide has been shown
to relieve symptoms of people suffering from irritable
bowel syndrome,(102) while also positively influencing
the microbiota and immune function in overweight
adults(103).

Dietary supplementation with wheat dextrin in criti-
cally ill jejunal-fed patients (including some elderly sub-
jects) was shown to modulate the microbiota and
increase SCFA even in the presence of antibiotics and
other medications(104). Although further studies need to
be carried out, this offers huge potential in reducing
the risk of diarrhoea and counteracting the effects of
antibiotics.

There are a number of other potential prebiotic com-
pounds that have recently been studied in non-elderly
subjects which may have potential in the older age
group. Novel fibres such as polydextrose and soluble
maize fibre can modulate the gut microbiota with
increases in the populations of Faecalibacteria for both
fibres, and with an increase in Lactobacilli in human sub-
jects who consumed soluble maize fibre (105). Animal stu-
dies have identified candidates for further investigation,
e.g. arabinoxylan that was shown to increase proportions
of Bifidobacteria, Bacteroides–Prevotella and Roseburia
in obese mice on a high-fat diet, thus conferring both
anti-obesity and health benefits(106). Resistant starch
has been shown to modulate the microbiota in human
subjects (including some elderly subjects)(107) and in
pigs, with an increase in faecal SCFA levels also being
observed in the latter(108). Potential anti-cancer effects
have been reported in a number of animal studies includ-
ing rats with colorectal cancer which received a resistant
starch type 3 (Novelose 330)(109). While trials using an-
imal models are an acceptable first step towards identify-
ing dietary candidates for further investigation, it must
be acknowledged that this may not necessarily translate
in a (young or old) human situation(93).The above ingre-
dients all require further investigation to confirm their
beneficial effects and suitability in an elderly population.
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Furthermore, the extensive inter-individual variation in
gut microbiota composition which exists between similar
population sub-groups(40,70), including the elderly(9,58)

suggests that the response to prebiotic supplementation
may be equally varied. The initial gut microbiota compo-
sition is evidently important as certain dominant bac-
terial groups are known to be more nutritionally
versatile(110) and individuals who harbour such bacteria
have previously been reported as ‘non-responders’(96,111).
Therefore, studies to establish whether a reduced diver-
sity microbiota can be rescued by dietary intervention
and thus impact health are warranted. In addition, be-
cause individual prebiotics promote various specific indi-
vidual bacterial species, the effect of combined prebiotic
intervention on ‘health-promoting’ plyla are required.
Furthermore, the timeframe required to modulate key
health-related bacterial species, at an individual level, is
unknown and unlikely to be uniform.

Knowledge gaps/challenges for dietary modulation of the
microbiota in older people

Although several studies ((30,58)) have examined the gut
microbiota in elderly populations, defining it is still a
challenge given the difficulty in comparing individual
studies, country effect, inter-individuality and the vari-
ation in age of which the elderly study population is
set(112). The influence of ageing on bacterial populations,
e.g. Bacteroides is difficult to determine given the effect
of other factors such as antibiotics treatment and hospi-
talisation which need to be considered(113). In fact, dis-
ruption of the gut microbiota with oral antibiotics
often precedes the emergence of several enteric patho-
gens. Recent evidence suggests that gut mucosal carbo-
hydrates (e.g. fructose and sialic acid) can be released
and catabolised by the resident microbiota in the pres-
ence of antibiotic-associated pathogens (including
Salmonella and Clostridium difficile) and can influence
their competitiveness and expansion within the gut(114).
These findings may have implications for designing new
therapies for the prevention of antibiotic-associated
pathogenic infection.

Understanding the relationship between ageing and
gut microbiota will require longitudinal, multicentre stu-
dies with larger populations using standardised proce-
dures and methods of analysis to allow direct
comparison, eliminate discrepancies or identify true vari-
ation. This is also the case for identifying future nu-
tritional products which can promote healthy ageing.
While a number of studies examining the effect of dietary
interventions have been carried out in human subjects
(with a limited number in elderly subjects), interpreting
the outcome is difficult for a number of reasons includ-
ing: use of a small study population, lack of a placebo,
duration of the intervention and study design(115). The
dose-effect and establishing a minimum effective dose is
difficult when both variation between studies and dose
rates exist(116). Inter-individual variability of a response
can also occur, e.g. increased Bifidobacterium abundance
and decreased bacteroides abundance were not observed

following a galacto-oligosaccharide treatment which in-
cluded elderly subjects(117). The choice of a particular
form of prebiotic could be crucial in certain instances if
it is to be effective, e.g. the chain length of arabinoxylan
determines the intestinal site of fermentation, and thus
the influence on bacterial populations and resulting
SCFA levels is modulated(118). Resistant starch types 2
and 4 have different effects on microbiota composition
because of their accessibility to the bacteria due to their
chemical structures(119). In addition, nutrient stores avail-
able to the gut microbiota that may influence the effects
of dietary interventions designed to modulate the gut mi-
crobial profile warrant further investigation.

As prebiotics are classed as food substances rather
than medications by the Food and Drugs Authority
(USA), the requirements for manufacturers to conduct
large-scale, placebo-controlled trials is small compared
to clinical trials of a medicinal product where hundreds
of subjects are recruited at a huge cost. However, it is im-
portant to note that if a functional claim is to be made
for supposedly beneficial prebiotic foods/ingredients,
they must demonstrate a positive health effect and not
just alter the microbiota composition to be considered
therapeutic(120). To date the majority of research on func-
tional foods has mainly focused on the probiotics
Bifidobacteria and Lactobacilli(121) and prebiotics oligo-
saccharides and inulin(122). However, considering our in-
creasing knowledge of the gut microbiota (and the range
of species present) other potential contenders such as
F. prausnitzii (e.g. as a treatment for Crohn’s disease(42))
are emerging. The development of these functional food
ingredients is a personalised healthcare strategy where
the effectiveness of the product is consumer dependent,
e.g. a prebiotic that promotes a particular bacterium is
useless unless the organism is present in the host. It is
also important for elderly and unwell populations in par-
ticular that frailty, diseases and medications are con-
sidered to prevent any adverse effects, highlighting the
need for well designed, intervention trials.

Conclusions

While research indicates reduced intestinal microbiota
diversity particularly with advancing years and with
reduced dietary diversity, it is important that future re-
search should focus not only on establishing the core
gut microbiota in elderly subjects, but also on the impact
of long-term dietary intervention on microbiota modifi-
cation. While we await clarification from intervention
studies as to whether a reduced diversity microbiota
can be rescued and modified such that it can promote
and support better health outcomes in elderly popula-
tions, further studies on the elderly gut metagenomic
capacity and function are required to identify important
bacterial species to target for health promotion. Our
expanding knowledge of gut microbiota, its influence
on health and ageing is of global importance given that
22 % (2 billion) of the population will be aged 60 years
and over by 2050 according to the WHO. The develop-
ment of nutritional products (e.g. prebiotics) which can
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improve overall health through influencing the gut micro-
biota and its effects such as disease prevention and
improved immune function will lead to a reduction in
hospitalisation, drug intake and financial savings in the
healthcare sector. This is an exciting and challenging
time for all involved; however, as research continues to
examine the interaction between dietary ingredients, the
microbiota and influence on health, the key elements
leading to the successful development of such nutritional
products lie in comprehensive research which is soundly
designed and executed thereby removing any ambiguity
in the interpretation of results.
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