Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-30T22:53:03.303Z Has data issue: false hasContentIssue false

1 - Megafans as Major Continental Landforms

from Part I - Introduction

Published online by Cambridge University Press:  30 April 2023

Justin Wilkinson
Affiliation:
Texas State University, Jacobs JETS Contract, NASA Johnson Space Center
Yanni Gunnell
Affiliation:
Université Lumière Lyon 2
Get access

Summary

Discovery of the significance of fluvial megafans came about in the mid to late twentieth century. We suggest reasons why appreciation of their existence came late in the history of Earth science, even after the advent of space-based observation of planetary landscapes. The reasons are partly cultural: megafans are uncommon in the historic cradles of modern geology (Europe, North America). Reasons are also partly theoretical: rivers have been conceptualised chiefly as sediment bypass systems terminating in deltas, rather than as aggradational systems in their own right. Reasons are also perceptual: just as the megaflood origin of channeled scablands was held in disbelief, the inordinate size of megafans has stood in the way of accepting (i) the sheer magnitude of their unit-size and also (ii) their existence as active systems in modern landscapes, rather than just as stratigraphic features in the rock record. Post-1990, scientific activity around megafans accelerated and involved global mapping, classification, and regional investigations into patterns and processes. An overview of this take-off period is provided as a partial introduction to the remaining 17 chapters of this book, which are briefly outlined.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashworth, P. J. and Lewin, J. (2012). How do big rivers come to be different? Earth-Science Reviews, 114, 84107.CrossRefGoogle Scholar
Assine, M. L. (2005). River avulsions on the Taquari megafan, Pantanal wetland, Brazil. Geomorphology, 70, 357371.CrossRefGoogle Scholar
Assine, M. L., Corradini, F. A., Pupim, F. N., and McGlue, M. M. (2014). Channel arrangements and depositional styles in the São Lourenço fluvial megafan, Brazilian Pantanal wetland. Sedimentary Geology, 301, 172184.CrossRefGoogle Scholar
Astini, R. A., Martini, M. A., Oviedo, N. d. V., and Álvarez, A. (2018). El paleocañon de Tuc Tuca (Cordillera Oriental, Noroeste argentino); reconocimiento de una “zona de traspaso sedimentario” Cenozoic entre el interior cordillerano y un megaabanico en la región subandina. Revista de la Asociación Geológica Argentina, 75, 482506.Google Scholar
Baker, V. R. (1978). The Spokane flood controversy. In Baker, V. R., and Nummedal, D., eds., The Channeled Scabland, A Guide to the Geomorphology of the Columbia Basin. NASA, Washington, D.C., 316.Google Scholar
Barnes, J. B. and Heins, W. A. (2009). Plio-Quaternary sediment budget between thrust belt erosion and foreland deposition in the central Andes, southern Bolivia. Basin Research, 21, 91109.CrossRefGoogle Scholar
Blair, T. C. and McPherson, J. G. (2009). Process and forms of alluvial fans. In Parsons, A. J., and Abrahams, A.D., eds, Geomorphology of Desert Environments. Springer, Berlin, 2nd edn., 354402.Google Scholar
Borsy, Z. (1990). Evolution of the alluvial fans of the Alföld. In Rachocki, A. H., and Church, M., eds., Alluvial Fans: A Field Approach. Wiley, Chichester, 229248.Google Scholar
Bretz, J. H. (1923). The channeled scabland of the Columbia plateauJournal of Geology, 31, 617649.CrossRefGoogle Scholar
Burr, D. M., Baker, V. R., and Carling, P. A., eds. (2009). Megaflooding on Earth and Mars. Cambridge University Press, Cambridge, 330 pp.Google Scholar
Cafaro, E., Latrubesse, E., Ramonell, C., and Montagnini, M. D. (2010). Channel pattern arrangement along Quaternary fans and mega-fans of the Chaco plain, central South America. In Garcia, M., Latrubesse, E., and Perillo, G., eds., River Coastal and Estuarine Morphodynamics, Vols. 1 and 2, CRC Press, Netherlands, 349354.Google Scholar
Cooke, R. U., Warren, A., and Goudie, A. S. (2006). Desert Geomorphology, University College London Press, London, 2nd edn, 526 pp.Google Scholar
Cordini, R. (1947). Los Ríos Pilcomayo en la Región del Patiño. Anales I, Dirección de Minas y Geología (Buenos Aires), 82 pp.Google Scholar
Fielding, C. R., Ashworth, P. J., Best, J. L., Prokocki, E. W., and Sambrook Smith, G. H. (2012). Tributary, distributary and other fluvial patterns: What really represents the norm in the continental rock record? Sedimentary Geology, 261–262, 15–32.CrossRefGoogle Scholar
Gallais, J. (1967). Le delta intérieur du Niger et ses bordures, étude morphologique. Paris, Éd. du CNRS, 155 pp. (with 1:200 000 scale geomorphological maps).Google Scholar
Geddes, A. (1960). The alluvial morphology of the Indo-Gangetic plains. Transactions of the Institute of British Geographers, 28, 253276.Google Scholar
Gohain, K., Parkash, B. (1990). Morphology of the Kosi megafan. In Rachocki, A. H., and Church, M., eds., Alluvial Fans: A Field Approach. Wiley, Chichester, 151178.Google Scholar
Goodbred, S. L. (2003). Response of the Ganges dispersal system to climate change: a source-to-sink view since the last interstade. Sedimentary Geology, 162, 83104.Google Scholar
Gulliford, A. R., Flint, S. S., and Hodgson, D. M. (2014). Testing applicability of models of distributive fluvial systems or trunk rivers in ephemeral systems: reconstructing 3D fluvial architecture in the Beaufort Group, South Africa. Journal of Sedimentary Research, 84, 11471169.Google Scholar
Gupta, S., Collier, J. S., Garcia-Moreno, D., et al. (2017). Two-stage opening of the Dover Strait and the origin of island Britain. Nature Communications, DOI: 10.1038/ncomms15101.CrossRefGoogle Scholar
Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Warwick, G. L. (2010a). Large distributive fluvial systems: characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167183.Google Scholar
Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Scuderi, L. A. (2010b). Fluvial form in modern continental sedimentary basins: distributive fluvial systems: reply. Geology, 38, e231.CrossRefGoogle Scholar
Hashimoto, A., Oguchi, T., Hayakawa, Y., et al. (2008). GIS analysis of depositional slope change at alluvial-fan toes in Japan and the American Southwest. Geomorphology, 100, 120130.CrossRefGoogle Scholar
Horton, B. K. and DeCelles, P. G. (1997). The modern foreland basins system adjacent to the Central Andes. Geology, 25, 895898.2.3.CO;2>CrossRefGoogle Scholar
Horton, B. K. and DeCelles, P. G. (2001). Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: implications for drainage network evolution in fold-thrust belts. Basin Research, 13, 4363.Google Scholar
Iriondo, M. H. (1984). The Quaternary of northeastern Argentina. Quaternary of South America, 2, 5178.Google Scholar
Iriondo, M. H. (1987). Geomorfolgía y Cuaternario de la Provincia Santa Fé (Argentina). D’Orbignyana (Corrientes, Argentina), 4, 54 pp.Google Scholar
Iriondo, M. (1993). Geomorphology and late Quaternary of the Chaco (South America). Geomorphology, 7, 289303.CrossRefGoogle Scholar
Klammer, G. (1982). Die Palaeowüste des Pantanal von Mato Grosso und die pleistozäne Klimageschichte des brasilianischen Randtropen. Zeitschrift für Geomorphologie, 26, 393416.Google Scholar
Klausen, T. G., Ryseth, A. E., Helland-Hansen, W., Gawthorpe, R., and Laursen, I. (2014). Spatial and temporal changes in geometries of fluvial channel bodies from the Triassic Snadd Formation of offshore Norway. Journal of Sedimentary Research, 84, 567585.CrossRefGoogle Scholar
Latrubesse, E. (2002). Evidence of Quaternary paleohydrological changes in middle Amazonia: the Aripuanã/Roosevelt and Jiparana fans. Zeitschrift für Geomorphologie, 129, 6172.Google Scholar
Latrubesse, E. M. (2015). Large rivers, megafans and other Quaternary avulsive fluvial systems: A potential ‘who’s who’ in the geological record. Earth-Science Reviews, 146, 130.Google Scholar
Latrubesse, E., Cozzuol, M., Rigsby, C., et al. (2010). The Late Miocene paleogeography of the Amazon basin and the evolution of the Amazon River. Earth-Science Reviews, 99, 99124.Google Scholar
Latrubesse, E., Stevaux, J. C., Cremon, S., et al. (2012). Late Quaternary megafans, fans and fluvio–aeolian interactions in the Bolivian Chaco, Tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 75–88Google Scholar
Lecce, S. A. (1990). The Alluvial fan problem. In Rachoki, A. H. and Church, M., eds., Alluvial Fans: A Field Approach. Wiley, Chichester, 151178.Google Scholar
Leier, A. L., DeCelles, P. G., and Pelletier, J. D. (2005). Mountains, monsoons, and megafans. Geology, 33, 289292.CrossRefGoogle Scholar
McCarthy, T. S. (2013). The Okavango Delta and Its Place in the Geomorphological Evolution of Southern Africa. South African Journal of Geology, 116, 154.Google Scholar
McCarthy, T. S. and Cadle, A. B. (1995). Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages – Discussion. Journal of Sedimentary Research, A65, 581583.CrossRefGoogle Scholar
Miall, A. D. (1996). The Geology of Fluvial Deposits. Springer, New York, 582 pp.Google Scholar
Miall, A. D. (2014). Fluvial Depositional Systems. Springer, New York, 316 pp.Google Scholar
Miall, A. D., Holbrook, J. M., and Bhattacharya, J. P. (2021). The stratigraphic machine. Journal of Sedimentary Research, 91, 595610.Google Scholar
Mohindra, R., Parkash, B., and Prasad, J. (1992). Historical geomorphology and pedology of the Gandak megafan, middle Gangetic plains, India. Earth Surface Processes and Landforms, 17, 643662.Google Scholar
Owen, A., Nichols, G. J., Hartley A. J., Weissmann, G. S., and Scuderi L. A. (2015). Quantification of a distributive fluvial system: the Salt Wash DFS of the Morrison Formation, SW U.S.A. Journal of Sedimentary Research, 85, 544561.CrossRefGoogle Scholar
Parkash, B., Awasthi, A. K., and Gohain, K. (1983). Lithofacies of the Markanda terminal fan, Kurukshetra district, Haryana, India. International Association of Sedimentology, Special Publication, 6, 337344.Google Scholar
Pearce, F. (2013). The Land Grabbers: The New Fight Over Who Owns the Earth. Beacon Press, Boston, 336 pp.Google Scholar
Plink-Björklund, P. (2015). Morphodynamics of rivers strongly affected by monsoon precipitation: Review of depositional style and forcing factors. Sedimentary Geology, 323, 110147.Google Scholar
Richards, K., Chandra, S., and Friend, P. (1993). Avulsive channel systems: characteristics and examples. In Best, J. L. and Bristow, C. S., eds., Braided Rivers. Geological Society of London, Special Publication, 75, 195203.Google Scholar
Rosetti, D. F., Zani, H., and Cremon, E. H. (2014). Fossil megafans evidenced by remote sensing in the Amazonian wetlands. Zeitschrift für Geomorphologie, 58, 145161.CrossRefGoogle Scholar
Sáez, A., Anadón, P., Herrero, M. J., and Moscariello, A. (2007). Variable style of transition between Palaeogene fluvial fan and lacustrine systems, southern Pyrenean foreland, NE Spain. Sedimentology, 54, 367390.Google Scholar
Saito, K. (2003). Model of Alluvial Fan Development Based on Channel Pattern and Gravel Size. Report of Research Project, Grant-in-Aid for Scientific Research, 138 (in Japanese).Google Scholar
Saito, K. and Oguchi, T. (2005). Slope of alluvial fans in humid regions of Japan, Taiwan and the Philippines. Geomorphology, 70, 147162.Google Scholar
Sambrook Smith, G. S., Best, J. L., Ashworth, P. J., et al. (2010). Fluvial form in modern continental sedimentary basins: distributive fluvial systems: comment. Geology, 38, e230.Google Scholar
Schumm, S. A. (1977). The Fluvial System. Wiley, New York, 338 pp.Google Scholar
Shukla, U. K., Singh, I. B., Sharma, M., and Sharma, S. (2001). A model of alluvial megafan sedimentation: Ganga Megafan. Sedimentary Geology, 144, 243262.Google Scholar
Singh, H., Parkash, B., and Gohain, K. (1993). Facies analysis of the Kosi megafan deposits. Sedimentary Geology, 85, 87113.Google Scholar
Sinha, R. and Friend, P. F. (1994). River systems and their sediment flux, Indo-Gangetic plains, Northern Bihar, India. Sedimentology, 41, 825845.CrossRefGoogle Scholar
Sounny-Slitine, M. A. and Latrubesse, E. M. (2014). Defining fluvial megafans through geomorphic mapping and metrics. American Geophysical Union Fall Meeting, 2014, Abstract EP51D-3551. https://ui.adsabs.harvard.edu/abs/2014AGUFMEP51D3551S/abstractGoogle Scholar
Souza, O. C., Araujo, M. R., and Mertes, L. A. K. (2002). Form and process along the Taquari River alluvial fan, Pantanal, Brazil. Zeitschrift für Geomorphologie, 129, 73107.Google Scholar
Stanistreet, I. G. and McCarthy, T. S. (1993). The Okavango fan and the classification of subaerial fan systems. Sedimentary Geology, 85, 115133.Google Scholar
Trendell, A. M., Atchley, S. C., and Nordt, L. C. (2013). Facies analysis of a probable large-fluvial-fan depositional system: the Upper Triassic Chinle Formation at Petrified Forest National Park, Arizona, U.S.A. Journal of Sedimentary Research, 83, 873895.Google Scholar
Tricart, J. (1982). El Pantanal: un ejemplo del impacto geomorfologico sobre el ambienteInvestigaciones Geográficas, 29, 8197.Google Scholar
Tricart, J., Frécaut, R., and Pagney, P. (1984). Le Pantanal (Brésil) : étude écogéographique. Travaux et Documents de Géographie Tropicale, Bordeaux, 52, 92 pp.Google Scholar
Urvoy, Y. (1942). Les bassins du Niger : étude de géographie physique et de paléogéographie. Larose, Paris, 134 pp.Google Scholar
Valente, C. and Latrubesse, E. (2012). Fluvial archive of peculiar avulsive fluvial patterns in the largest intracratonic basin of tropical South America: the Bananal basin, central Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 356, 62–74.Google Scholar
Weissmann, G. S., Hartley, A. J., Nichols, , et al. (2010). Fluvial form in modern continental sedimentary basins: distributive fluvial systems. Geology, 38, 3942.Google Scholar
Weissmann, G. S., Hartley, A. J., Nichols, G. J., et al. (2011). Alluvial facies distributions in continental sedimentary basins—distributive fluvial systems. In S. K. Davidson, S. Leleu, and North, C.P., eds., From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent Interpretation. SEPM Special Publication, 97, 327355.Google Scholar
Weissmann, G. S., Hartley, A. J., Scuderi, L. A., et al. (2015). Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review. Geomorphology, 250, 187219.Google Scholar
Wells, N. A. and Dorr, J. A. (1987a). Shifting of the Kosi River, northern India. Geology, 15, 204207.Google Scholar
Wells, N. A. and Dorr, J. A. (1987b). A reconnaissance of sedimentation on the Kosi alluvial fan of India, In Ethridge, F. G., Flores, R. M., and Harvey, M. D. eds., Recent Developments in Fluvial Sedimentology. Society of Economic Palaeontologists and Mineralogists, Special Publication, 39, 5161.Google Scholar
Wilkinson, M. J. (2001). Where large fans form: interim report of a global survey. 7th International Conference on Fluvial Sedimentology, Program and Abstracts, University of Nebraska-Lincoln, Lincoln, Nebraska (USA), 6–10 August 2001, p. 282. (University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources, Conservation and Survey Division, Open-file Report 60).Google Scholar
Wilkinson, M. J. (2005). Large fluvial fans and exploration for hydrocarbons. NASA Tech Briefs 29, 64 [NASA Tech Briefs Online, No. MSC-23424 www.nasatech.com/Briefs/ps.html 30 March 2004].Google Scholar
Wilkinson, M. J. (2006). ‘Method for Identifying Sedimentary Bodies from Images and Its Application to Mineral Exploration’ – US Patent Office, #6,851,606, issue date 01/10/2006.Google Scholar
Wilkinson, M. J., Cameron, N. R., and Burke, K. (2002). Global geomorphic survey of large modern subaerial fans. Houston Geological Society Bulletin, 44, 1113.Google Scholar
Wilkinson, M. J., Marshall, L. G., and Lundberg, J. G. (2006). River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. Journal of South American Earth Sciences, 21, 151172.Google Scholar
Wilkinson, M. J., Marshall, L. G., Lundberg, J. G., and Kreslavsky, M. H. (2010). Megafan environments in northern South America and their impact on Amazon Neogene aquatic ecosystems. In Hoorn, C., Wesselingh, F. P., eds., Amazonia, Landscape and Species Evolution: A Look into the Past. Blackwell, London, 162184.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×