
Currently, mapping genes for complex human traits
relies on two complementary approaches, linkage

and association analyses. Both suffer from several
methodological and theoretical limitations, which can
considerably increase the type-1 error rate and
reduce the power to map human quantitative trait loci
(QTL). This review focuses on linkage methods for
QTL mapping. It summarizes the most common
linkage statistics used, namely Haseman–Elston-
based methods, variance components, and statistics
that condition on trait values. Methods developed
more recently that accommodate the X-chromosome,
parental imprinting and allelic association in linkage
analysis are also summarized. The type-I error rate
and power of these methods are discussed. Finally,
rough guidelines are provided to help guide the
choice of linkage statistics.

Linkage analysis is one of two complementary strate-
gies currently used for gene-mapping, the other being
association analysis. Broadly speaking, linkage is
designed to localize a region of the genome where a
locus or loci that regulate the expression of a trait
may be harbored. Typically, this region of linkage is
broad and includes many different genes. By contrast,
association has a higher resolution and it is designed
to identify the causal gene(s) within the linkage
region. Following an overview of the principles
behind linkage analysis, this review summarizes the
theory of common non-Bayesian statistics that test
linkage between genetic loci and any human trait
measured on a continuous scale. For convenience, the
linkage statistics reviewed here are discussed under
four groups. The first two groups of methods,
Haseman–Elston and variance components, are the
most popular approaches to linkage analysis; these
statistics model the phenotypes of relatives condi-
tional on the genotypic information available. In the
following section, the third group of statistics reverses
this approach, treating the genotypes as the depen-
dent variable and the phenotypes as the independent
variable. Finally, the fourth group summarizes addi-
tional common statistics which are implemented in
popular linkage software packages or that have been

developed more recently to incorporate specific
effects, such as parental imprinting and allelic associa-
tion. In the final section, the type-1 error rate and
power of these methods are discussed.

1. Principles of Linkage Analysis
Mapping Trait Loci Through Linkage Requires Genetic Markers

Consider that Lt is a trait locus — for example, a
sequence of DNA which codes for a protein that influ-
ences an observable trait. Assume that this locus exists
but there is no information regarding its DNA
sequence or location. The aim of linkage analysis is to
localize the region where this unknown DNA sequence
lies in the human genome. Now let Lmi represent i
marker loci — that is, known sequences of DNA which
may or may not code for functional proteins — evenly
distributed across the genome, covering all 22 auto-
somes and the X-chromosome. Linkage analysis
consists of estimating the genetic distance (or the
recombination fraction) between our trait locus and
each of these genetic markers. As we scan the entire
genome, we will eventually find a group of markers
which give low recombination fractions with our trait
locus, that is, which are in close proximity to it. The
feasibility of such approach in humans was only made
possible after the recognition of naturally occurring
DNA sequence variation (Botstein et al., 1980). 

Parametric Linkage Analysis

In the example described above, Lt and Lm were both
genetic loci. The aim of linkage is to estimate the
recombination fraction (θ) between Lt and Lm: if the
loci are not linked, θ = 0.5 (i.e., meiosis results on
average in 50% recombinant gametes and 50% nonre-
combinant gametes for Lt and Lm), if they are linked θ
< 0.5 (i.e., meiosis results on average in less than 50%
recombinant gametes). In practical terms, however, we
have direct measured data for each individual in our
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sample for Lm but not for Lt. As a proxy for Lt, we
measure an affection status or a quantitative value
which we hypothesize Lt is controlling (Phe, Figure 1).

If Phe reflects closely the underlying genotype Lt,
as it is the case with Mendelian traits, then we can
determine a person’s genotype at Lt by inspection of a
family pedigree with phenotypic data. The test for
linkage then becomes a question of estimating the
recombination fraction between an observed Lm and
an inferred Lt (Box 1, A). 

In practical terms, this consists of counting for
each individual of a pedigree the number of recombi-
nant and nonrecombinant gametes produced for Lm

and Lt. This is intuitive if an individual is both infor-
mative for linkage and phase known. An individual is
said to be informative for linkage if the individual’s
genotype is known and it is doubly heterozygous.
Additionally, an individual is said to be phase known
if it is possible to determine the ancestral origin of
each allele, that is, if it is possible to reconstruct the
haplotype of that individual. 

No linkage information can be extracted from a
family which does not include any individual infor-
mative for linkage. However, a family can still be used
for analysis if informative individuals are present but
their phase is unknown (Box 1, B). In this case, evi-
dence for linkage between A and L is assessed by
calculating the overall likelihood of the pedigree
under two alternate hypotheses, that the loci are
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Figure 1
Parametric and nonparametric approaches to linkage analysis.
The parametric approach infers the genotypes of individuals at a trait locus (Lt) based on the observed phenotypes (Phe) and on the specification of
a specific model of inheritance. Then, the test for linkage consists of estimating the recombination fraction between the marker locus (Lm) and the Lt.
In contrast, the nonparametric approach assesses the correlation between the observed genotypic data at Lm and the observed phenotypic data
(Phe). If Lt truly regulates the expression of Phe, then two individuals with the same phenotype are expected to have similar genotypic data at a
close marker Lm, or vice versa. The test for linkage thus consists in comparing genotypic and phenotypic similarity between related individuals.
A represents additive genetic factors, D dominance genetic factors, C common environmental factors and E specific environmental factors.
Adapted with permission from Weiss and Terwilliger (2000).
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linked (with recombination fraction = θ) or that they
are not linked (recombination fraction = 0.5). The
ratio of these two likelihoods gives the odds of
linkage, that is, how more likely the pedigree is under
a model of linkage when compared to a model assum-
ing no linkage. The logarithm of the odds is called the
LOD score (Morton, 1955), 

[1]

where X represents the pedigree structure and θ the
recombination fraction between the marker locus and
the trait locus. Being a function of the recombination
fraction, LOD scores are calculated for a range of θ
values (Box 1, C). The value of θ that gives the
highest LOD score is the most likely recombination
fraction between both loci. Traditionally, the level of
significance required is set at a LOD score of 3. This
is the logarithm of the likelihood ratio (1000) that is
necessary to convert the odds in favor of linkage from
1:50 (prior probability) to 20:1, the latter corre-
sponding to the conventional 0.05 threshold for
statistical significance (Lander & Kruglyak, 1995;
Ott, 1991). This is the typical parametric approach
used to map Mendelian disease genes, where the rela-
tionship between genotype and phenotype is usually
simple. The limitation is that it requires the knowl-
edge of the underlying genetic model, namely the
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mode of genetic inheritance, gene frequencies and
penetrance of each genotype.

Nonparametric Linkage Analysis

Parametric linkage analysis requires the specification
of a precise genetic model. To some extent, this limits
this type of analysis to discrete traits with Mendelian
inheritance. However, many discrete traits (for
example, diabetes, atopy) and certainly most continu-
ous traits (e.g., height, eosinophil levels) may involve
the action of multiple genes: they are said to have a
complex mode of inheritance. In this case, specifying

a genetic model becomes less tractable and linkage
analysis must revert to model-free methods. 

There are two types of model-free approaches to
linkage analysis. The first type of approach, known as
parametric model-free, retains the parametric frame-
work in the sense that it specifies a genetic model,
though this is only an approximation to reality. Since
the true disease model is typically unknown, the alter-
natives are either to assume a particular genetic model
even though this may be the wrong model (e.g.,
Clerget-Darpoux et al., 1986; Tiwari et al., 1980) or
to conduct the analysis under multiple models, so that
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Box 1
Parametric linkage analysis. Estimating the recombination fraction between a marker locus and a disease locus. 
A Pedigree with 3 founders and 7 nonfounders, all genotyped for a genetic marker A and phenotyped for an autosomal dominant disease. The
evidence for linkage provided by this pedigree consists in counting the proportion of recombinant and nonrecombinant gametes produced by
informative individuals and testing if it is different from 0.5. Of the four gamete-producing individuals of this pedigree, only individual II1 is informative
for linkage: she is heterozygous for both the marker locus and the disease locus. Additionally, she is phase-known, since we know that she inherited
alleles  A1 and L1 from the mother and A2L2 from the father; thus, her haplotype can be reconstructed as A1L1/A2L2. The question is now simply to count
the number of recombinant and non-recombinant gametes that individual II1 produced. There are four possible gametes: A1L1, A2L2, A1L2 and A2L1.
The first two are nonrecombinants, whereas the latter two are recombinants. By inspection of the generation III, we conclude that individual II1

produced 5 nonrecombinant gametes (three A1L1 and two A2L2) and only 1 recombinant gamete (A2L1). The recombination fraction between A and L
is therefore 1 in 6 gametes, i.e. θ = 0.17. B The same pedigree as in A, but with no genotypic data for the grandparents. In this case, individual II1

is still informative for linkage but she is now phase-unknown. As a result, it is not possible to identify recombinants in generation III
unambiguously and count them: there are either 1 or 5 recombinants in generation III. In this situation, assessing evidence for linkage requires
likelihood-based methods. If the loci are truly linked, with recombination fraction θ, the probability of a gamete being recombinant is θ and the
probability of it being nonrecombinant is 1-θ. Thus, the likelihood of observing 1 recombinant and 5 nonrecombinant gametes is θ1.(1 – θ)5; in the
same way, the likelihood of observing 5 recombinants and 1 nonrecombinant is θ5.(1 – θ)1. Since both these possibilities are equally likely
(individual II1 is either A1L1/A2L2 or A1L2/A2L1), the likelihood of the pedigree given that the loci are truly linked is 1/2.[θ1.(1 – θ)5] + 1/2. [θ5.(1 – θ1)].
The alternate hypothesis is that the loci are unlinked. If this is the case, the probability that a gamete will be recombinant or non-recombinant
is 1/2; therefore, the probability of observing m recombinants and n recombinants is (1/2)m.(1/2)n . The likelihood of the pedigree given that the loci
are unlinked is thus (1/2).(1/2)6 + (1/2).(1/2)6, that is (1/2)6. Following formula [1], the LOD score for this example would be given by log10(1/2[θ̂1.(1 – θ̂)5] +
1/2[θ̂5.(1 – θ̂1)] – log10(1/2)6. The LOD score would then be calculated for a range of θ values, and a LOD curve for the family constructed. An
identical approach would be applied to other families. C Since the overall likelihood of a given set of pedigrees is the product of the likelihoods
of each individual family, the LOD curve of individual families (thin lines), being logarithms, can be added up across families to produce an overall
LOD score curve (thick line). For example, a LOD score of 3 for a θ = 0.28 indicates that overall our pedigrees are 1000 (3 = log101000) times
more likely to be observed if we assume that both loci are linked with a recombination fraction of 0.28 then if we assume that they are not
linked (θ = 0.5).
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one of these is likely to be close to the true model
(e.g., Clerget-Darpoux et al., 1986; Elston, 1989;
Greenberg, 1989; Risch, 1984). The use of multiple
models, however, raises numerous problems (Hodge
& Elston, 1994; Sham, 1998). The other model-free
approach to linkage analysis of complex traits is
known as nonparametric linkage. This approach
abandons the conventional LOD score parametric
method, in the sense that it does not formally test if
the recombination fraction θ between a marker and a
trait locus is significantly different from 0.5. Rather,
the rationale of this group of methods is the follow-
ing: if a sequence of DNA truly regulates the
expression of a trait, two individuals with the same
DNA sequence are expected to have similar trait
values, or vice versa. If, by contrast, the locus is not
involved in the regulation of the phenotype, the geno-
typic and phenotypic similarity between two related
individuals will be independent. The focus of the
remaining sections of this review will be on this
second approach to nonparametric linkage analysis.

Nonparametric linkage methods avoid the need to
specify an inheritance model for the trait but they
require the estimation of both the phenotypic and
genotypic similarities between two individuals.
Phenotypic similarity can be expressed in different
ways, namely by calculating squared differences,
squared sums or normalized products, or by estimat-
ing the trait covariance between two individuals.
Genotypic similarity at a given locus can be expressed
in two different ways: the number of alleles that both
individuals share identical by state (IBS) or identical
by descent (IBD). IBS alleles look the same, and may
have the same DNA sequence, but they are not neces-
sarily derived from a known common ancestor.
Alleles IBD are copies of the same ancestral allele. For
rare alleles, two independent origins are unlikely, so
IBS generally implies IBD. For common alleles this
may not be true. Thus, though both IBS and IBD data
can be used for linkage analysis, IBD is the more
powerful and generally preferable. Since IBD informa-
tion is an essential component of most nonparametric
linkage methods, details on its calculation are pre-
sented in the next section.

2. Calculation of IBD
Several methods have been proposed for estimating
the number of alleles shared IBD between two related
individuals at a marker locus. The most general are
the Elston–Stewart algorithm (Elston & Stewart,
1971) and the Lander–Green algorithm (Lander &
Green, 1987). The Lander–Green algorithm handles
smaller pedigrees but a large number of loci; in this
way, it is particularly appropriate for the analysis of
pedigrees collected by most linkage studies. In addi-
tion, the most popular linkage software packages
(e.g., Allegro, Genehunter, Merlin) have implemented
this algorithm, albeit with some modifications to
improve computational issues. For these reasons, this
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section describes IBD estimation using the
Lander–Green algorithm. 

Singlepoint IBD Estimation

Consider a pedigree with f founders (individuals with
no ancestors in the pedigree) and n nonfounders (indi-
viduals with at least one parent in the pedigree). For
simplicity, assume that n = f = 2, that is, the pedigree
consists of two siblings and both parents. In the
absence of any genotypic information, there are 22n

equally likely genotypic conformations for the sib-
pair, according to Mendel’s first law of segregation
(Figure 2, A and B). Each conformation is specified by
a unique inheritance vector v(x) = (p1,m1;p2,m2;…;
pn,mn), that is, a binary vector whose coordinates
describe the outcome of the two meioses which pro-
duced each nonfounder of the pedigree for a particular
locus (Lander & Green, 1987). Specifically, pi = 0 or 1,
according to whether the grand-paternal or grand-
maternal allele was transmitted in the paternal meiosis
giving rise to the ith nonfounder; mi carries the same
information for the corresponding maternal meiosis. 

Since each inheritance vector clearly specifies
which of the distinct 2f founder alleles was inherited
by each nonfounder, it describes a unique pattern of
gene flow through the pedigree. As mentioned
above, in the absence of any genotypic information,
there are 22n equally likely gene flow patterns (Figure
2, B). However, as genotypic information is added to
the pedigree, the probability distribution is concen-
trated on certain inheritance vectors: genotypic data
renders some vectors inconsistent, others less and
others more likely to be observed (Figure 2, C–E).
Indeed, one can apply Bayes’ theorem to compute
the probability of each inheritance vector given the
genotypic data observed (see Appendix A in
Kruglyak et al., 1996). 

If more than one inheritance vector is found to be
compatible with the genotypic data at a single locus,
the overall likelihood of the pedigree has to be formu-
lated in a way that accommodates this uncertainty.
The likelihood of the pedigree is thus calculated as the
sum of the probabilities of the 22n inheritance vectors,
and can be written in matrix form as

[2]

where x represents the observed genotypic data at the
locus, 1 is a column vector with 22n elements equal to
1 and Q is a 22n-by-22n diagonal matrix with the 22n

probabilities, one for each inheritance vector. This is
the general formula for the likelihood calculation of
pedigree data at a single locus. How can this single-
point approach to pedigree likelihood be used to
calculate IBD between nonfounders?

Consider the special case in which the inheritance
vector is known with certainty (Figure 2, E). The
inheritance vector fully determines which of the 2f
founder alleles was inherited by each nonfounder and,
thus, completely specifies IBD sharing at a single
locus between each nonfounder. In this example, the
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ability of observing the inheritance vector w. Finally,
once the three probabilities of sharing 0, 1 or 2 alleles
IBD have been calculated, conventionally denoted as
π0, π1, π2, the proportion of alleles shared IBD at the
locus is estimated by π̂= π1/2+π2.

Multipoint IBD Estimation

Formula [2] indicates how to calculate the likelihood
of a given pedigree given genotypic data at a single
locus. Frequently, however, we have collected data at
several ordered loci for each pedigree. Though it is pos-
sible to calculate singlepoint likelihoods (and IBDs) at
all marker loci individually, this approach does not
extract the full information from a data set. For
example, if a family is uninformative or has no geno-
typic data for a marker locus, the singlepoint IBD
estimation for a sib-pair at that locus will correspond
to the prior probabilities π0 = 1/4, π1 = 1/2, π2 = 1/4, and,
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Figure 2
Singlepoint IBD estimation using inheritance vectors in pedigrees with variable genotypic data available.
A Possible genotypic combinations for the sib-pair (3–4), assuming that the parents (1–2) are phase-known, where x0 indicates that the parent inherited
the allele from the grandfather and x1 indicates that the allele was inherited from the grandmother. The inheritance vector for the sib-pair fully
determines which of the four paternal alleles was inherited by each sib. For example, the vector 0100 specifies that the first nonfounder inherited one
allele from the father’s father (0) and the other allele from the mother’s mother (1), and that the second nonfounder inherited one allele from the father’s
father (0) and the other allele from the mother’s father (0). Thus, an inheritance vector has 2n digits (i.e., meiosis) and each digit can only assume two
values: 0 if the allele was inherited from the parent’s father and 1 if it was inherited from the parent’s mother; therefore, there are 22n possible 
inheritance vectors per pedigree. Note that each inheritance vector fully specifies how many alleles IBD are shared by both sibs. B Prior to considering
any genotypic data, all inheritance vectors are equally likely, according to Mendel’s second law of segregation. C–D However, as genotypic data is
added to the pedigree, some vectors become incompatible, others more likely and others less likely to be observed. Note that pedigree D contains no
information about founder phase; in this case, inheritance vectors that differ only by phase changes in the founders are completely equivalent and
must therefore have equal probabilities (e.g., 0001 and 1110). As a consequence, one can reduce the inheritance vector space from 22n to 22n-f. E In the
extreme case where the phase of both parents is known, the inheritance vector can be determined unambiguously. For all pedigrees, the probability
that two nonfounders share i alleles IBD at a given locus is simply obtained by adding the probabilities of the appropriate inheritance vectors.
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siblings clearly have 1 allele IBD at locus A. At the
opposite end of the scale is, of course, the case of a
pedigree with no genotypic information (Figure 2, B);
there are 16 equally likely inheritance vectors that
result in three possible IBD states: 0, 1 and 2, with
probabilities 1/4, 1/2 and 1/4, respectively. Extending
this to the general case, the probability that two non-
founders share k alleles IBD at a given locus is simply
obtained by adding the probabilities of the appropri-
ate inheritance vectors (Kruglyak & Lander, 1995).
More formally, if V denotes all possible 22n inheri-
tance vectors that v(x) can assume, then

[3]

where P[IBD = k | v(x) = w] takes the value of 1 or 0
if the vector w is compatible or incompatible with IBD
= k, respectively, and P[v(x) = w] is the posterior prob-
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thus, that family will have no contribution toward the
overall linkage signal. To avoid this limitation, the
Lander–Green algorithm (but also the Elston–Stewart
algorithm) has been designed to optionally use all
marker data available to estimate the IBD distribution
at an arbitrary marker location. Other multipoint algo-
rithms have been developed for large complex
pedigrees, namely using Markov–Chain Monte-Carlo
methods (Heath, 1997) or average sharing methods
(Almasy & Blangero, 1998; Fulker et al., 1995). In
contrast to the Lander–Green and the Elston–Stewart
algorithms, the two latter approaches calculate approx-
imate and not exact IBD distributions. Though
multipoint exact calculations are preferable, they may
be computationally prohibitive in large pedigrees.

The essential concept of multipoint IBD estimation
is that the inheritance pattern at a location l can be
inferred not only using the genotyping data at locus l
but, complementary, by inspection of the inheritance
patterns of adjacent loci. There are three sources of
information regarding the likelihood of the pedigree
at a given marker l: using genotypic data from marker
l-1, from marker l and from marker l+1. This can be
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Figure 3
Pictorial representation of multipoint calculation of pedigree likelihood.
The aim is to calculate the probability of observing each of the 22n possible inheritance vectors v(x) at an arbitrary marker location l. This can be
done in three ways: singlepoint, unilateral (left or right) multipoint and bilateral multipoint. A Singlepoint likelihood calculations. Only the
genotypic data at the locus is used to calculate the probability distribution of the inheritance vectors (open circles). B Unilateral multipoint
likelihood calculations (grey circles). The probability distribution of v(x) at a locus l is a function of both the genotypic data observed at all loci on
its left, and the genotypic data at the locus itself. The probability distribution of v(x) at marker l conditional on the genotypes of all preceding l–1
loci is obtained by multiplying the probability distribution of v(x) at l–1 by a 22n-by-22n transition matrix       with elements                            , where r
specifies the number of differences between inheritance vectors at locations l–1 and l. Note that the probability distribution at l–1 is again
expressed as a unilateral multipoint likelihood, so that it includes all genotypic information from locus 1 to locus l–1. The same approach can be
used to calculate right unilateral likelihoods. C Bilateral multipoint likelihood calculation (black circle). The probability distribution of v(x) at locus l
is now a function of the genotypic data observed at the l–1 preceding loci, the genotypic data at l, and the genotypic data at the following k–l loci.
Thus, the genotypic information of all loci is used to calculate the probability distribution of v(x) at location l.

l
Tθ ( ) rn

l

r

l

−−⋅ 2
1 θθ

specified as a Markov chain across all available geno-
typic information which is then used to compute a
bilateral multipoint likelihood of pedigree data at any
arbitrary location l (Figure 3). The overall likelihood
of a pedigree given the k loci data is

[4]

where Q1 … Qk are diagonal matrices with the proba-
bilities for each inheritance vector calculated using the
genotypic data at locations 1 to k, and Tθ1 … Tθk are
the transition matrices between consecutive markers
which allow to calculate the probabilities of each pos-
sible inheritance vector at a given location k using the
genotypic data from all preceding loci. Because
matrix multiplication is associative, this formula can
be computed from the left or from the right. Thus, if
we want to calculate the bilateral multipoint likeli-
hood at a location l given all the genotypic data at the
k loci, we would have to factorize this probability has
a left conditional likelihood, a single marker likeli-
hood and a right conditional likelihood (Figure 3).

As with the singlepoint approach, the multipoint
calculation of IBD between any pair of relatives is
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straightforward once the probabilities of the 22n inher-
itance vectors have been determined: it simply
consists in summing the probabilities of the appropri-
ate vectors. In the same way, the proportion of alleles
shared IBD at the locus is estimated by π̂ = π1/2+π2

Sections 1 and 2 have introduced some basic con-
cepts of linkage analysis, including the rationale of
parametric and nonparametric approaches, and IBD
estimation. The subsequent sections will present the
statistical fundamentals of different methodological
frameworks which incorporate genotypic and pheno-
typic information from relatives to test for linkage.

3. Haseman–Elston Regression and
Appropriate Extensions

Original Haseman–Elston Regression

This method was suggested for the analysis of sib-
pairs by Haseman and Elston (1972). Let X1 and X2

represent the quantitative trait values of a sib-pair, and
π̂ the respective proportion of alleles identical-by-
descent (IBD) at a locus L. The central idea of this
method is the theoretical decomposition of the
expected squared trait difference given π̂

[5]

Assuming that the variance of the trait can be factor-
ized into genetic (additive and dominance effects —
VA and VD, both at the quantitative trait loci (QTL)
and from residual contributions) and environmental
components (shared and nonshared effects — VC and
VE), the variances of X1 and X2 are given by

[6]

The variances are, of course, independent of the sib-
pair π̂. The overall covariance between X1 and X2,
which can be derived from path diagrams (see Figure
4 for an example), is given by

[7]

where 2.Φ is twice the kinship coefficient (i.e., twice
the probability that two alleles drawn at random, one
from each relative, will be IBD; also equivalent to the
expected proportion of alleles IBD), and ∆ represents
the expected probability of sharing two alleles IBD;
that is, both are the theoretical values without consid-
ering the genotypic data. For sib-pairs, 2.Φ = 1/2 and
∆ = 1/4. Thus, from [5] it follows that 

[8]

And, assuming an additive model whereVDQTL and
VDresidual are both 0, the expression becomes

[9]

Thus, the pair squared trait difference can be
regressed on π̂ with the slope being an estimate of
–2.VAQTL This assumes that π̂ is estimated at the true
trait locus or at a locus so close to it that has the same
IBD distribution (that is, with θ = 0). If, however, IBD
is being estimated at a marker not tightly linked to
the trait locus, the linear relationship between the
squared trait difference and π̂ is now only an imper-
fect estimate of VAQTL Indeed, the closer the marker is
to the true trait locus the better the regression slope
should approximate VAQTL This can be corrected in the
linear model by multiplying the regression coefficient
by (1–2.θ)2, this term being the correlation between π̂
at the marker locus and π̂ at the trait locus. Therefore,
if we consider the pair squared trait difference as the
dependent variable and π̂ at any arbitrary location L
as the independent variable for a given number of
pedigrees, the regression coefficient (β) is an estimate
of VAQTL(1–2.θ)2. A significant negative regression
coefficient implies that there is either a relatively large
genetic effect at a moderate distance from the marker
or that there is a smaller genetic effect close to the
marker. Thus, the test for linkage is a one-sided t test
of the null hypothesis H0: β = 0 

Extensions to the Original Haseman–Elston Regression

Wright (1997) reexamined the original Haseman–
Elston approach (HE–SD) and showed that the pair
squared trait difference and the mean-corrected
squared trait sum are statistically independent and,
hence, can provide complementary information for
linkage analysis. Following this observation,
Drigalenko (1998) suggested that a more accurate
estimate of β could be obtained by simply averaging
the estimates from two regressions, one using the
squared differences and the other the squared sums.
This approach is analogous to the cross-product
model (HE–CP) suggested by Elston et al. (2000)
that uses Y = [(X1–µ).(X2–µ)] as the dependent vari-
able. However, Forrest (2001) pointed out that
weighting the two slope estimates equally is not
optimal, since the slope estimates from both regres-
sions have different variances when the sibling
correlation is positive. To correct this problem, new
weighted methods (HE–W) have been proposed that
estimate β as the weighted sum of both regression
slopes (Forrest, 2001; Visscher & Hopper, 2001; Xu
et al., 2000). The weights used by Xu et al. (2000)
and Forrest (2001) are the slope variance estimates
obtained directly from the regression models,
whereas Visscher and Hopper (2001) used the
inverse of the respective empirical variance esti-
mates. Finally, Sham and Purcell (2001) simplified
the method by Xu et al. (2000) by expressing the
two slope variances as a function of the sibling cor-
relation (HE–COM). Irrespective of the nature of the
extension, the test for linkage with all the
Haseman–Elston-based approaches is a one-sided t
test of the regression slope.
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4. Variance Components (VC) Maximum
Likelihood

The ‘Pi-Hat’ Approach to Linkage Analysis

This is an intuitive approach to QTL linkage based on
an extension to the traditional ADCE model (Neale
& Maes, 1999). For a more detailed review of the ‘pi-
hat’ approach and some of its extensions see
Posthuma et al. (2003). Take a sample of sib-pairs
which have been phenotyped for trait X and geno-
typed at markers evenly spaced across the genome;
for each of these markers, the three IBD probabilities
have been estimated and π̂ calculated. In addition to
the traditional ADCE components of variance (Figure
4A), we now want to model the effect on the pheno-
type X of an additional latent factor, an individual
genomic locus Q. The additive effect of this locus is
correlated between siblings by π̂, the proportion of
alleles shared IBD, whereas the dominance effect is
correlated by π2 the probability of sharing two alleles
IBD (Figure 4B). Following standard tracing rules of
path analysis, the variance for X1 or X2 can be
expressed as

[14]

and the covariance between X1 and X2 is given by 

[15]

where l represents the household indicator (1 if indi-
viduals share the same household, 0 if they do not; if
we are modeling the sib-pair common environment, l
= 1), with the remaining notations being equivalent to
those used in formula [7]. The likelihood of observing
the phenotypic data of the sib-pair in the ith pedigree
conditional on the genotypic data is given by

[16]

where xi is the vector of observed phenotypes for the
ith pedigree, n = 2 (number of observed phenotypes), µ
is the vector that models the means, and Σi is the
expected variance–covariance matrix specified by [14]
and [15]. Note that in this formula π represents the
conventional ratio of a circle’s perimeter to its diameter
(~ 3.14). The expected covariance matrix includes six
free parameters. Thus, if fitted to sib-pair data (which
supply only two independent statistics, one variance
and one covariance), it is under identified. In this case,
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Figure 4
Path diagrams for variance components modelling with the ‘pi-hat approach’
A Decomposition of the variance and covariance of a trait X in a sib-pair into four latent factors, additive genetic effects (A), dominance genetic effects
(D), common environmental effects and specific environmental effects (E). Each of these is constrained to have a variance equal to 1 and to load on
the phenotype X with the coefficients a, d, c and e, respectively. The additive genetic effects are correlated between individuals by twice the
kinship coefficient (2.Φ), the dominance genetic effects correlated by ∆ (which represents the expected probability of sharing two alleles IBD),
and the common environment components by l, the household indicator. For sib-pairs, 2.Φ = 1/2, ∆ = 1/4 and l = 1. B The model in A modified to
include the effects of QTL, with the corresponding additive (AQTL) and dominance (DQTL) contributions. Only one sibling shown; Aresidual , Dresidual and
C are correlated between siblings as specified for A, D and C in A; π̂represents the proportion of alleles IBD at the locus and π2 the probability of
sharing two alleles IBD. C The model represented in B but simplified so that it is identified when applied to sib-pair data. S represents shared
latent factors, Q the QTL latent factor and N the nonshared latent factor. See text for details.
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the problem can be solved by grouping 1/2.VAresidual +VC
under the shared latent factor S, and 1/2.VAresidual +VE
under the nonshared latent factor N (Sham, 1998)
(Figure 4C). Assuming an additive model (i.e., VDresidual

VDQTL = 0), the variance–covariance matrix for siblings j
and k of the ith pedigree is now reduced to

[17]

Though this model involves three parameters and pre-
dicts only two statistics when applied to the sib-pair
design, it is still identified because the covariance
equation is a simple linear regression on π̂. Similarly,
if the QTL dominance component (VDQTL) was also
included, the model would still be identified, since
this parameter is a linear regression on π2. However,
the improvement obtained by including dominance or
other gene-by-gene interaction parameters is still a
controversial issue in linkage analysis. Due to power
issues, modeling the QTL dominance component
seems to be appropriate only when the marker locus
is very close to or is suspected to be the true QTL
itself (Almasy & Blangero 1998; Sham et al., 2000a).
If data are collected under the classical twin design,
model [17] predicts an additional independent statis-
tic (the MZ covariance) and, hence, VAresidual and VC

could be estimated independently. 
To test for linkage between a given marker and the

phenotype X, a saturated model H0 and a nested sub-
model H1 are fitted separately to the same dataset.
The submodel H1 differs from the saturated model H0

in that the QTL factor has been dropped, that is, the
effect of the locus on the phenotype has been fixed to
zero. Therefore, the statistic 2.[ln(LH0

)–ln(LH0
)] pro-

vides a relative measure of fit of H1: a significant
chi-square indicates that the submodel H1 fits the data
significantly worse than H0. Asymptotically, under the
null hypothesis of no linked QTL, this test statistic is
0 with a probability of 0.5 and it follows a χ2 distrib-
ution with 1-df with a probability of 0.5 (Hopper &
Matthews, 1982). A significant drop in fit when drop-
ping VAQTL suggests that the similarity of two
individuals at the marker locus significantly influences
their phenotypic similarity; in other words, the
marker locus is the trait locus or it is linked to it.

The ‘Mixture Distribution’ Approach

The ‘pi-hat’ approach calculates π̂ for the sib-pair at
each marker and uses this value in the
variance–covariance matrix when computing the like-
lihood function [16] for each observation. This
matrix, specifically the covariance element VS+π̂.VQTL,
determines the shape of the bivariate probability
density function (PDF) which returns the likelihood of
each observation. With fully informative marker data,
the PDF can assume three different shapes according to
the three possible π̂ values: 0, 0.5 and 1. For example,
if π̂ = 0, then the appropriate PDF specifies that any
combination of trait values for a sib-pair is equally

likely to occur; in the other extreme, however, if π̂ = 1,
then the PDF determines that sib-pairs which are con-
cordant for a trait are more likely to be observed than
pairs which are discordant. The limitation of the ‘pi-
hat’ approach arises in the presence of incomplete
marker information, that is when IBD cannot be deter-
mined with certainty and π̂ can assume values other
than 0, 0.5 and 1. In this case we no longer have three
possible PDF distributions but many which are not bio-
logically meaningful. One alternative to this approach
is the finite ‘mixture distribution’ method (Eaves et al.,
1996). Take the same example as above, where we have
phenotypic data for sib-pairs and genotypic data col-
lected at several markers evenly spaced across the
genome. In this case, however, only the three IBD prob-
abilities π0, π1 and π2 are estimated; π̂ is not calculated.
For a given observed vector, three individual likelihoods
are calculated, respectively assuming that π̂ is 0 (i.e., the
covariance element is simply VS), π̂ is 0.5 (covariance VS

+ 0.5.VQTL) and π̂ is 1 (covariance VS + VQTL). Thus, this
method forces the likelihood to be read in the three
meaningful PDFs; the overall likelihood of each vector
then simply consists of the weighted sum of the three
likelihoods, where the weights are respectively π0, π1

and π2. More formally, the overall likelihood of a vector
of observed trait values xi = [xi1, xi2, …, xin] for the ith

pedigree containing n members, conditional on the IBD
information is

[18]

where wl is the weight for the mth model, and Lil the
likelihood of the trait vector xi under the mth model. As
with the previous approach, the test for linkage involves
fitting a saturated model which includes the effect of the
marker locus (H0) and a submodel where this compo-
nent has been dropped (H1). Then, the statistic
2.[ln(LH0

)–ln(LH0
)] provides a test for the significance of

the QTL contribution to the phenotypic correlation. 
Note that with complete IBD information, the ‘pi-

hat’ and the ‘mixture distribution’ approaches are
equivalent, giving exactly the same results. For
example, the likelihood of a given vector of traits [x1

x2] for a sib-pair which is IBD 2 will be obtained with
the ‘pi-hat’ approach from a PDF with a distribution
specified by a π̂ of 1 (L1). Similarly, if the ‘mixture dis-
tribution’ is used, the overall likelihood of the same
trait vector is π0

.L0 + π1
.L0.5 + π2

.L1 = L1 since π0 = π1 =
0 and π2 = 1. 

5. Statistics that Model IBD Conditional
on Trait Values

All methods discussed so far model the siblings’ trait
values conditional on the siblings’ IBD status. In other
words, the phenotypic similarity is treated as the depen-
dent variable and the genotypic similarity as the
independent variable. However, it has been pointed out
that this form of relating these two sets of variables may
result in biased results (Sham et al., 2000a; Sham et al.,
2002). Sample selection is usually done through trait
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values but not through genotypes: as a result, a signifi-
cant departure from bivariate normality in the sib-pair
trait distribution can be observed. If, in spite of this, the
trait value is considered the dependent variable, both
regression analysis and variance components can result
in inflated type-1 error. If, on the other hand, the trait
value is considered the independent variable and the
IBD status the dependent variable, the assumption of
trait normality can be avoided and the type-1 error is
predicted to be correct. This is the general approach of
the second group of methods described here.

Reverse Haseman–Elston Regression

The basic idea of the approach proposed by Sham et al.
(2002) is to reverse the original Haseman–Elston para-
digm and regress the IBD sharing on the trait squared
sums and squared differences simultaneously. This idea
had already been proposed by Henshall and Goddard
(1999). Sham et al.’s (2002) approach is applicable to
pedigrees of arbitrary size, but requires the correct
specification of the population mean, variance and her-
itability of the trait. Consider a pedigree i with n
members. Let Sjk and Djk represent two vectors of
dimension n.(n–1)/2 which include the trait squared
sums (sjk) and squared differences (djk), respectively, for
all j and k pairs of the pedigree, for j ≠ k. Sjk and Djk

represent the independent variables. For simplicity,
assume that they are placed in the same vector Y = [S,
D]’, and that Y is mean-centered. The dependent vari-
able is (π̂)jk, that is, the proportion of alleles IBD
between member j and k of the ith pedigree. The array
[(π̂)jk] is inserted into the vector ∏, which, again, has
dimension n.(n–1)/2 and has been mean-centered.
Then, the multivariate regression equation of ∏ on Y is

[19]

where ΣYΠ is the covariance matrix between Y and ∏,
∑

Y
the covariance matrix of Y, and e a vector of

residuals. The covariance matrix between Y and ∏ is
composed of two blocks stacked horizontally, where
the first block is the covariance matrix between S and
∏ and the second block is the covariance matrix
between D and ∏. The diagonal elements of these
matrices can be thought to represent a pair’s pheno-
typic similarity (sjk or djk) in terms of the pair’s
genotypic similarity (π̂j k): Wright (1997) and
Drigalenko (1998) showed that this equals 2.Q or
–2.Q respectively, where Q is the phenotypic vari-
ance explained by the additive effects of the QTL. In
addition, the off-diagonal elements of both matrices
can be seen as a pair’s phenotypic similarity (sjk or djk)
in terms of the genotypic similarity of every other
possible pair in the pedigree (π̂lm). This demonstrates
one important property of this statistic: the IBD
sharing of a pair of relatives is modeled by the
squared sums and squared differences of all relative
pairs in the pedigree. These off-diagonal elements can
be shown to be defined as 2.Q.Cov(π̂jk, π̂lm) or
–2.Q.Cov(π̂jk, π̂lm), for the squared sums and squared
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difference matrices, respectively, where Cov(π̂jk, π̂lm),
represents the genotypic similarity between pair jk
and pair lm of the ith pedigree.

Thus, the matrix ΣYΠ can be factorized into Q.ΣΠ
.H

where Q is a diagonal matrix for the phenotypic vari-
ance due to the QTL, ΣΠ the covariance matrix for π̂,
and H a matrix being composed of two matrices
stacked horizontally, the first being a diagonal matrix
with elements of 2 and off-diagonal elements of 0 and
the second a similar matrix with diagonal elements –2.
Thus

[20]

ignoring the residual contribution. Therefore, for a
given family the scalars B´.∏ and B´.ΣΠ

.B are calcu-
lated and their ratio gives an estimate of Q. Across all
pedigrees the estimate of Q is given by 

[21]

The test statistic that in large samples has asymptoti-
cally a chi-square distribution with 1-df under the
null hypothesis is

[22]

Reverse VC Maximum Likelihood

Sham et al. (2000b) proposed to reverse the ‘pi-hat’
VC approach by defining the likelihood of the geno-
type data of a sib-pair conditional on the trait values,
L(G | xi). Applying Bayes’ theorem and assuming that
the likelihood is dependent on G only through π
(equivalent to 2.Φ, as defined in [7]), then

[23]

where L(xi |π̂) is calculated as in [16] and the
denominator is the weighted sum of the three likeli-
hoods under the theoretical π values of 0, 0.5 and
1. As with other VC approaches, the test for
linkage consists in fitting two different models
which differ in the covariance structure: H0, which
includes the effect of the QTL and H1, which does
not. The statistic 2.[ln(LH0)–ln(LH1)] then provides a
chi-square test for linkage with 1 degree of
freedom. This method requires the correct specifica-
tion of the phenotypic mean, variance and
correlation, which can be obtained from previous
studies of the same trait or from preliminary analy-
sis of the sib-pair data. 

6. Additional Statistics
There are six additional groups of linkage statistics
that I will briefly discuss here. These are frequently
mentioned in the literature and have been imple-
mented in popular linkage software packages. In
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addition, the last three groups address important
emergent issues in linkage analysis.

Mean IBD Sharing Statistic for Discordant or Concordant Sib-Pairs

Risch and Zhang (1995, 1996) introduced the mean
IBD sharing statistic for the analysis of discordant
and concordant sib-pairs. As with the reverse
Haseman–Elston and the reverse variance compo-
nents approaches, the variable being modeled is the
IBD information. However, in this case, the trait
values are not taken as an independent variable, but
rather as a constant. The sib-pairs included for analy-
sis are particular pairs that have been selected on the
basis of their joint trait scores. The sample can
consist of extreme discordant sibling pairs (EDSPs,
defined as one sibling with a trait value above a
threshold Zh and the other with a trait value below
Zl), or high and low concordant pairs (both siblings
above Zh or both below Zl). If a marker is linked to
the trait, the pair’s IBD sharing will deviate from the
expected value of 1/2 under the null hypothesis (H0)
of no linkage. For discordant pairs, the alternative
hypothesis (H1) is that the mean sharing is less than
1/2. For concordant pairs, H1 is that the mean sharing
is greater than 1/2. Thus, the statistical significance of
the IBD sharing deviation can be tested with a one-
sample Z test. 

Statistics Based on IBD Scoring Functions

Another alternative method for the analysis of quanti-
tative traits based on allele sharing statistics is
implemented in the framework of Whittemore and
Halpern (1994) and Kong and Cox (1997). This
framework is most appropriate for the analysis of
binary traits, but it has been adapted for quantitative
traits (Abecasis et al., 2002). The basic idea is to define
some function S to score each possible inheritance
vector for a given pedigree according to the evidence
for linkage they provide: the larger the value of S for a
given vector w, the greater the evidence for linkage.
The weighted scores of all vectors in a pedigree are
summed to produce an overall score which reflects that
pedigree’s contribution to the linkage signal. The stan-
dardized overall scores of all pedigrees in the sample
are then used to calculate a LOD score based on the
Kong and Cox linear or exponential models. Different
scoring functions S have been proposed. For quantita-
tive traits, one possible scoring function can be defined
as S(w) = Σa (Sa)

2, where Sa = Σc (yc – µ)2. That is, the
score for each vector w is calculated by summing the
squared scores of all the founder alleles (a) present in
the vector. The score for each founder allele in the
vector w is calculated as the mean deviate for all indi-
viduals c who carry that allele in that pedigree (note
that yc is the continuous trait for individual c in the
pedigree and µ is the population mean).

Forrest and Feingold Mixed Statistic

Forrest and Feingold (2000) showed that IBD
sharing statistics, which model the IBD distribution

conditional on trait values, are statistically indepen-
dent of statistics that model trait values conditional
on the IBD information, such as the original
Haseman-Elston regression and variance compo-
nents. Indeed, both approaches contribute
complementary rather than redundant information
and, thus, they can be combined to form more pow-
erful tests of linkage. They proposed a simple
composite statistic for discordant pairs that essen-
tially just adds the standardized traditional
Haseman–Elston regression coefficient (βHE) with the
standardized mean IBD sharing statistic, both multi-
plied by appropriate weights (wH E and wI B D ,
respectively). Formally, the composite statistic is
defined by

[24]

where π1+2.π2 is the average number of alleles IBD for
the sib-pair sample. The sum of the squared weights is
constrained to be equal to 1 and both components are
normalized, so that both have an expected value of zero
and unit variance. In this way, the composite statistic
follows a standard normal distribution under the null
and, therefore, the test for linkage is a simple t test.
Appropriate weights for the composite test can be
chosen with knowledge of the ascertainment scheme.

X-Chromosome Linkage Statistics

There are very few descriptions of adaptations of
common methods for the analysis of autosomal loci
to the analysis of sex-chromosome loci, and those
that have been proposed may not as yet have fully
grasped the complexity of the analysis. Wiener et al.
(2003) described an extension of the revised
Haseman–Elston method for the analysis of X-linked
loci in sib-pairs. As with adaptations of other
methods described below, Wiener et al. (2003) first
described the appropriate trait variance parameteriza-
tion for a two-allele locus, and then derived the
appropriate linkage statistic. In this case, it involved
the derivation of the expressions for the expected
squared trait differences and expected squared trait
sum conditional on the IBD information, for
sister–sister, brother–brother, and sister–brother pairs.
They also showed that singlepoint IBD estimation for
the X chromosome is straightforward, even when
parental genotypes are unavailable. Ekstrøm (2004)
similarly modified the variance components (VC)
model to detect QTLs located on X, this time accom-
modating for multipoint IBD estimation, either using
the regression approach of Fulker et al. (1995) and
Almasy and Blangero (1998), or the hidden Markov
model (HMM) of Kruglyak and Lander (1995).
Finally, it is worth mentioning that almost 10 years
ago Cordell et al. (1995) provided a simple adapta-
tion of the Risch (1990) allele sharing method to
X-linked loci. However, this approach was limited to
binary traits. 
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Linkage Statistics that Incorporate Parental Imprinting Effects

Incorporating parent-of-origin effects in linkage
statistics involves reparameterizing the components
of the phenotypic variance, adjusting the IBD esti-
mation to account for imprinting, and specifying
the appropriate null and alternative hypotheses to
be tested. Hanson et al. (2001) have done so both
for the original Haseman–Elston method and for
VC. The traditional Haseman–Elston method was
modified by estimating two separate β coefficients
according to the source of allele sharing, whereas in
the VC approach the QTL component was parti-
tioned into maternal and paternal contributions.
The maternal and paternal b coefficients and the
maternal and paternal QTL variance components
are appropriately multiplied by π̂mo and π̂fa, which
represent the proportion of alleles shared IBD
derived from the mother and from the father,
respectively, with π̂mo + π̂fa = π̂. Recently, Shete et al.
(2003) extended this model to large pedigrees.
Finally, Strauch et al. (2000) and Knapp and
Strauch (2004) developed imprinting models for
binary traits.

Statistics that Test for Linkage in  the Presence of Association

This last group of statistics provides a powerful linkage
approach for fine-mapping of a candidate chromosomal
region. A locus providing large evidence for linkage may
be the true trait locus or it may be in linkage disequilib-
rium with it. If the locus is indeed the true trait locus,
then most or the entire linkage signal at that locus
should disappear when the allelic effects of that locus on
the trait mean have been removed (Fulker et al., 1999).
Fulker et al. (1999) extended the ‘pi-hat’ VC approach
to include this joint test of linkage and association for
sib-pairs without parental genotypes. Their approach is
the following: consider a single additive two-allele locus,
with the effects of the three genotypes A2A2, A1A2 and
A1A1 being –a, 0 and a. The covariance structure of the
VC likelihood model is retained unchanged (see formula
[17]); however, the method additionally models the sib-
pair expected mean vector in the likelihood function
[16] as a function of an overall mean m, the pair mean
sm, and the individual deviation from the pair’s mean sd,
as µ1 = m + sm + (sd /2) and µ2 = m+sm – (sd /2). Since sm

and sd are expressed only as a function of the additive
allelic effects at a given locus (see Table 1 in Fulker et
al., 1999), a test for allelic association simply consists of
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Figure 5
Robust linkage statistic, according to ascertainment scheme, trait distribution and pedigree structure.
Note that these rough guidelines should be used only as a suggestion of methods most likely to provide a test for linkage with correct type-1 error.
However, both type-1 error rate and power should always be investigated empirically or theoretically. VC: traditional variance components.
HE–COM: Sham and Purcell (2001) Haseman–Elston weighted extension. HE–W: Xu et al. (2000) Haseman–Elston weighted extension. HE–SD:
traditional Haseman and Elston (1972) squared difference regression. VC–R: Sham et al. (2000) reverse variance components. HE–R: Sham et al.

(2002) reverse Haseman–Elston regression. VC–AC: variance components with ‘point-probability’ or ‘cumulative-probability’ ascertainment
corrections. Comp: Forrest and Feingold (2000) composite statistic for moderate discordant sib pairs. Mean IBD: Risch and Zhang (1995) mean
IBD sharing statistic.
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dropping sm and sd from the model (for 1-df, because
sm and sd are a function of the same parameter a).
However, since population stratification can influ-
ence pair means (but not each sibling’s deviation
from the sibship mean), Fulker et al. (1999) pointed
out that such test may result in spurious associa-
tions. To overcome this limitation, they modified
this simple approach to allow the gene effect a to be
different for the pair means (ab, between siblings
effect) and the pair differences (aw, within siblings
effect). A more robust test of association (albeit less
powerful) can be obtained by dropping only aw (that
is, sd). In this way, the Fulker et al. model can be
used to implement different tests, according to the null
and alternate hypotheses specified. The following two
1-df tests are of particular importance here, assuming no
dominance effects: (1) a test for linkage without model-
ing association, with the null hypothesis having the
parameters VAQTL, ab and aw fixed to 0, and the alterna-
tive hypothesis obtained by setting free VAQTL; and (2) a
test for linkage in the presence of association, the null
having VAQTL fixed to 0, and the alternate with VAQTL set
free (ab and aw free in both models). The Fulker et al.
(1999) method has been extended to nuclear families of
any size (Abecasis et al., 2000), and its theoretical
power derived, allowing power calculations to be per-
formed without the need for simulations (Sham et al.,
2000a). Finally, Fan and Xiong (2003) have recently
suggested an alternative approach to combine VC
linkage analysis and association analysis. Their method
incorporates LD coefficients and gene effects on the
means model, as well as recombination fractions
between flanking markers and a putative QTL in the
covariance model. 

7. Choice of Linkage Statistics
This review had two main goals: first, to introduce
basic concepts of linkage analysis, and second, to
summarize the statistical fundamentals of the cur-
rently most common linkage statistics. Nonetheless, it
would be rather incomplete if it did not discuss the
relative strengths and weaknesses of each method.
This daunting task, which demands a dedicated
review by itself, will be briefly addressed here. A
number of references are provided that point to some
of the original articles addressing this complex topic.

There are three main issues to consider when
choosing which method to use. First, and most obvi-
ously, the type of linkage analysis to be performed.
For example, different statistics will be chosen if the
analysis includes a test of imprinting or, alternatively,
a test of association. In the same way, statistics should
be chosen in accordance with the ascertainment
scheme used (for example, the mean IBD sharing sta-
tistic or the Forrest & Feingold statistic for discordant
sib-pairs). Once this issue has been addressed, the
other two factors to consider when selecting the
method of analysis are the type-1 error rate and the
power provided by the test. Put simply, type-1 error

measures how often a significant result would occur
when the null hypothesis of no linkage is true (i.e., by
chance alone); by contrast, power measures how
often a significant result would occur if the alternative
hypothesis of linkage was true. The power estimates
presented below are based on α = 0.0001, corre-
sponding to a central χ2 statistic of 13.8 (see Sham et
al., 2000a; and Williams & Blangero, 1999 for a dis-
cussion of this).

Type-1 Error Rate

The linkage statistic for all regression-based methods
discussed in section 3 is a t test. For this reason, for
large sample sizes, these methods have robust type-1
error rates (i.e., close to the nominal levels), even when
analyzing selected or nonnormal samples (Feingold,
2002). On the other hand, Sham et al. (2000b) showed
that standard variance components analysis of selected
samples has inflated type-1 error rate, whether the trait
follows a normal distribution or not. Appropriate
ascertainment corrections can nonetheless be used to
control the type-1 error rates of VC (Andrade &
Amos, 2000; Sham et al., 2000a). Similarly, Allison et
al. (1999) and Blangero et al. (2001) showed in a range
of simulations that standard VC has inflated type-1
error rate when analyzing nonnormal data from a
random sample. This effect was aggravated in the pres-
ence of strong residual sibling correlation (r = 0.5). In
practice, Blangero et al. (2001) suggested that an
appropriate transformation should be applied for traits
where kurtosis ≥2, but this is not guaranteed to always
work. If, even after the best transformation, the trait
displays a large deviation from normality, other more
robust methods should be used for analysis (e.g.,
regression methods). 

By considering the trait values as the dependent
variable, both ‘reverse’ methods discussed in section 5
are no longer bound to tight trait distributional
assumptions, and seem to have correct type-1 error
under common experimental conditions. The simula-
tions performed by Sham et al. (2002) suggest that
the type-1 error rate of their regression method is not
biased when analyzing either random samples,
selected samples with a normally distributed trait, or
a nonnormal trait if in the presence of complete IBD
information. However, it produced inflated type-1
error when analyzing a nonnormally distributed trait
with incomplete IBD information. Similarly, Sham et
al. (2000b) showed that their ‘reverse’ VC method
leads to a likelihood ratio test with the appropriate
type-1 error when analyzing normal or nonnormal
data, from either random or selected samples. This is
a great improvement when compared to the tradi-
tional VC approach.

The type-1 error of the various statistics summa-
rized in section 6 has been less extensively investigated.
Forrest and Feingold (2000) showed that the type-1
error of their composite statistic was adequate under
any ascertainment scheme simulated. For the X-
chromosome, Wiener et al. (2003) showed that under
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an ideal scenario where IBD sharing could be deter-
mined unambiguously, their regression-based
approach had slightly inflated type-1 error rate if it
used the cross-trait product or the linear combination
of squared trait difference and squared trait sum
were used as the dependent variable. The type-1
error of their method was correct with the traditional
use of squared trait differences. Ekstrøm (2004) did
not investigate the type-1 error of their VC approach
to linkage analysis of the X-chromosome. Finally,
Hanson et al. (2001) showed that their imprinting
extensions to both regression and VC approaches
had type-1 error rates close to the nominal values
when testing linkage to a marker locus which was
either unlinked to the true QTL or which was linked
but had no imprinted effect. 

In face of the above, the guidelines presented in
Figure 5 may be used as a suggestion of methods most
likely to provide a robust test for linkage.
Nonetheless, it is important to stress that increased
type-1 error rate is perhaps the major obstacle for
gene mapping, either through linkage or association
analysis. For this reason, it should always be investi-
gated empirically.

Power

There is extensive literature on the power of
Haseman–Elston regression-based approaches and
variance components. For the regression-based
methods HE–SD, HE–CP, HE–W and HE–COM (see
section 3 for abbreviations), examples include Elston et
al. (2000), Forrest and Feingold (2000), Palmer et al.
(2000), Sham and Purcell (2001), Visscher and Hopper
(2001) and Yu et al. (2004). See Feingold (2002) for a
good discussion of the power of regression-based
methods. Together, these simulations suggest that when

analyzing normal data from a random sample, the dif-
ferent HE–W extensions and HE–COM provide
virtually the same power as variance components and,
in some situations, increased power when compared to
HE–SD and HE–CP (Figure 6). Thus, when analyzing a
normal trait from a population sample, there is no
reason to use regression-based methods, but rather,
variance components. By contrast, when analyzing
selected samples and/or nonnormal traits, the analysis
may have to revert to robust regression-based methods.
In this case, the methods that seem to provide
increased power are HE–COM and Xu et al.’s (2000)
HE–W method.

An underlying limit to the power of the different
Haseman–Elston methods described in section 3 lies
in the fact that they do not accommodate larger sib-
ships and complex pedigrees. This is one of the main
strengths of variance components. However, as men-
tioned above, standard VC is limited to the analysis
of normal data from a population sample. Different
studies have investigated the power of VC under this
condition, including Dolan et al. (1999), Williams
and Blangero (1999), Blangero et al. (2001), Sham et
al. (2000b), and Sham and Purcell (2001). The simu-
lations provided by Blangero et al. (2001) seem to
suggest that VC analysis with less than 1000 sib-pairs
will only have enough power (~0.8) to detect a 40%
or 20% QTL (residual shared variance fixed at 0.3, α
= 0.0001), depending on whether the ascertainment is
at random or based on affected sib-pairs (in this case
with appropriate ascertainment correction). However,
larger sibships provided increased power (see also
Dolan et al., 1999; Williams & Blangero, 1999).
Finally, Sham et al. (2000a) and Sham and Purcell
(2001) derived the theoretical power of VC and
showed that it can be approximated by
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Figure 6
Theoretical power of different methods for a normal trait from a random sample of sib pairs.
Points obtained using the NCP equations derived by Sham and Purcell (2001), assuming perfect IBD information (var(π̂) = 1/8). Note the different
y-axis scales; the horizontal dashed line represents an NCP of 0.005 for comparison across graphs. The overall power of a test based on sib-pairs
can be obtained by multiplying the respective NCP per sib-pair by the number of sib-pairs in the sample. An overall NCP of 15.75, 20.76 or 24.96
should be achieved to provide 60%, 80% or 90% power to detect linkage, respectively. These power estimates are based on α = 0.0001, corre-
sponding to a central χ2 statistic of 13.8. HE-SD: traditional Haseman and Elston (1972) squared trait-difference regression. HE–CP: Elston et al.
(2000) revised Haseman–Elston using the cross-product. VC: traditional variance components. HE–W: Xu et al. (2000) Haseman–Elston weighted
extension. HE–COM: Sham and Purcell (2001) Haseman–Elston weighted extension. HE–R: Sham et al. (2002) reverse Haseman–Elston regression.
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[25]

Thus, the asymptotical power of VC is proportional
to the square of the number of pairs in the sibship (s)
– as observed with the simulations described before –
to the sibling correlation (r), to the squared variance
due to the additive QTL component (VAQTL), to the
marker informativeness (as reflected in the variance
of π̂ and π2), and to the squared variance due to the
dominance QTL component (VAQTL). In addition, they
showed that if a QTL is additive, the attenuation of
the NCP with increasing incomplete linkage is by a
factor of (1 – 2.θ)4, where θ is the recombination
fraction between the marker and the trait loci. This
raises the important problem of marker density and
the power to detect linkage (see Atwood & Heard-
Costa, 2003; Kruglyak 1997; Terwilliger et al. 1992).
Formula [25] calculates the contribution of a particu-
lar sibship to the VC likelihood ratio statistic under a
specific range of model parameters, and it is imple-
mented in the software GPC (Purcell et al., 2003 ;
Sham et al., 2000a).

The power of the two ‘reverse’ methods described
in section 5 were discussed by Sham et al. (2002),
Sham et al. (2000b), and Sham and Purcell (2001).
The main strength of the ‘reverse’ regression method
(HE–R) of Sham et al. (2002) compared to the con-
ventional regression methods of section 3 is that this
method is applicable to pedigrees of arbitrary size.
When compared to standard VC, the strength lies in
that selected samples can be analyzed without incur-
ring an inflated type-1 error (as long as the trait is
normally distributed). When analyzing a normally
distributed trait from a random sample, the power of
HE–R (as expressed by simulated mean test statistics)
was the same as VC for sibships of size two and three,
but greater for larger sibships (Sham et al., 2002).
This property, however, was challenged recently by
Yu et al. (2004). They showed that for sibships of size
four or larger, the asymptotic distribution of the
HE–R under the hypothesis of linkage is not a non-
central χ2, and that in fact, this method seems to
provide almost the same empirical power as VC.
When analyzing a nonnormal trait from a random
sample, the HE–R provides very low power.
Nonetheless, this may still be comparable to the
power provided by the original Haseman–Elston
method or any of its extensions. Lastly, misspecifica-
tion of the trait mean can reduce the power of HE–R
considerably. The major strength of the ‘reverse’ VC
method is that it is robust when analyzing nonnormal
data, either from a random or a selected sample.
Nonetheless, the power to detect linkage under non-
normality seems to be extremely low. Thus, although
the risk of false-positives is minimized, false-negatives
are very likely to be observed.

Finally, a brief note on the power of some of the
methods discussed in section 6. Different studies have
documented the increase in power provided by
extreme selection methods (Cardon & Fulker, 1994;
Carey & Williamson, 1991; Gu et al., 1996; Risch &
Zhang ,1995). However, Allison et al. (1998) showed
that under particular conditions, such extreme designs
do not always result in increased power to detect a
QTL. Forrest and Feingold (2000) showed that the
power of their composite method exceeds that of the
mean IBD sharing statistic or the original
Haseman–Elston regression when sib-pairs are chosen
to be moderately discordant (trait values below the
35% or above the 65% quantiles). For the X-chromo-
some statistics, Wiener et al. (2003) reported a power
of ~0.6 (male QTL heritability 0.4) with 500+ sib-
pairs for their regression method. On the other hand,
Ekstrøm (2004) reported a power of ~0.2 (male QTL
heritability 0.5, for a 10-cM map) for their variance
components extension, using 100 nuclear families
with two male and two female siblings each. For the
imprinting methods, both Hanson et al. (2001) and
Shete and Amos (2002) concluded that modeling
imprinting will only provide a significant improve-
ment in the power to detect linkage when the
imprinting effect was moderate to large. They sug-
gested the use of imprinting models only in regions
where evidence for linkage has been previously
observed. Lastly, Fulker et al. (1999) showed that if a
marker locus was the trait locus itself or was in com-
plete linkage disequilibrium with it, their method of
testing for linkage while modeling association resulted
in a significant drop in the linkage signal, when com-
pared to a method which did not model association.
This highlighted the importance of their method to
determine whether a marker locus is the true trait
locus or simply in very close proximity to it.

In summary, many linkage methods have been
developed, with varying strengths and weaknesses.
Which method to use depends on factors such as the
ascertainment scheme, data properties, and the aim
of the analysis. Ultimately, however, it depends on
the type-1 error and the power provided by the dif-
ferent alternatives. Both the type-1 error and the
power of a test should always be investigated to
assess the likelihood of observing false-positive and
false-negative results.
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