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Abstract. We investigate the spectral theory of integrable actions of a locally
compact abelian group on a locally convex vector space. We start with an analysis of
various spectral subspaces induced by the action of the group. This is applied to analyse
the spectral theory of operators on the space, generated by measures on the group. We
apply these results to derive general Tauberian theorems that apply to arbitrary locally
compact abelian groups acting on a large class of locally convex vector spaces, which
includes Fréchet spaces. We show how these theorems simplify the derivation of Mean
Ergodic theorems.
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1. Introduction. The aim of this paper is to develop enough spectral theory of
integrable group actions on locally convex vector spaces to prove Tauberian theorems,
which are applicable to ergodic theory. The Tauberian theorems proved in Section 5
apply to the situation where a general locally compact abelian group acts on certain
types of barrelled spaces, and in particular all Fréchet spaces. This generalises the
Tauberian theorem shown in [4], which applies only to the action of the integers on
a Banach space. We use these theorems to simply derive Mean Ergodic theorems in a
rather general context.

The bulk of this paper consists of using spectral theory to derive dynamical
properties of the action of a locally compact abelian group G on the topological
vector space E, from harmonic analytic considerations on the group itself.

The plan of this paper is as follows: Section 2 contains some basic material on
harmonic analysis and topological vector spaces. First, there is a brief discussion on
the harmonic analysis required and includes extensions of known results, most notably
Theorem 2.1. There follows some work on locally convex topological vector spaces and
vector-valued measures. These results form the core of the techniques used to transfer
information from the group to the topological vector space upon which it acts.

In Section 3, we discuss integrable actions of G on E. We shall do so using general
topological considerations and employing a little measure theory of vector-valued
measures in the hope that it will bring some clarity to the idea (Definition 3.1). This
definition elaborates on an idea introduced in [1] and is discussed elsewhere, such as
in [7, 12, 13]. In this work, we stress the continuity properties that a group action
may have, and how such continuity properties can be analysed using vector-valued
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measure theory. Next we introduce spectral subspaces by providing the definitions that
appear in [1, 6, 7], namely Definitions 3.6 and 3.8. We demonstrate that they are in
fact the same. There is a third kind of spectral subspace given in Definition 3.10. It is
important because it is directly related to a given finite Radon measure and provides
a link to the associated operator. We show how this type of spectral subspace is
related to the first two mentioned. Finally, we show how to employ the tool of spectral
synthesis in harmonic analysis to analyse spectral subspaces. Here the highlight is
Theorem 3.15.

In Section 4 we discuss properties of operators on E induced by finite Radon
measures on G. A major theme is how properties of the Fourier transform of a measure
determine how the associated operator will act on spectral subspaces. This underlines
the intuition that the Fourier transform on the group side of an action corresponds
to spectral spaces on the vector space side. For the development of the Tauberian
theorems, we need to know how to transfer convergence properties of sequences
of measures to convergence properties of sequences of operators. This is done in
Proposition 4.3. We prove these results by applying our knowledge of the relationship
between a convergent sequence of measures and its sequence of Fourier transforms
as set out in Section 2, as well as the link between spectral synthesis and spectral
subspaces.

Having developed enough spectral theory, we come to the highlight of this work:
the Tauberian theorems 5.1 and 5.2. Apart from being generally applicable to situations
where a locally compact abelian group G acts on a Fréchet space X , it also handles
general topologies of the action − where the action is continuous in the weak or strong
operator topologies as well as intermediate topologies. We also discuss some general
cases in Remark 5.3 where the hypotheses of the Tauberian theorems are automatically
satisfied.

In Section 6 we show how, from the Tauberian results, we can quickly deduce
Mean Ergodic theorems for general locally compact abelian groups acting on Fréchet
spaces.

2. Harmonic analysis and locally convex vector spaces. We develop here the
harmonic analysis of abelian locally compact Hausdorff groups that we shall require.
Thereafter, we discuss some locally convex topologies on vector spaces.

By M(G) we shall mean the Banach*-algebra of all finite Radon measures on G,
where the multiplication of measures is given by their convolution. The closed ideal
of all those measures absolutely continuous with respect to the Haar measure is the
Banach algebra L1(G). By Ĝ we shall mean the Pontryagin dual of G consisting of all
continuous characters of G; we will call continuous characters simply ‘characters’ in
what follows. We denote by μ̂ the Fourier transform of a measure μ ∈ M(G) and by
ν(μ) = {ξ ∈ Ĝ : μ̂(ξ ) = 0} the null-set of μ.

We will need some results concerning the convergence of measures given the
convergence of their Fourier series. We recall some elements of the representation
theory of groups, as presented in Chapter 3 of [5]. We denote by P ⊂ Cb(Ĝ) the set
of continuous functions of positive type. Such functions are also known as positive-
definite functions. (See [5] for the theory of functions of positive type, and both [5] and
[9] for material on positive-definite functions).

SetP0 = {φ ∈ P : ‖φ‖∞ ≤ 1}. This set, viewed as a subset of the unit ball of L1(G)∗,
is weak*-compact.

We have the following extension of [9, Theorem 1.9.2].
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THEOREM 2.1. Let (μn) be a bounded sequence of Radon measures on G and let K be
a closed subset of Ĝ such that K is the closure of its interior. If (μ̂n) converges uniformly
on compact subsets of K to a function φ, then there is a bounded Radon measure μ such
that μ̂ = φ on K.

Proof. Without loss of generality, we may assume that (μn) ⊂ M+
1 (G), the set of

positive Radon measures of norm no greater than 1. Also, for those closed K ⊂ Ĝ as
in the hypotheses, the space Cb(K) may be identified with a norm-closed subspace of
L∞(K, m), where m is the Haar measure on Ĝ. In the sequel, all L∞-spaces will be taken
with respect to the Haar measure and so we shall simply write L∞(K) for L∞(K, m).

First we prove the result for compact K . Note that P0 ⊂ Cb(Ĝ), which can be
identified with a closed subset of L∞(Ĝ). Furthermore, P0 is absolutely convex and
closed in the weak*-topology on L∞(Ĝ) and hence closed in the finer norm topology.
Now consider the restriction map R : L∞(G) → L∞(K). This map is not only norm-
continuousbut also weak*-continuous. Hence, R(P0) is weak*-compact and absolutely
convex in L∞(K), which implies that it is also norm-closed. Of course, R(P0) ⊂ C(K),
which can be identified with a closed subset of L∞(K).

By Bochner’s Theorem (cf [9] or [5]), the Fourier transform gives a bijection
between M+

1 (G) and P0(Ĝ). This means that (μ̂n|K ) ⊂ R(P0). By hypothesis, this
sequence converges uniformly to some φ ∈ R(P0) and so there is a φ̃ ∈ P0 such that
R(φ̃) = φ. Consequently, there is a μ ∈ M+

1 (G) such that μ̂ = φ̃ and so μ̂|K = φ.
This proves the result when K is compact. To prove it in the general case when K

is closed, we use the above result as well as the fact that Bochner’s Theorem states that
the Fourier transform is in fact a homeomorphism when M+

1 (G) and P0(Ĝ) are each
given their weak*-topologies.

As (μ̂n|K ) is bounded and converges uniformly on compact subsets of K , its limit
φ is continuous and bounded on K . Let C be the collection of all compact subsets of
K, which are the closures of their interiors. For any C ∈ C, define

S(C, φ) = {μ ∈ M+
1 (G) : μ̂|C = φ|C} ⊂ M+

1 (G).

As proved above, S(C, φ) is non-empty. Furthermore, S(C, φ) is a weak*-compact
subset of M+

1 (G). To see this, set

BC(φ) = {f ∈ L∞(G) : f |C = φ|C a.e.}

and note that BC(φ) is weak*-closed. Hence, P0 ∩ BC(φ) is weak*-compact. Finally
P0 ∩ BC(φ) is the image of S(C, φ) under the Fourier transform, so S(C, φ) must be
weak*-compact as well, by Bochner’s Theorem.

Now the collection {S(C, φ) : C ∈ C} is a collection of non-empty weak*-compact
subsets of M+

1 (G). This collection has the finite intersection property, because if
C1, C2, . . . , Cn ∈ C, then

S(C1, φ) ∩ S(C2, φ) ∩ . . . ∩ S(Cn, φ) = S(C1 ∪ C2 ∪ . . . ∪ Cn, φ),

which is, of course, also non-empty. Hence, the intersection of all the sets S(C, φ) is
non-empty. Let μ be in this intersection.

Then μ̂|C = φ|C for every C ∈ C; hence μ̂|K = φ. �
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There is an ideal of L1(G) that will be important for our purposes: K(G), the set
of all functions in L1(G) whose Fourier transforms have compact support. It is shown
in [5, 9] that the ideal K(G) is a norm-dense subset of L1(G).

Turning to closed ideals I of L1(G), we can define the null-set ν(I) as we did for
individual functions and measures:

ν(I) = {ξ ∈ Ĝ : f̂ (ξ ) = 0, for all f ∈ I}.
Thus, to each closed ideal in L1(G) we can assign a unique closed subset of Ĝ.

However, the converse is not true in general: For a closed subset K of Ĝ, there is
usually more than one ideal whose null-set is K . Among all such ideals, two can be
singled out: the largest, ι+(K) consisting of all f ∈ L1(G) such that f̂ is 0 on K , and the
smallest, ι−(K), consisting of all f ∈ L1(G) such that f̂ is 0 on some open neighbourhood
of K . From the definitions, it is clear that ι−(K) ⊆ ι+(K). It is proved in [5, 9] that if I
is a closed ideal in L1(G) with ν(I) = K , then

ι−(K) ⊆ I ⊆ ι+(K).

There are some sets K for which there is only one associated ideal. Such closed
sets are called sets of synthesis, or S-sets for short. In this case, we shall call ι(K) the
unique ideal associated with the S-set K . The fact that such sets have only one closed
ideal in L1(G) associated with them will be used often in what follows.

Spectral synthesis will play a large part in the sequel. References for this material
are [9, Section 7.8] and [5, Section 4.6]. To fix notation, we make a few remarks here.
Any weak*-closed translation-invariant subset T of L∞(G) has a spectrum, denoted by
σ (T), consisting of all characters contained in T . The spectrum is always closed in Ĝ.

The following theorem is crucial in the use of spectral synthesis. It is a slight
restatement of [6, Théorème F, p. 132]. The second part is proved in [9, Theorem
7.8.2e)] (a special case is shown in [5, Proposition 4.75]).

THEOREM 2.2 (Spectral Approximation Theorem). Let V be a weak*-closed
translation-invariant subspace of L∞(G) with spectrum σ (V ) = �. Then for any open set
U containing �, any f ∈ V can be weak*-approximated by trigonometric polynomials
formed from elements of U.

Furthermore, if � is an S-set, then any f ∈ V can be weak*-approximated by
trigonometric polynomials formed from elements of �.

We need the following modification of [6, Théorème A, p. 124].

THEOREM 2.3. Let K be a compact subset of Ĝ and let μ be a measure in M(G)
whose Fourier transform μ̂ does not vanish on K. Then there exists a g ∈ L1(G) satisfying
ĝ(ξ ) = 1

μ̂(ξ ) for all ξ ∈ K.

Proof. By [5, Lemma 4.50] or [9, Theorem 2.6.2], there exists a summable h on
G such that ĥ = 1 on K . As μ ∗ h ∈ L1(G), we can apply [6, Théorème A, p. 124] to
obtain a g ∈ L1(G) such that

ĝ(ξ ) = 1

̂μ ∗ h(ξ )

for all ξ ∈ K . From the above equation and the fact that ĥ = 1 on K , we see that this g
is the one required. �
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As with Theorem 2.1, we will often be in a position where we must infer properties
of a summable function μ from knowledge of its Fourier transform on a compact subset
K ⊂ Ĝ. Of course, there will be in general many functions whose Fourier transforms
agree on K .

To clarify the situation, we make use of a quotient space construction. Using
ι+(K), the largest ideal with null-set K , we can form the quotient L1(G)/ι+(K). Let [μ]
denote an element of this quotient; it is an equivalence class consisting of all functions
ν such that μ̂|K = ν̂|K .

The following lemma exemplifies some of the techniques employed when working
with quotient spaces of L1(G), and will come in handy when proving the main result,
Theorem 5.1.

LEMMA 2.4. Let (ϕn) be a sequence in L1(G) and let K be a compact subset of Ĝ. If
([ϕn]) ⊂ L1(G)/ι+(K) is a relatively weakly compact sequence and limn→∞ ϕ̂n(ξ ) exists
for each ξ ∈ K, then ([ϕn]) is weakly convergent.

Proof. Suppose ([ϕn]) was not weakly convergent. Being relatively weakly compact,
it must then contain two weakly convergent subsequences ([ϕnk ]) and ([ϕn	

]) with
different limits [μ] and [ν] respectively.

The Gelfand transform FK : L1(G)/ι+(K) → C(K), given by ϕ 
→ ϕ̂|K , is norm-
continuous and hence weakly continuous. Therefore, (̂ϕnk ) and (̂ϕn	

) are weakly
convergent in C(K). By [2, Ch. VII, Theorem 2], this means that limk→∞ ϕ̂nk (ξ ) = μ̂(ξ )
and lim	→∞ ϕ̂n	

(ξ ) = ν̂(ξ ). By hypothesis, then μ̂ = ν̂ on K and so [μ] = [ν] in
L1(G)/ι+(K), a contradiction. Hence, ([ϕn]) is weakly convergent. �

We now mention some aspects of the theory of locally convex topological vector
spaces. A pair of complex vector spaces (E, E′) is said to be a dual pair if E′ can be
viewed as a separating set of functionals on E and vice versa. For example, a Banach
space X and its dual X∗ are in duality.

The spaces E and E′ induce upon each other certain topologies via their duality.
We denote the smallest such topology, the weak topology, by σ (E, E′), and the largest,
the strong topology, by β(E, E′). There is also the Mackey topology, called τ (E, E′),
which is the finest locally convex topology on E such that under this topology, E′ is
exactly the set all continuous linear functionals on E.

Suppose (E, E′) and (F, F ′) are dual pairs. The set of all σ (E, E′) − σ (F, F ′)-
continuous linear mappings between topological vector spaces E and F is denoted
by Lω(E, F)). The set of all β(E, E′) − β(F, F ′)-continuous linear mappings between
topological vector spaces E and F is denoted by Lσ (E, F)).

Now any linear map T : E → F is σ (E, E′) − σ (F, F ′)-continuous if and only if it is
τ (E, E′) − τ (F, F ′)-continuous. Also, if T : E → F is σ (E, E′) − σ (F, F ′)-continuous,
then it is β(E, E′) − β(F, F ′)-continuous. Hence, Lω(E, F) ⊂ Lσ (E, F).

A linear map from a Fréchet space X to a locally convex topological vector space
is continuous if and only if it is bounded. Hence, the set B(X) of all bounded linear
mappings from X to itself is precisely the set of all τ − τ and hence σ − σ -continuous
linear mappings. On a Fréchet space, the τ and β topologies are the same, so in this
case we have Lω(X) = Lσ (X) = B(X).

The weak operator topology (WOT) and the strong operator topology (SOT) can be
described in terms of dual pairs. The pair (Lω(E), E ⊗ E′) is in duality via the bilinear
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form

〈T, x ⊗ y〉 := y(T(x)).

Then the WOT on Lω(E) is generated by the polars of all finite subsets of E ⊗ E′. The
SOT is generated by polars of the form A ⊗ B, where A is a finite subset of E and B is a
ξ -equicontinuous subset of E′.

We make some remarks on vector-valued functions on a measure space (
,μ).
Here the theory and proofs closely follow the standard treatments for Banach space-
valued functions, such as [11] or [3]. A μ-simple measurable function f : 
 → E is given
by f = ∑N

i=1 χEi xi, where E1, . . . , EN are μ-measurable subsets of 
 and x1, . . . , xN ∈
E. A function f : 
 → E is said to be μ-measurable if there is a sequence of μ-simple
measurable functions (fn) that converges μ-almost everywhere to f . This means that for
any neighbourhood U of 0 in E and ε > 0, there is an N ∈ � such that for all n > N,

μ
({x : fn(x) − f (x) /∈ U}) < ε.

A function f : 
 → E is said to be μ-weakly measurable if the scalar-valued function
e′f is μ-measurable for every e′ ∈ E′. Finally, f is μ-essentially 〈separably/metrisably〉
valued if there is a μ-measurable subset A of 
 whose complement has measure 0 such
that f (A) is contained in a 〈separable/metrisable〉 subspace of E.

It is worth noting that there are convex separable vector spaces that are not
metrisable. The strict inductive limit topology discussed in [8, Section VII.1] can be
used to construct such topologies.

THEOREM 2.5 (Pettis Measurability Theorem). For a σ -finite measure space (
,μ)
and dual pair (E, E′) under a topology ξ , the following are equivalent for a μ-essentially
metrisably valued function f : 
 → E:

(1) f is μ-measurable.
(2) f is μ-weakly measurable and essentially separably valued.

The proof of this theorem is a straightforward adaptation of the proof of the
Banach space-valued proof presented in [11]. In particular, if E is separable and
metrisable, the measurability and weak measurablility of a function are equivalent.

Turning to the question of the integrability of vector-valued functions, we shall
require two different integrals. We define the integral of a μ-simple measurable function
f = ∑N

i=1 χEi xi to be

∫



f dμ =
∫




N∑
i=1

xiχi dμ =
N∑

i=1

μ(Ei)xi. (1)

DEFINITION 2.6. Consider a σ -finite measure space (
,μ) and dual pair (E, E′)
under a topology ξ and let f : 
 → E be a vector valued function.

(1) If f is μ-weakly measurable, we say that it is μ-Pettis integrable if for every
μ-measurable subset A ⊂ 
 there is an element

∫
A f dμ ∈ E such that for all

e′ ∈ E′, 〈∫
A

f dμ, e′
〉

=
∫

A

〈
f (ω), e′〉 dμ(ω). (2)

https://doi.org/10.1017/S0017089512000699 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000699


TAUBERIAN THEOREMS AND SPECTRAL THEORY 517

(2) If f is μ-measurable and Pettis integrable, we say that it is μ-Bochner integrable
if there exists a sequence (fn) of μ-simple measurable functions converging a.e.
to f such that for every equicontinuous subset A ⊂ E′

∫



sup
e′∈A

|〈f (x) − fn(x), e′〉| d|μ|(x) −→ 0 (3)

as n → ∞.

In the definition of the Bochner integral, the hypothesis that the function is Pettis
integrable ensures that the sequence (

∫



fndμ) is not only Cauchy but also convergent.
We define the Bochner integral of a μ-Bochner integrable function by the limit∫




f (x) dμ(x) = lim
n→∞

∫



fn(x) dμ(x).

The proof of the existence of this limit and its independence from the particular
sequence of μ-simple measurable functions chosen works exactly as in the Banach-
valued case.

LEMMA 2.7. If f is μ-Bochner integrable from the measure space (
,μ) into the
convex vector space E, then for any equicontinuous A ⊂ E′ we have

sup
e′∈A

∣∣∣∣
〈∫




f dμ, e′
〉∣∣∣∣ ≤

∫



sup
e′∈A

|〈f (x), e′〉| d|μ|(x). (4)

These integrability concepts will be crucial to understanding continuity properties
of the action of a group on a convex vector space and will be used in Definition 3.1.

3. Integrable actions and spectral subspaces. We first describe the general type of
Group Actions that shall concern us. In [7], for example, the author uses the central
concept of an integrable action. Earlier Godement in [6] considered bounded group
actions on Banach spaces to study Tauberian theorems. However, we shall work more
generally, considering actions on locally convex vector spaces. Many of these ideas are
important in Operator Theory and so expositions of various aspects of this material
can be found in [7] and [12]. We differentiate between two types of integrability − weak
and strong − and express our definition in the language of vector-valued integration
theory. We use [8] as our reference for the theory of locally convex topological vector
spaces.

We take as our starting point the concept of an integrable action, given in Definition
3.1. We pay special attention to the different topologies on Lω(E) and how this affects
the continuity properties of α. From there, as in Arveson’s work [1], we define various
kinds of spectral subspaces in Definitions 3.6 and 3.8, stressing their equivalence. Other
kinds of spectral subspaces are considered in Definition 3.10. In this section, we will
stress the importance of S-sets, a condition from harmonic analysis that fruitfully links
all these different kinds of spectral subspaces. One advantage of this is that, depending
on the situation, it will be easier to recognise invariant subspaces as being spectral
subspaces of one of these types; the general theory presented here will show how to
view each of these subspaces in the light of the other, complementary definitions.
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DEFINITION 3.1. An action α of a locally compact group G on a dual pair of
topological vector spaces (E, E′) is a homomorphism t 
→ αt from G into Lω(E).

The action α is a weak action if it is bounded and continuous when Lω(E) has the
WOT. The action α is a strong action if it is bounded and continuous when Lω(E) has
the SOT.

We call a weak action α a weak integrable action if for each x ∈ E, the function
t 
→ αt(x) is μ-Pettis integrable for every finite Radon measure μ on G.

We call a strong action α a strong integrable action if for each x ∈ E, the function
t 
→ αt(x) is μ-Bochner integrable for every finite Radon measure μ on G.

From the definitions it is immediate that the transposed map t 
→ α′
t of an action

on E is an action on E′ and that α′ is weak or strong integrable if and only if α has
that property. Indeed, we work with the space Lω(E) because it contains an operator
T if and only if the transpose T ′ lies in Lω(E′). With a view to our applications in the
final section, recall from Section 2 that if E is a Fréchet space, then Lω(E) = Lσ (E).

It is also clear that an integrable action yields a map, also called α, from M(G) to
Lω(E), sending μ to αμ, where αμ is the Pettis integral of equation (2) in Definition 2.6:

〈αμ(x), y〉 =
∫

G
〈αt(x), y〉 dμ(t).

The validity of this equation for the action α is the definition of an integrable
action in [1, 7].

DEFINITION 3.2. For each x ∈ E and y ∈ E′, we define the function ηx,y : G → �

by

ηx,y : t 
→ 〈αt(x), y〉. (5)

Note that each ηx,y is in Cb(G) ⊂ L∞(G).
For each x ∈ E, we also define a weak*-closed subspace Ex of L∞(G) by

Ex = {ηx,y : y ∈ E′} wk∗. (6)

Note that Ex is translation-invariant. Indeed, for any x ∈ G,

ηx,y(t + s) = 〈αt+s(x), y〉 = 〈αt(x), α′
s(y)〉

and so the function t 
→ ηx,y(t + s) ∈ Ex.
Part of the importance of the above definition stems from the fact that the well-

defined map η : E ⊗ E′ : x ⊗ y 
→ ηx,y is the transpose of α : M(G) → Lω(E) : μ 
→
αμ.

LEMMA 3.3. Let E be a convex vector space with topology ξ and dual E′. Let α be
an action of G on E.

(1) If α is weak integrable then the map M(G) → Lω(E) defined by μ 
→ αμ is weak-
WOT and norm-SOT continuous.

(2) If α is strong integrable then the map M(G) → Lω(E) defined by μ 
→ αμ is
weak-SOT and norm-SOT continuous.

Proof. For the first part, define as above η : E ⊗ E′ → Cb(G) by η(x ⊗ y) = ηx,y.
By definition of the Pettis integral, η is the transpose of α : M(G) → Lω(E). As
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Cb(G) may be identified with a subspace of M(G)∗ by [8, Ch. II, Prop. 12 p. 38], α

is σ (M(G), M(G)∗) − σ (Lω(E), E ⊗ E′)-continuous, that is, weak-WOT continuous. As
noted in Section 2, this means that α is also β(M(G), M(G)∗) − β(Lω(E), E ⊗ E′)-
continuous, that is, norm-SOT continuous.

For the second part, recall that a neighbourhood base of the SOT topology onLω(E)
is given by sets of the form W (A, V ), where A is a finite subset of E, V is an absolutely
convex ξ -neighbourhood in E and W (A, V ) = {T ∈ Lω(E) : T(A) ⊆ V}. To prove the
result, we must show that for every such W (A, V ) there is a weak neighbourhood U
of M(G) such that U is mapped into W (A, V ).

As α is a strong bounded action, for each x ∈ E and V as above, fx,V : t 
→
supe′∈V◦ |〈αt(x), e′〉| is bounded and continuous. In fact, the strong boundedness
of α implies that for each x ∈ E, there is an M ∈ �+ such that {αt(x) : t ∈ G} ⊂
M.W (A, V ). The polar of the finite subset {fx,V : x ∈ A} ⊂ Cb(G) ⊂ M(G)∗ is a weak-
neighbourhood in M(G). Call this set U . Then by (4) of Lemma 2.7, (1/M)U ⊂
W (A, V ).

From the above, the norm-SOT continuity is trivial. �
For an action to be integrable, E in the topology τ (E, E′) must possess a fair degree

of completeness – complete enough for the action to be weak or strong integrable. We
show that this is the case for Fréchet spaces. Recall that a Fréchet space X with dual
X∗ has the Mackey topology τ (X, X∗) and is metrisable and complete.

PROPOSITION 3.4. Let G be a locally compact σ -compact abelian group and X is a
Fréchet space with dual X∗. If αt is a continuous isomorphism from X to itself such that
the mapping t 
→ αt from G into B(X) is continuous and bounded when B(X) has the WOT,
then α is a weak integrable action of G on the dual pair (X, X∗).

Proof. In the sequel, fix an x ∈ X . From the hypotheses, the map t 
→ αt(x) is
continuous when X has its weak topology. Hence, if K is a compact subset of G, the
set αK (x) = {αt(x) : t ∈ K} is weakly compact. As a Fréchet space is barrelled, by [8,
Ch. IV, Corollary 3, p. 66], the closed convex hull of αK (x), denoted by co

(
αK (x)

)
, is

also weakly compact. Suppose that μ is a Radon probability measure on K . By [2,
Theorem 1 p. 148], there is a unique xK,μ ∈ co

(
αK (x)

)
such that

〈xK,μ, y〉 =
∫

K
〈αt(x), y〉 dμ(t)

for all y ∈ X∗. By the same token, if μ is not a probability measure, there exists a
unique xK,μ ∈ ‖μ‖co

(
αK (x)

)
.

Now fix a μ ∈ M(G) and a sequence of compact sets Kn ⊂ G whose union is all of
G. Write xn = xKn,μ for each n ∈ �. We will show that the sequence (xn) is Cauchy in
X under the τ (X, X∗)-topology and hence convergent.

A neighbourhood base of 0 in the Mackey topology is by definition given by the
polar sets Y ◦, where Y ⊂ X∗ is σ (X∗, X)-compact and absolutely convex.

Now as the map t 
→ αt(x) is bounded, the orbit set {αt(x) : t ∈ G} is bounded in
all topologies of the dual pair (X, X∗), including the Mackey topology. Hence, there is
an M ∈ � such that

|〈αt(x), y〉| ≤ M

for all t ∈ G and y ∈ Y .
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Take N ∈ � such that |μ|(G\KN) ≤ 1/M. Then for n > m > N,

|〈xn − xm, y〉| =
∣∣∣∣
∫

Kn

〈αt(x), y〉 dμ(t) −
∫

Km

〈αt(x), y〉 dμ(t)
∣∣∣∣

=
∣∣∣∣
∫

Kn\Km

〈αt(x), y〉 dμ(t)
∣∣∣∣

≤
∫

Kn\Km

|〈αt(x), y〉| d|μ|(t)

≤
∫

G\Km

|〈αt(x), y〉| d|μ|(t) ≤ 1.

Hence, xn − xm ∈ Y ◦ and (xn) is Cauchy in X under the Mackey topology. As the
Fréchet space is complete in this topology, the sequence has a limit. Call its limit αμ(x).
We have shown that

〈αμ(x), y〉 = lim
n→∞

∫
Kn

〈αt(x), y〉 dμ(t) =
∫

G
〈αt(x), y〉 dμ(t).

Therefore, the action is weakly integrable. �
PROPOSITION 3.5. Let α be a strong action of a locally compact σ -compact abelian

group G on a Fréchet space X. Then α is a strong integrable action for any finite Radon
measure.

Proof. Let μ be a finite Radon measure and x ∈ X . We are going to show that f (t) =
αt(x) is μ-measurable by constructing a sequence of μ-simple measurable functions
converging a.e. to it. Fix an ε > 0 in all the constructions that follow. As G is σ -compact,
there is a compact K ⊂ G such that μ(G\K) < ε. Because α is strongly continuous,
αK (x) = {αt(x) : t ∈ K} is compact and so for any open neighbourhood U of 0, there
is a finite set t1, . . . , tn ∈ G such that the sets αt1 (x) + U, . . . , αtn (x) + U cover αK (x).
Let E1 = αK (x) ∩ (αt1 (x) + U) and Ei = (

αK (x) ∩ (αti (x) + U)
)\Ei−1 for i = 2, . . . , n.

Define the μ-simple function

fU,K (t) =
n∑

i=1

αti (x)χEi (t).

Then μ({t ∈ G : f (t) − fU,K (t) /∈ U}) < ε. As X is metrisable, we may choose a
decreasing sequence of open neighbourhoods of 0, say (Ui), that generate the topology.
Owing to the σ -compactness of G, we can choose an increasing sequence of compact
subsets of G, say (Ki), whose union is all of G and such that μ(G\Ki) < 1/ i. Define

fi := fUi,Ki .

This sequence of μ-measurable functions converges a.e. to f . (Note that the functions
fi do not depend on ε for their construction.)

Next we show that f is μ-Bochner integrable. Take any equicontinuous setA ⊂ X∗.
Its polar A◦ is a neighbourhood of 0 in X and so there is an N1 ∈ � such that
Un ⊂ (ε/2|μ|(G))A◦ for all n ≥ N1. Let M = supt∈G supe′∈A |〈f (t), e′〉|. This value is
finite because the boundedness of the action ensures that f is bounded too. There is an
N2 ∈ � such that M/n < ε/2 for any n ≥ N2.
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For any n ≥ N = max{N1, N2}, we compute:∫



sup
e′∈A

|〈f (t) − fn(t), e′〉| d|μ|(t)

≤
∫

Ki

sup
e′∈A

|〈f (t) − fn(t), e′〉| d|μ|(t) +
∫

G\Ki

sup
e′∈A

|〈f (t) − fn(t), e′〉| d|μ|(t)

≤
∫

Ki

ε

2|μ|(G)
d|μ|(t) +

∫
G\Ki

sup
e′∈A

|〈f (t), e′〉| d|μ|(t) +
∫

G\Ki

sup
e′∈A

|〈fn(t), e′〉| d|μ|(t)

≤ ε

2
+ M

n
+ 0

≤ ε

2
+ ε

2
= ε.

As ε is arbitrary throughout the above constructions, we see that (3) of Definition
2.6 is satisfied. Hence, α is a strong integrable action. �

Now we turn to the definition and elementary characteristics of spectral subspaces.
In the sequel, α will denote a weak integrable action, unless otherwise specified. We
define certain closed subspaces of E and E′, which are α-invariant.

DEFINITION 3.6 (Arveson [1]). For each open subset 
 ∈ Ĝ define the spectral
R-subspace Rα(
) as the σ (E, E′)-closure in E of the linear span of the elements αf (x),
where x ∈ E, f ∈ K(G) and supp f̂ ⊂ 
. Similarly we define Rα′

(
) in E′.
For each closed subset � of Ĝ we define the spectral M-subspace Mα(�) as the

polar (or annihilator) of Rα′
(Ĝ\�). Similarly we define Mα′

(�) in E′.

If we need to emphasise the space on which G acts, we will write Mα
E(�) and Rα

E(
).
Looking at the definition of Mα(�) given above, x ∈ Mα(�) if and only if

〈x, α′
f (y)〉 = 0 for all y ∈ E′ and all f in K(G) with supp f̂ ⊂ Ĝ\�; i.e. if αf (x) = 0.
In [7, Theorem 8.1.4], the author lists several elementary properties of these

subspaces, several of which also appear in [1, 13].

DEFINITION 3.7. Let V be a σ (E, E′)-closed subspace of E. We define γ (V ) to be
the weak*-closure in L∞(G) of the subspace

{ηx,y : x ∈ V, y ∈ E′}.

Furthermore, we define the spectrum of V to be σ (V ), where σ (V ) = σ (γ (V )).

DEFINITION 3.8 (Godement [6]). For each closed subset � ⊂ Ĝ, we define �(�)
to be the set of all x ∈ E such that the spectrum of the set Ex defined in Definition 3.2
is contained in �.

The subspace �(�) is invariant under the action α. This is because if x ∈ �(�)
then the spectrum of Ex is contained in � and Eαt(x) = Ex.

Again it is clear that γ (V ) is a translation-invariant subspace of L∞(G).
The definitions of �(�) and Mα(�) for a given closed subset � of Ĝ are in

fact equal. We have produced both here because their constructions provide a slightly
different emphasis, which will be useful when proving the main theorems and discussing
examples.

PROPOSITION 3.9. For a given closed subset � of Ĝ, �(�) = Mα(�).
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Proof. Let x ∈ �(�). Take any g ∈ K(G) such that supp ĝ is in Ĝ\�, and any y ∈ E′.
We show that

〈x, α′
g(y)〉 =

∫
G
〈αt(x), y〉g(t) dt = 0. (7)

From this equation, we see at once that x ∈ (Rα′
(Ĝ\�))◦ = Mα(�) and so �(�) ⊆

Mα(�). Now let U be an open subset containing � such that ĝ vanishes on U . As the
space of functions in L∞(G) vanishing on � is weak*-closed, we can apply the Spectral
Approximation Theorem (Theorem 2.2). For any ε > 0 we can find a trigonometric
polynomial

∑N
n=0 an〈t, ξn〉, where ξ1, . . . , ξn ∈ U such that∣∣∣∣∣

∫
G
〈αt(x), y〉g(t) dt −

∫
G

N∑
n=0

an〈t, ξn〉g(t) dt

∣∣∣∣∣ < ε

and as
∫

G

∑N
n=0 an〈t, ξn〉g(t) dt = ∑N

n=0 an̂g(ξn) = 0, we can conclude that∣∣∣∣
∫

G
〈αt(x), y〉g(t) dt

∣∣∣∣ < ε.

As ε is arbitrary, (7) is proved.
For the reverse inclusion, take any x ∈ Mα(�) and y ∈ E′. If x /∈ �(�), then

σ (Ex) �⊆ �. This means that there is a character ξ ∈ σ (Ex)\� which can be
weak*- approximated by a finite combination of functions ηx,y1 , . . . , ηx,yn . Any such
combination is again of the form ηx,y, where y is a linear combination of y1, . . . , yn.
We can in fact find a net y′

i in E′ such that ηx,y′
i
converges in the weak* topology to ξ .

Hence, 〈αt(x), y′
i〉 → ξ (t) as i → ∞ and for any f ∈ L1(G),

〈x, α′
f (y′

i)〉 =
∫

G
〈αt(x), y′

i〉f (t) dt → f̂ (ξ )

as i → ∞. But we can find an f ∈ K(G) such that f̂ (ξ ) �= 0 and f̂ is 0 on an open
neighbourhood of � not containing ξ . Thus, 〈x, α′

f (yi)〉 �= 0, contradicting the fact

that x ∈ Mα(�) = (Rα′
(Ĝ\�))◦.

This contradiction shows that Mα(�) ⊆ �(�), and the proof is complete. �
Apart from the invariant subspaces described above, there are other invariant

subspaces that will be useful to us.

DEFINITION 3.10. Let μ ∈ M(G). The null-space of μ is given by

N(μ) = {x ∈ E : αμ(x) = 0}.

Similarly,

N ′(μ) = {x ∈ E′ : α′
μ(x) = 0}.

The range space of μ is given by

R(μ) = {αμ(x) : x ∈ E} σ ,
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where σ denotes the σ (E, E′)-closure of the space. One can likewise define

R′(μ) = {α′
μ(x) : x ∈ E′} σ .

Again, it is easy to see that these spaces are invariant under the action α of G. We
will have the need of the following straightforward relations between these four sets.

LEMMA 3.11. The following equalities hold between the spaces N(μ), R(μ), N ′(μ)
and R′(μ) defined above:

N(μ) = (
R′(μ)

)◦
,

R(μ) = (
N ′(μ)

)◦
.

Proof. If x ∈ (
R′(μ)

)◦
, then by definition, for any y ∈ E′,

0 = 〈x, α′
μ(y)〉 = 〈αμ(x), y〉.

Hence, αμ(x) = 0 and x ∈ N(μ). Thus,
(
R′(μ)

)◦ ⊆ N(μ).
On the other hand, if x ∈ N(μ), then for any y ∈ E′, 〈x, α′

μ(y)〉 = 0. As the set
{α′

μ(y) : y ∈ E′} is by definition σ (E′, E)-dense in R′(μ), we see that for any z ∈ R′(μ),
〈x, z〉 = 0. Hence, N(μ) ⊆ (

R′(μ)
)◦

.
Putting the two inclusions together, N(μ) = (

R′(μ)
)◦

.
The second equation is proved in the same manner as the first. �
Although the subspaces given in Definition 3.10 are similar to the spectral

subspaces specified in Definition 3.6, they are not in general the same. Whether or
not they are equal depends on the structure of the null-set ν(μ) of the measure. To
prove the results linking the two types of subspaces, we first define certain types of
ideals.

DEFINITION 3.12. Let x ∈ E and set Ix = {f ∈ L1(G) : αf (x) = 0}. Similarly for
x ∈ E′ we define Ix.

These closed ideals are called the isotropy ideals, to borrow a term from the study
of group actions on sets. Takesaki uses them in [12] as the basis for his analysis of
spectral subspaces.

LEMMA 3.13. Let μ be a measure in M(G). The inclusion N(μ) ⊆ Mα(ν(μ)) always
holds. If, furthermore, the null-set ν(μ) is an S-set, then N(μ) = Mα(ν(μ)).

Proof. Let x ∈ N(μ): this means αμ(x) = 0. Now take any α′
f (y) ∈ Rα′

(Ĝ\ν(μ))

and set K = supp f̂ ⊂ {ξ : μ̂(ξ ) �= 0}. By Theorem 2.3, there is an h ∈ L1(G) such that
μ̂̂h = 1 on K . Hence, (h ∗ μ ∗ f )̂ = f̂ and so by the Fourier Uniqueness Theorem,
h ∗ μ ∗ f = f . We conclude that

〈x, α′
f (y)〉 = 〈αf (x), y〉 = 〈αhαμαf (x), y〉 = 0,

which shows that x ∈ Mα(ν(μ)).
To prove the second part of the lemma, we must prove the reverse inclusion under

the additional hypothesis that ν(μ) is an S-set. Let x ∈ Mα(ν(μ)). Consider f ∈ K(G)
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such that f has compact support in Ĝ\ν(μ). By definition, Mα(ν(μ)) = (
Rα′

(Ĝ\ν(μ))
)◦

,
so

0 = 〈x, α′
f (y)〉 = 〈αf (x), y〉

for all y ∈ E′. Hence, it must be that αf (x) = 0; so f ∈ Ix. Now because ν(μ) is an
S-set, the set of all f ∈ K(G) with supp f̂ ⊂ Ĝ\ν(μ) generates ι(ν(μ)), the unique ideal
with null-set ν(μ). Therefore, Ix ⊇ ι(ν(μ)).

Let (gi)i∈� be an approximate identity for L1(G). We have that μ ∗ gi ∈ Ix for each
i ∈ �. As μ ∗ gi → μ in norm, αμ = limi→∞ αμ∗gi in the SOT and in fact

αμ(x) = lim
i→∞ αμ∗gi (x) = 0.

Therefore, x ∈ N(μ) and Mα(ν(μ)) ⊆ N(μ). �
In discussing the properties of operators induced by measures in the next section,

we will need to know how to approximate the functions ηx,y by trigonometric
polynomials. This is presented in Theorem 3.15. To prove this theorem, we proceed via
the following calculation of the spectra of certain invariant subspaces.

LEMMA 3.14. Let μ be a finite Radon measure on G and � be a closed subset of Ĝ.
The spectra of the subspaces Mα(�) and N(ν(μ)) are given by

σ (Mα(�)) = �, (8)

σ (N(μ)) ⊆ ν(μ). (9)

Proof. Equation (8) is derived directly from Definitions 3.8, 3.7 and Proposi-
tion 3.9.

For (9), note that by Lemma 3.13 N(μ) ⊆ Mα(ν(μ)) and so by (8), σ (N(μ)) ⊆
ν(μ). �

THEOREM 3.15. Let μ be a finite Radon measure on G, x ∈ N(μ) and y any element
in E′.

Then for any open neighbourhood U containing ν(μ), ηx,y can be weak*-
approximated by a finite linear combination of characters in U.

Furthermore, if ν(μ) is an S-set, each ηx,y can be weak*-approximated by a finite
linear combination of characters in ν(μ).

Proof. If x ∈ N(μ) then Ex ⊂ γ (N(μ)) and σ (Ex) ⊂ σ (N(μ)) by Definitions 3.7
and 3.8. So by Lemma 3.14, σ (Ex) ⊂ ν(μ). Hence, by the Spectral Approximation
Theorem 2.2, for any y ∈ E′, ηx,y can be approximated by finite linear combinations of
characters from U .

For the second part, if ν(μ) is an S-set, then reasoning as above but appealing to
the second part of Theorem 2.2, the result follows at once. �

4. Operators on spectral subspaces. A large class of operators on a vector space
can be induced via the integrable action by finite Radon measures on the group. In
this section we discuss how properties of the measures relate to properties of the
corresponding operators. In particular, we are interested in what can be gleaned from
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the Fourier transform of the measures and how to handle sequences of measures and
their associated operators.

Let us take a sequence of bounded L1(G)-functions (ϕn). We are looking for
conditions on the functions ϕn, n ∈ �, which cause the corresponding operators αϕn to
converge.

LEMMA 4.1. Let U be an open subset of Ĝ and μ, ν be finite Radon measures such
that μ̂ = ν̂ on U. Then the operators αμ and αν are equal on Mα(K) for any compact
subset K of U.

In particular, let μ ∈ M(G) such that μ̂ ≡ 1 on U. If x ∈ Mα(K) then αμ(x) = x.

Proof. First of all, there is an open subset V of U with compact closure such that
K ⊂ V ⊂ V ⊂ U and an h ∈ L1(G) such that ĥ = 1 on V . Then h ∗ μ and h ∗ ν are in
L1(G) and the Fourier transform of h ∗ μ − h ∗ ν is zero on V ⊃ K .

Now fix an x ∈ Mα(K) and a y ∈ E′. By Theorem 3.15, for any ε > 0 and any
f ∈ L1(G), there is a trigonometric polynomial

∑n
i=0 ci〈t, ξi〉 with ξi ∈ V such that∣∣∣∣∣

∫
G

ηx,y(t)f (t) dt −
∫

G

n∑
i=0

ci〈t, ξi〉f (t) dt

∣∣∣∣∣ < ε.

Taking f = h ∗ μ − h ∗ ν, we have

∣∣〈αμ(x), y〉 − 〈αν(x), y〉∣∣ =
∣∣∣∣
∫

G
〈αt(x), y〉 (h ∗ μ − h ∗ ν)(t) dt

∣∣∣∣
< ε +

∣∣∣∣∣
n∑

i=0

ci
(
̂h ∗ μ − ĥ ∗ ν

)
(ξi)

∣∣∣∣∣ = ε

due to the equality of ̂h ∗ μ and ĥ ∗ ν on V . As ε and y are arbitrary, we have shown
that for any x ∈ Mα(K), αμ(x) = αν(x). �

COROLLARY 4.2. Let K be a compact set in Ĝ and let U be an open set containing K.
Furthermore, let μ ∈ M(G) such that μ̂ is never 0 on U. Then αμ is invertible on Mα(K)
and its inverse is continuous.

Proof. There is an open set V with compact closure such that K ⊂ V ⊂ V ⊂ U
and μ̂ is never 0 on V . By Theorem 2.3, there is a function g ∈ L1(G) such that ĝμ̂ = 1
on V . By Lemma 4.1, αg∗μ(x) = x for all x ∈ Mα(K). Because αg∗μ = αgαμ, the inverse
of αμ on Mα(K) is αg. �

PROPOSITION 4.3. Let α be an action of a locally compact abelian Hausdorff group
G on the dual pair (E, E′), where E has the topology ξ . Let K ⊂ Ĝ be a compact set and
let (μn) be a sequence of functions in L1(G) such that the sequence ([μn]) ⊂ L1(G)/ι−(K)
is weakly convergent.

If α is weak integrable, then there is a function � in L1(G) such that the sequence
(αμn ) converges to α� on Mα(K) in the WOT.

If α is strong integrable, then (αμn ) converges to α� on Mα(K) in the SOT.

Proof. Suppose that α is weak integrable. We shall show that the map

αK : L1(G)/ι−(K) → Lω(Mα(K)) : [μ] 
→ αμ

∣∣
Mα(K)
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is well defined and weak-WOT continuous. If μ and ν are in L1(G) such that [μ] =
[ν] ∈ L1(G)/ι−(K), then μ̂ = ν̂ on some open set containing K and so by Lemma 4.1,
αμ = αν on Mα(K). Hence, αK is well defined.

Now by Definition 3.6, the dual of Mα(K) is the quotient space E′/Rα′
(Ĝ\K).

For any y ∈ E′, let [y] denote the equivalence class of y in E′/Rα′
(Ĝ\K). The spaces

Lω(Mα(K)) and Mα(K) ⊗ E′/Rα′
(Ĝ\K) are in duality via the bilinear form 〈T, x ⊗

[y]〉 = 〈Tx, [y]〉 and the map

ηK : Mα(K) ⊗ E′/Rα′
(Ĝ\K) → Cb(G) : x ⊗ [y] 
→ ηx,y

is well defined. By Proposition 3.9, ηx,y ∈ ι+(K)◦ ⊆ ι−(K)◦, the dual of L1(G)/ι−(K).
From this we see that ηK is the transpose of αK . Hence, by [8, Ch. II, Prop. 12, p. 38]
and the fact that ηK is the transpose of αK , the map αK is weak-WOT continuous.

As ([μn]) is weakly convergent to [�] say, the sequence (αμn |Mα(K)) is convergent to
α�|Mα(K) in the WOT on Lω(Mα(K)).

If α is strong integrable and A ⊂ E′/Rα′
(Ĝ\K) is ξ -equicontinuous, for any x ∈

Mα(K), the maps t 
→ ηx,y(t) where [y] ∈ A are uniformly bounded and so is t 
→
sup[y]∈A |〈αt(x), [y]〉|. As in the proof of Lemma 3.3, this implies that αK is weak-SOT

continuous, and hence that (αμn ) converges to α� in the SOT. �
LEMMA 4.4. Let K ⊂ Ĝ be a compact S-set and let μ, ν be finite Radon measures

such that μ̂ = ν̂ on K. Then the operators αμ and αν are equal on Mα(K).

Proof. First of all, note that there is an h ∈ L1(G) such that ĥ = 1 on a
neighbourhood of K . Thus, ̂μ ∗ h = ν̂ ∗ h on K . Hence, the lemma is proved for all
finite Radon measures μ, ν if it is proved whenever μ and ν are functions in L1(G).

Now fix an x ∈ Mα(K) and a y ∈ E′. As K is an S-set, by Theorem 3.15, for any
ε > 0 and any f ∈ L1(G), there is a trigonometric polynomial

∑n
i=0 ci〈t, ξi〉 with ξi ∈ K

such that ∣∣∣∣∣
∫

G
ηx,y(t)f (t) dt −

∫
G

n∑
i=0

ci〈t, ξi〉f (t) dt

∣∣∣∣∣ < ε.

Taking f = μ − ν, we have

∣∣〈αμ(x), y〉 − 〈αν(x), y〉∣∣ =
∣∣∣∣
∫

G
〈αt(x), y〉(μ − ν)(t) dt

∣∣∣∣
< ε +

∣∣∣∣∣
n∑

i=0

ci
(
μ̂ − ν̂

)
(ξi)

∣∣∣∣∣ = ε

due to the equality of μ̂ and ν̂ on K . As ε and y are arbitrary, we have shown that for
any x ∈ Mα(K), αμ(x) = αν(x). �

COROLLARY 4.5. Let K ⊂ Ĝ be a compact S-set and let μ be a finite Radon measure
such that μ̂ never vanishes on K. Then the restriction of αμ to Mα(K) is invertible.

Proof. By Theorem 2.3, there is a g ∈ L1(G) such that ĝμ̂ = 1 on K , and so by
Lemma 4.4, αg∗μ(x) = x for x ∈ Mα(K). Thus, αg is the inverse of αμ on Mα(K). �

REMARK 4.6. One virtue of proving these results for the abstract dual pair (E, E′)
is that all these results remain true if E and E′ are swapped around. In particular,
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Proposition 4.3 now states that α′
ϕn

→ α′
� on Mα′

(K) in the WOT or SOT, accordingly as
the action α is weak or strong integrable.

5. Tauberian theorems for ergodic theory. The Tauberian theorems in this section
are the culmination of our development of the spectral theory of integrable actions
given in the previous sections.

THEOREM 5.1. Let α be a weak integrable action of a locally compact abelian
Hausdorff group G on a barrelled space E with dual E′. Let μ ∈ M(G) such that ν(μ) is
an S-set and let (ϕn) be a sequence in M(G) such that

(1) {αϕn (x)} is relatively weakly compact,
(2) ([ϕn]) ⊂ L1(G)/ι(ν(μ)) is relatively weakly compact,
(3) limn→∞ ϕ̂n(ξ ) > A for some A > 0 and all ξ ∈ ν(μ),
(4) αμ∗ϕn → 0 in the WOT.

Then we have that
(1′) (αϕn ) converges in the WOT to an invertible operator on N(μ), and 0 on R(μ),
(2′) E = R(μ) ⊕ N(μ).

Note that because ν(μ) is an S-set, ι+(ν(μ)) = ι−(ν(μ)), so we write ι(ν(μ)) for this
ideal, as explained in our introduction to S-sets before Theorem 2.2.

Proof. Because ν(μ) is compact, without loss of generality, we may assume that
(ϕn) ⊂ L1(G), by replacing it, if necessary, by the sequence (ϕn ∗ h), where h ∈ L1(G)
such that ĥ is identically 1 on ν(μ). We prove the result in the following three steps:

(1) (αϕn ) converges weakly to an invertible operator on N(μ).
(2) R(μ) ∩ N(μ) = {0} and (αϕn ) converges weakly to 0 on R(μ).
(3) (αϕn ) converges weakly to an operator on E and R(μ) ⊕ N(μ) = E.

Step 1. By Lemma 2.4, hypotheses (2) and (3) imply that ([ϕn]) is weakly convergent.
So by Proposition 4.3, the sequence (αϕn ) converges on Mα(ν(μ)) in the WOT to an
operator α�, where � ∈ L1(G). By hypothesis (3), �̂ does not vanish on ν(μ), so by
Corollary 4.5, α� is invertible on Mα(ν(μ)). Finally, note that N(μ) = Mα(ν(μ)) by
Lemma 3.13.
Step 2. As both R(μ) and N(μ) are α-invariant subspaces of E, so is R(μ) ∩ N(μ). As
noted above, α� restricted to N(μ) is invertible. Hence, α� restricted to R(μ) ∩ N(μ) is
also invertible. Pick any x ∈ R(μ) ∩ N(μ) and let y ∈ R(μ) ∩ N(μ) such that α�(y) = x.

The sequence (αϕn ) is point-wise bounded on N(μ) and each one is continuous in
the τ (E, E′)-topology on E. As E is barrelled, this is exactly the strong topology on
E and we may use the Banach−Steinhaus theorem [8, Ch. IV, Theorem 3, p. 69]
to conclude that (αϕn ) is equicontinuous on N(μ). In other words, for any weak
neighbourhood V of 0 in N(μ), there is a τ (E, E′)-neighbourhood U such that

αϕn (U) ⊂ V/3

for all n ∈ �. Furthermore, as R(μ) is the closure of the space of elements of the form
αμ(e) for e ∈ E, we can find a y′ ∈ E such that αμ(y′) − y ∈ U .

Hence, αϕnαμ(y′) − αϕn (y) ∈ V/3 for all n ∈ �. By hypothesis (4), there exists
an N1 such that αϕnαμ(y′) ∈ V/3 for all n ≥ N1. Because αϕn → α� in the WOT on
N(μ), there exists an N2 such that αϕn (y) − α�(y) = αϕn (y) − x ∈ V/3 for all n ≥ N2.
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Hence,

x = αϕnαμ(y) − (
αϕnαμ(y) − αϕn (y)

) − (
αϕn (y) − x

) ∈ V/3 + V/3 + V/3 = V

for all n ≥ max{N1, N2}. As V is arbitrary, x = 0 and R(μ) ∩ N(μ) = {0}.
The same technique shows that αϕn → 0 in the WOT on R(μ). For any weak

neighbourhood V , there is a τ (E, E′)-neighbourhood U such that αϕn (U) ⊂ V/2, as we
have seen above. Furthermore, there is a y′ ∈ E such that αμ(y′) − y ∈ U . As αϕn∗μ → 0
weakly, there is an N ∈ � such that αϕnαμ(y) ∈ V/2 for all n ≥ N. Hence,

αϕn (y) = αϕn (y) − αϕn (αμ(y)) + αϕn (αμ(y))

∈ V/2 + V/2 = V

for all n ≥ N; hence, αϕn (y) → 0 as n → ∞.
Step 3. First we show that (αϕn (x)) converges weakly for every x ∈ E. As this sequence
is relatively weakly compact, if it is not convergent, we can find two subsequences with
different limits:

αϕni
(x) → x0 and αϕnj

(x) → x1

with x0 �= x1. As lim
i→∞ αμαϕni

(x) = 0 = lim
j→∞

αμαϕnj
(x) by hypothesis, x0 and x1 are in

N(μ).
So x0 − x1 /∈ R(μ) because R(μ) ∩ N(μ) = {0}. This means that there is a y in

R(μ)◦ such that 〈x0 − x1, y〉 �= 0. By Lemma 3.11, R(μ)◦ = N ′(μ) and

〈x0, y〉 = lim
n→∞〈αϕni

(x), y〉
= lim

n→∞〈x, α′
ϕni

(y)〉
= 〈x, α′

�(y)〉

where in the last equality we invoked the Remark 4.6 at the end of the previous section.
Similarly,

〈x1, y〉 = 〈x, α′
�(y)〉

and so 〈x0, y〉 = 〈x1, y〉, which is a contradiction. Hence, (αϕn (x)) is weakly convergent
for all x ∈ E.

We define T(x) = lim
n→∞ αϕn (x) so that T is continuous by the Banach–Steinhaus

Theorem and the range of T is N(μ) by hypothesis (4). Furthermore, ker(T) = R(μ),
for if x ∈ ker(T), then for all y ∈ E′,

0 = 〈Tx, y〉 = 〈x, T ′y〉.

As T ′y ∈ N ′(μ), x ∈ (
N(μ)

)◦ = R(μ), so ker(T) ⊆ R(μ). By the hypotheses of the
theorem and the definition of T , R(μ) ⊆ker(T).

Now if ρ ∈ L1(G) such that ρ̂�̂ = 1 on ν(μ), then αρ and α� are inverses on N(μ)
and so the operator P = αρT is a projection whose range is N(μ) and whose kernel is
ker(T) = R(μ). This proves that E = R(μ) ⊕ N(μ). �

We can prove Theorem 5.1 for other topologies on Lω(E).
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THEOREM 5.2. Let α be a strong integrable action of a locally compact abelian
Hausdorff group G on a barrelled space E with dual E′. Let μ ∈ M(G) such that ν(μ) is
an S-set and let (ϕn) be a sequence in M(G) such that

(1) {αϕn (x)} is relatively weakly compact,
(2) ([ϕn]) ⊂ L1(G)/ι(ν(μ)) is relatively weakly compact,
(3) limn→∞ ϕ̂n(ξ ) > A for some A > 0 and all ξ ∈ ν(μ),
(4) αμ∗ϕn → 0 in the SOT.

Then we have that
(1′) (αϕn ) converges in the SOT to an invertible operator on N(μ), and 0 on R(μ),
(2′) E = R(μ) ⊕ N(μ).

Proof. All parts of Theorem 5.2 but the strong convergence of (αϕn ) to T follow
immediately from Theorem 5.1. But E = R(μ) ⊕ N(μ) and by Proposition 4.3 the
convergence is strong on N(μ) and by hypothesis it is also strong on R(μ). �

REMARK 5.3. We now make some remarks on further generalisations as well as
specific situations where the hypotheses of the Tauberians theorems can always be
shown to hold.

Different operator topologies: The above theorem remains true when the SOT on
Lω(E) is replaced by any weaker topology in the following sense. If A is a collection of
σ (E′, E)-bounded subsets of E′, we can form the topology of A-convergence on Lω(E)
given by the neighbourhood base

WA,V = {L ∈ Lω(E) : L(A◦) ⊆ V},
where A ∈ A and V is a bounded set in E. Then (αϕn ) will converge in the topology of
A-convergence to an operator invertible on N(μ) and 0 on R(μ).

Reflexive spaces: The condition that {αϕn (x)} be relatively weakly compact is
routinely satisfied in a number of general cases: for instance, if (ϕn) ∈ M(G) is bounded,
then {αϕn (x)} is weakly bounded for all x ∈ E. If E is in fact reflexive, then {αϕn (x)} is
automatically relatively weakly compact.

Relatively weakly compact sequences: If in the above theorems the sequence (ϕn) ⊂
L1(G) is relatively weakly compact, by Lemma 3.3 the set {αϕn} is relatively weakly
compact in the WOT and so for any x ∈ E, {αϕn (x)} is relatively weakly compact in
E. Also, as the quotient map from L1(G) to L1(G)/ι+(K) is weakly continuous, the
sequence ([ϕn]) is also relatively weakly compact in L1(G)/ι+(K). Thus, the relative
weak compactness of (ϕn) ensures that the first two hypotheses of the Tauberian
theorems are satisfied.

6. Applications to ergodic theorems. In this section, we show how to use the
Tauberian theorems 5.1 and 5.2 to prove results in ergodic theory. By a judicious choice
of the measures μ and ϕn, we can quickly prove several Mean Ergodic theorems.

By F(E) we mean the (closed) subspace of all α-invariant elements in E. By
Lemma 4.4, the elements of Mα({0}) are fixed because δ̂t = δ̂0 on {0}, so αt = α0 = id
on Mα({0}) for all t ∈ G. Hence, Mα({0}) ⊆ F(E). On the other hand, if x ∈ F(E), then
for any t ∈ G and y ∈ E′, 〈αt(x), y〉 = 〈x, y〉, so by Definition 3.8, x ∈ �({0}), which
equals Mα({0}) by Proposition 3.9. Hence, F(E) = Mα({0}).

Let us now discuss the generalisation of the classical Mean Ergodic theorem in
the context of Fréchet spaces. Suppose that X is a Fréchet space and T is a power-
bounded automorphism of X − that is, for any bounded subset C of X , there is
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a bounded subset B such that Tn(B) ⊆ C for all n. By Proposition 3.5, T induces
a strong integrable action α of the group � on X . Suppose that the convex hull of
{Tn(x) : n ∈ �} is weakly relatively compact for each x ∈ X . (This is always true if X
is reflexive, for example, because then every weakly bounded set is weakly relatively
compact, as shown in [8]).

Then the Mean Ergodic theorem states that there is a projection PF of X onto
F(X) and

lim
n→∞

1
n

n−1∑
i=0

Ti −→ PF (10)

in the SOT. To prove this, on � define the measures μ = δ0 − δ1 and ϕn = 1
nχ[0,n−1] for

each n ∈ �, where χ[0,n−1] is the characteristic function of the set {0, 1, . . . , n − 1}. As
μ ∗ ϕn converges to 0 in norm, by Lemma 3.3 we conclude that αμ∗ϕn → 0 in the SOT.

Now ν(μ) = {1}, where 1 is the identity element of �. Being a singleton, {1} is an
S-set. (The fact that a singleton is an S-set is a direct consequence of [5, Corollary
4.67]). Furthermore, on {1}, we see that obviously limn→∞ ϕ̂n(1) = 1, and [ϕn] = [ϕm]
in L1(�)/ι({0}), which is one-dimensional, for all n, m ∈ �.

As the convex hulls of the orbits {Tn(x) : n ∈ �} are weakly relatively compact,
so are the sets {αϕn (x) : n ∈ �} for all x ∈ X . Indeed, by the theory of vector-valued
integration outlined in [10], because ‖ϕn‖ ≤ 1 for all n ∈ �, αϕn (x) lies in the closure
of the convex hull of {Tn(x) : n ∈ �}. Hence, all the hypotheses of Theorem 5.2 are
satisfied; hence this theorem establishes the validity of (10).

Similarly, for actions of � on X , we obtain the formula

lim
n→∞

1
2n

∫ n

−n
αt(x) dt −→ PF (x).

Here we set μ(x) = xe−x2
and ϕn = 1

2nχ[−n,n] and follow the same steps as in the
proof of (10).

It is possible to extend this technique to all projections onto eigenspaces of the
group action. Recall that x ∈ X is an eigenvector corresponding to the eigenvalue
ξ ∈ Ĝ if αt(x) = 〈t, ξ 〉x for all t ∈ G. Using the same arguments as where we showed
that Mα({0}) is the fixed point space of the action, it is possible to show that Mα({ξ})
is the eigenspace with eigenvalue ξ .

We shall prove that it is a consequence of our Tauberian theorem that there is a
projection Pξ of X onto Mα({ξ}), and that it can be computed by an ergodic limit in
the SOT. In the case of an action of � given by a power-bounded automorphism as
above, the formula can be determined explicitly:

lim
n→∞

1
n

n−1∑
i=0

〈i, ξ 〉Ti(x) −→ Pξ (x).

To prove it, we take μ = δ0 − 〈1, ξ 〉δ1 and ϕn(i) = 1
n 〈i, ξ 〉χ[0,n−1](i) for all i ∈ � and

n ∈ �.
Using an approximation result in harmonic analysis, we can prove these ideas in

full generality.
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PROPOSITION 6.1. Let G be a σ -compact locally compact abelian group and α be a
weak integrable action of G on the dual pair (E, E′), where E is a Fréchet space such
that the convex hulls of the orbits {αt(x) : t ∈ G} are weakly relatively compact for each
x ∈ X.

If ξ ∈ Ĝ, then there is a projection Pξ of E onto Mα({ξ}) and a bounded sequence ϕn

of functions in L1(G) such that

αϕn → Pξ

in the WOT. In particular, each Mα({ξ}) is a complemented subspace of E.

Proof. Let μ = δ0 − δξ and Wn, n ∈ � a sequence of open neighbourhoods of
{ξ} with compact closure such that ∩Wn = {ξ}. By [9, Theorem 2.6.3, p. 49], we can
choose a bounded sequence (ϕn) ⊂ L1(G) such that ‖ϕn ∗ μ‖1 < 1/n, ϕ̂n(ξ ) = 1 and
supp ϕ̂n ⊂ Wn for all n ∈ �.

We see that (ϕn ∗ μ) converges to 0 in norm and hence that αϕn∗μ → 0 in the SOT

(and hence certainly in the WOT). Clearly ϕ̂n is convergent on ν(μ) = {ξ}, as ϕ̂n(ξ ) = 1.
Furthermore, [ϕn] = [ϕm] ∈ L1(G)/ι({ξ}), which is one-dimensional, for all n, m ∈ �.

Because (ϕn) ⊂ L1(G) is bounded and the convex hull of {αt(x) : t ∈ G} is relatively
weakly compact for each x ∈ X , αϕn (x) lies in the compact closure of the convex hull of
‖ϕn‖1{αt(x) : t ∈ G}. Hence, {αϕn (x) : n ∈ �} is also relatively weakly compact for each
x ∈ E.

Applying Theorem 5.1, the result follows. �
This result is stated using the WOT. The analogous result for the SOT is also true

and can be proved in the same way.
The fact that Mα({ξ}) is complemented in E is already known; it may be found,

for example, in [13]. It can be easily seen that the Mean Ergodic theorem for the fixed
point space is just a special consequence of this result. Indeed, the fixed point subspace
is just the eigenspace corresponding to the eigenvalue 1.

ACKNOWLEDGEMENTS. I would like to express my deep appreciation to Prof. Louis
Labuschagne for his valuable insights and encouragement, as well as to an anonymous
referee. Their comments and suggestions have greatly improved this paper.

REFERENCES

1. W. Arveson, On groups of automorphisms of operator algebras. J. Funct. Anal. 15
(1974), 217–243.

2. J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics,
vol. 92 (Springer-Verlag, New York, 1984).

3. J. Diestel and J. J. Uhl, Jr., Vector measures. With a foreword by B. J. Pettis, Mathematical
Surveys No. 15 (American Mathematical Society, Providence, RI, 1977).

4. N. Dunford and J. T. Schwartz, Linear operators. Part I general theory, with the assistance
of William G. Bade and Robert G. Bartle, Wiley Classics Library (John Wiley, New York, 1988,
reprint of the 1958 original).

5. Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced
Mathematics (CRC Press, Boca Raton, FL, 1995).
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