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Abstract

In this research, the deep-learning optimizers Adagrad, AdaDelta, Adaptive Moment
Estimation (Adam), and Stochastic Gradient Descent (SGD) were applied to the deep convolu-
tional neural networks AlexNet, GoogLeNet, VGGNet, and ResNet that were trained to recog-
nize weeds among alfalfa using photographic images taken at 200x200, 400x400, 600x600, and
800%800 pixels. An increase in the image sizes reduced the classification accuracy of all neural
networks. The neural networks that were trained with images of 200x200 pixels resulted in
better classification accuracy than the other image sizes investigated here. The optimizers
AlexNet and GoogLeNet trained with AdaDelta and SGD outperformed the Adagrad and
Adam optimizers; VGGNet trained with AdaDelta outperformed Adagrad, Adam, and
SGD; and ResNet trained with AdaDelta and Adagrad outperformed the Adam and SGD opti-
mizers. When the neural networks were trained with the best-performing input image size
(200x200 pixels) and the best-performing deep learning optimizer, VGGNet was the most
effective neural network, with high precision and recall values (>0.99) when validation and test-
ing datasets were used. Alternatively, ResNet was the least effective neural network in its ability
to classify images containing weeds. However, there was no difference among the different neu-
ral networks in their ability to differentiate between broadleaf and grass weeds. The neural net-
works discussed herein may be used for scouting weed infestations in alfalfa and further
integrated into the machine vision subsystem of smart sprayers for site-specific weed control.

Introduction

Alfalfa, an important leguminous forage crop, is widely cultivated worldwide (Bai et al. 2018; Li
etal. 2021; Mielmann 2013; Radovic et al. 2009). Alfalfa contains a high amount of crude protein
and is rich in minerals, particularly calcium, iron, and manganese (Richter et al. 2003), and is
thus considered to be a healthy feed for livestock (Salzano et al. 2021). Weeds are a significant
challenge in alfalfa production because they compete with alfalfa for nutrients, space, sunlight,
and water, and reduce forage yield and nutritive value. Moreover, certain weed species such as
perilla mint (Perilla frutescens L.) are toxic to livestock (Kerr et al. 1986). A variety of postemer-
gence (POST) herbicides are used for weed control in alfalfa fields. For instance, clethodim and
2,4-DB control a wide range of grasses and broadleaf weeds, respectively, in conventional alfalfa
crops (Cudney and Adams 1993; Idris et al. 2019), while glyphosate provides nonselective con-
trol of weeds in glyphosate-tolerant alfalfa crops (Wilson and Burgener 2009). These
POST-applied herbicides are typically broadcast-applied in alfalfa fields, including where weeds
do not occur.

Site-specific weed management, particularly precision herbicide application, can consider-
ably reduce herbicide input and weed control costs (Franco et al. 2017; Sabzi et al. 2018; Yu et al.
2020; Zaman et al. 2011). A major obstacle for autonomous precision herbicide application is the
ability to accurately and reliably detect weeds in a real-time manner (Sabzi et al. 2018).
Traditional machine vision techniques depend on the ability to recognize and differentiate plant
leaf color, spectral information, and feature fusion (Sabzi et al. 2018, 2020); morphological fea-
tures (Bakhshipour and Jafari 2018; Hamuda et al. 2017; Pulido et al. 2017); and spatial infor-
mation (Farooq et al. 2019). However, these traditional approaches cannot reliably detect weeds
intermingled with crops, especially in the context of a complex environment with high crop and
weed densities (Ahmad et al. 2020; Akbarzadeh et al. 2018; Sujaritha et al. 2017; Yu et al. 2019a).
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Machine learning techniques have advanced significantly in
recent years (Jordan and Mitchell 2015). Deep convolutional neu-
ral networks (DCNN’s) have been used successfully in various field
applications (LeCun et al. 2015; Ni et al. 2019). For example, recent
studies have shown that deep learning can be used to diagnose
coronavirus disease (Saood and Hatem 2021), to help predict seiz-
ure recurrence (Geng et al. 2021), for high-accuracy three-dimen-
sional optical measurement (Yao et al. 2021), to predict the activity
of potential drug molecules (Ma et al. 2015), to analyze particle
accelerator data (Azhari et al. 2020; Ciodaro et al. 2012), to detect
industrial defects in wood veneer finishes (Shi et al. 2020), to
achieve efficient classification of green plum detects (Zhou et al.
2020), and to reconstruct brain circuits (Helmstaedter et al.
2013). In addition, DCNNs have demonstrated an exceptional abil-
ity to detect objects and classify digital images (Tompson et al.
2014; Wang et al. 2018). Thus, DCNNs show great promise for
being employed for weed detection and classification purposes
(Wang et al. 2019).

Researchers have recently explored the feasibility of using
DCNNS to detect weeds in various cropping systems (Ferentinos
2018; Ghosal et al. 2018; Sharpe et al. 2019b; Singh et al. 2018;
Yu et al. 2020). Sharpe et al. (2019b) showed that You Only
Look Once (YOLO, version 3; Cornell University, Ithaca, NY
[YOLO is a unified, real-time object detection system of software])
can be used as an object detector to discriminate broadleaves,
grasses, and sedges in the middle rows of plastic-mulched vegetable
crops. Yu et al. (2019a, 2020) reported the feasibility of using
DCNNs to detect multiple broadleaf and grass weeds among
actively growing or dormant bermudagrass [Cynodon dactylon
(L.). Pers.] plants. Hennessy et al. (2021) reported the feasibility
of using YOLO3-tiny to detect hairy fescue (Festuca filiformis
Pourr.) and sheep sorrel (Rumex acetosella L.) among wild blue-
berry (Vaccinium spp. L.) plants. Hussain et al. (2021) investigated
the feasibility of using DCNNs to detect common lambsquarters
(Chenopodium album L.) in potato (Solanum tuberosum L.) fields.
However, the feasibility and effectiveness of using DCNNs for
weed detection in alfalfa have never been investigated.

Alfalfa hay is typically harvested multiple times per growing
season, unlike most other crops. Alfalfa has the capability to re-
grow following harvest and can rapidly regenerate new stems
and leaves. Weed detection in various heights of alfalfa stands
might be a significant challenge.

Image classification with DCNNs can be used in the machine
vision subsystem of smart sprayers for weed detection and real-
time precision treatment (Sharpe et al. 2019b; Wang et al. 2019;
Yu et al. 2019a, 2020). He et al. (2015) noted that arbitrary use
of fixed-size input images for training a neural network might
reduce the classification accuracy. However, a careful review of
the literature suggests that almost all previously reported studies
that evaluated the feasibility of using DCNNs for weed detection
and classification arbitrarily used a particular size of input images
(Ferentinos 2018; Sharpe et al. 2019b; Yu et al. 2019a, 2019b, 2020).
Limited research has been carried out to investigate the impact of
training image sizes on the performance of DCNNss for weed detec-
tion and classification through a comparative study.

When training is given to a deep learning model, the algorithm
gradually improves to optimize through a large number of samples,
with a certain weight of the optimizer (Krizhevsky et al. 2012;
Simonyan and Zisserman 2014; Szegedy et al. 2015). Thus, select-
ing an appropriate optimizer is critical in the training pipeline for
deep learning models (Choi et al. 2019). The majority of previous
studies have focused on comparing the state-of-the-art deep
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learning architectures for weed detection (Sharpe et al. 2019a,
2019b; Wang et al. 2019; Yu et al. 2019a, 2019b). However, none
of them attempted to improve weed detection accuracies by using
deep-learning optimizers through comparative research.
Therefore, the objectives of this research were to 1) explore the
effects of using various image sizes for training purposes to gauge
the performance of DCNNs to detect and classify weeds; 2) com-
pare several DCNNS trained with different deep learning optimiz-
ers for weed detection purposes; and 3) determine the feasibility of
using DCNNss to detect multiple broadleaf and grass weeds grow-
ing in alfalfa.

Materials and Methods
Overview

In this research, the image classification DCNN architectures
AlexNet (Krizhevsky et al. 2012), GoogLeNet (Szegedy et al.
2015), VGGNet (Simonyan and Zisserman 2014), and ResNet
(He et al. 2016) were evaluated. These neural networks were
trained to recognize four different sizes of input images
(200x200, 400%x400, 600x600, and 800x800 pixels); and three
commonly employed deep-learning optimizers, Adagrad (Duchi
et al. 2011), AdaDelta (Zeiler 2012), and Stochastic Gradient
Descent (SGD; Darken et al. 1992). AlexNet consists of eight layers,
including five convolutional layers and three full connection layers
(Krizhevsky et al. 2012). GoogLeNet consists of 22 convolutional
layers and is designed to work with small convolutions in order to
reduce the neuron numbers and parameters (Szegedy et al. 2015).
VGGNet used in this research consists of 19 weight layers.
VGGNet is designed to implement smaller convolutional kernels
to limit neuron numbers and parameters (Simonyan and
Zisserman 2014). ResNet is based on the VGG19, which consists
of 50 layers and is modified to include a residual unit through a
short-circuit mechanism (He et al. 2016). ResNet solves the degra-
dation problem of the deep network through residual learning for
training deeper networks (He et al. 2016). All neural networks were
pretrained using the ImageNet database (Deng et al. 2009) with
specific spatial tensor image sizes of 224x224 pixels, whereas
the AlexNet was trained with 227x227 pixels (He et al. 2016;
Krizhevsky et al. 2012; Simonyan and Zisserman 2014; Szegedy
et al. 2015).

Image Acquisition

Images of various weeds growing in alfalfa fields were acquired
multiple times during September and October 2020 using a digital
camera (Panasonic® DMC-ZS110; Xiamen, Fujian, China) at a res-
olution of 4,160x3,120 pixels. The images taken in alfalfa fields in
Bengbu, Anhui, China (117.89°N, 117.88°E) were used for the
training dataset, validation dataset (VD), and testing dataset
(TD). Additional testing images were taken in separate alfalfa fields
in Bengbu, Anhui, China (additional testing dataset 1, TD 1) and
Yangzhou University Pratacultural Science Experiment Station
(32.20°N, 119.23°E) in Yangzhou, Jiangsu, China (additional test-
ing dataset 2, TD 2). The additional testing datasets were used to
examine the robustness of the models. The images containing
alfalfa (8 to 52 cm height) and various broadleaf and grass weed
species were captured from a height of approximately 1.5 m from
the ground (0.05 cm pixel™). Our research team designed a smart
sprayer with a camera installed at 1.5 m above the ground (data not
shown). Thus, all images were captured at 1.5 m above the ground
to mimic the height of the smart sprayer’s camera. Images were
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acquired under various outdoor lighting conditions, including
clear/bright, cloudy, and partially cloudy skies. In the present
study, weed images were captured in the fall season, and only
mature weeds were used for training and testing. An additional
investigation is needed to evaluate the feasibility of using neural
networks to identify weed growth stages. Variable rates could be
sprayed according to the weed growth stages. For example, low
and high herbicide rates could be sprayed to control seedling
and mature annual weeds, respectively, while maintaining
adequate weed control.

Impact of Training Using Various Image Sizes

During training, all collected images were cropped into sub-image
datasets with resolutions of 200x200, 400x400, 600x600, or
800x800 pixels using Irfanview (v.5.50; Iran Skijan, Jajce,
Bosnia; Figure 1A). The DCNN architectures received training
with these image sizes. For each image size, the training dataset
contained 3,000 positive images (with weeds) and 3,000 negative
images (without weeds; Figure 1B). The VD contained 600 positive
and 600 negative images. The TD contained 300 positive and 300
negative images that were randomly selected from the sites where
the training images were taken but were not used for training. The
TD 1 and TD 2 each contained a total of 700 positive and 700 neg-
ative images. The training and testing images contained a variety of
broadleaf and grass weed species occurring in the mixture. The
dominant broadleaf weed species (Figure 1C) included annual flea-
bane [Erigeron annuus (L.) Pers], common sage (Salvia plebeia
R. Br.), Canada thistle [Cirsium arvense (L.) Scop.], and hemistepta
[Hemistepta lyrata (Bunge) Bunge]; whereas the major grass weeds
(Figure 1C) included crabgrass (Digitaria spp.), goosegrass
[Eleusine indica (L.) Gaertn.], barnyardgrass [Echinochloa crus-
galli (L.) Beauv], and green foxtail [Setaria viridis (L.) Beauv.].

Effect of Optimizers

Next, we investigated the performance of the CDDNs when they
received additional training with four common deep-learning opti-
mizers, Adagrad (Duchietal. 2011), AdaDelta (Zeiler 2012), Adam
(Kingma and Ba 2014), and SGD (Darken et al. 1992). The char-
acteristics of the deep-learning optimizers are described below.
Adagrad uses different learning rates for every parameter in the
network (Duchi et al. 2011). It updates the learning rate ) based on
the frequency of the update of each parameter. The performance of
Adagrad relies on manually setting a global learning rate. The opti-
mizer AdaDelta is an extension of Adagrad (Zeiler 2012). AdaDelta
accumulates the previous gradients over a fixed timeframe and
employs Hessian approximation to ensure that the update direc-
tion is in the negative gradient. Adam combines the advantages
of Adagrad and Root Mean Square Propagation (RMSProp;
Kingma and Ba 2014). The method calculates the adaptive learning
rate of different parameters by estimating the first and second gra-
dients. It has the following advantages: 1) simple implementation,
efficient calculation, and less memory demand; 2) the updating of
parameters is not affected by the scaling transformation of gra-
dient; 3) it is suitable for large-scale data and parameter scenarios
and is applicable to unstable target functions; and 4) it is suitable
for addressing the problem of sparse gradient or large noise gra-
dient. Although Adam is currently the mainstream optimization
algorithm, the best results in many fields (e.g., object recognition
in computer vision) are still obtained by using SGD (Wilson et al.
2017). SGD refers to mini-batch gradient descent (Qian et al. 2015)
and is one of the simplest deep-learning optimizers used to
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calculate the mini-batch gradient at every iteration. Although
SGD is one of the most commonly used optimizers, its disadvan-
tages are obvious. SGD can easily converge to the local optimum
and be trapped in a saddle point.

Detection of Broadleaf and Grass Weeds

The deep learning architectures AlexNet, GoogLeNet, VGGNet,
and ResNet were trained using input images of 200x200 pixels
to detect broadleaf and grass weeds growing among alfalfa plants.
The neural networks were trained with a total of 3,000 positive
(with broadleaf weeds) and 3,000 negative (with grass weeds)
images. The images of VD, TD, TD 1, and TD 2 contained broad-
leaf or grass weeds. The VD contained 600 positive and 600 neg-
ative images, the TD contained 300 positive and 300 negative
images, and the TD 1 and TD 2 each contained a total of 700 pos-
itive and 700 negative images.

Training and Testing

The training and testing datasets were imported into the NVIDIA
Deep Learning GPU Training System (DIGITS v. 6.0.0; NVIDIA
Corporation, Santa Clara, CA, USA). The training and testing were
performed on a GeForce RTX 2080Ti computer with 64 GB of
memory using the Convolutional Architecture for Fast Feature
Embedding (CAFFE; Jia et al. 2014). The hyper parameters used
for training the neural networks are presented in Table 1. The
actual training was carried out using the initial hyper parameters
proposed by the original authors (Darken et al. 1992; Duchi et al.
2011; Kingma and Ba 2014; Zeiler 2012).

The testing and validation results of the neural networks were
arranged in a confusion matrix with four possible conditions: true
positive (tp), false positive (fp), false negative (fn), and true negative
(tn). Precision, recall, and F, scores were computed based on the
results of confusion matrices.

Precision measures the accuracy of the neural network at pos-
itive detection and was calculated using Equation 1 (Hoiem et al.
2012; Sokolova and Lapalme 2009; Tao et al. 2016):

tp
tp + fp

Precision =

1]

Recall measures the effectiveness of the neural network in iden-
tifying the target and was determined using Equation 2 (Hoiem
et al. 2012; Sokolova and Lapalme 2009; Tao et al. 2016):

tp

Recall =
e tp+ fn

2]

F, score is the harmonic mean of precision and recall. The F,
score is used for comprehensive evaluation of precision and recall
and was calculated using Equation 3 (Tao et al. 2016):

2xprecision * recall

(3]

Fyscore = —
precision + recall

Results and Discussion
Effect of Training Using Various Image Sizes

The input image size significantly affected the performance of the
ability of DCNNSs to detect weeds (Table 2). The neural networks


https://doi.org/10.1017/wet.2022.46

Weed Technology

515

Image Classification DCNN Training and Testing Images
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Figure 1. Image classification using deep neural networks in training and testing images. (A) Images were cropped into four different sizes of input images, including 200x200,
400400, 600x600, and 800x800 pixels; (B) input images were classified into true positive images (including the target weeds) and true negative images (excluding the target
weeds); (C) for true positive images, the major broadleaf weeds were annual fleabane, common sage, Canada thistle, and heistepta, while the major grass weeds were crabgrass,

goosegrass, barnyardgrass, and green foxtail.

that were trained with the small input images (200x200 pixels) per-
formed better than they did with any other image sizes (400x400,
600600, and 800x800 pixels) as evidenced by higher precision,
recall, and F, score values. For all neural networks, the F; scores
were >0.94 for the VD and TD when networks were trained with
the small (200x200 pixels) images; however, the F; scores were
<0.95, <0.87, and <0.82 when the neural networks were trained
with the relatively larger input image sizes of 400x400,
600x600, and 800x800 pixels, respectively. Interestingly, an
increase in image size resulted in lower F; scores for GoogLeNet
and VGGNet compared to AlexNet and ResNet. When the neural
networks were trained with large input images of 800x800 pixels,
the F; scores for GoogLeNet and VGGNet were <0.59 and <0.44,
respectively, for VD, TD, TD 1, and TD 2, whereas the F; scores of
AlexNet and ResNet were >0.79 and >0.81, respectively.
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A significant difference was observed among the ability the neu-
ral networks to detect weeds. When the neural networks were
trained with input images of 200%x200 pixels, AlexNet,
GoogLeNet, and VGGNet were highly effective and achieved high
F, scores (>0.98), with high recall values (>0.99) for the VD and
TD; however, the F; scores of ResNet were <0.96 for the VD and
TD, primarily due to low precision (<0.94). The F; scores of
AlexNet, GoogLeNet, and VGGNet were >0.99 for TD 2 but
<0.98 for TD 1. The lower recall of TD 1 compared with TD 2
images cannot be adequately explained but it might be related
to the presence of a greater diversity of weed species and a wider
range of alfalfa height. ResNet demonstrated greater image classi-
fication accuracy compared to AlexNet, GoogLeNet, and VGGNet
when the neural networks were trained with large input images.
ResNet also had the highest F; scores across all validation and
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Table 1. Hyper parameters used for training the neural networks.?
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Training image sizes Deep learning optimizers

Broadleaf vs. grass weed detection

Training epochs 30 30 30
Solver type SGD Adagrad, AdaDelta, Adam and SGD (AlexNet), SGD (GooglLeNet), AdaDelta (VGGNet), and Adagrad
SGD (ResNet)
Batch size 2 2 2
Batch 5 5 5
accumulation
Learning rate Step down Step down Step down
policy
Base learning rate 0.01 0.01 0.01
Gamma 0.1 0.1 0.1
Step size 33% 33% 33%

2The deep convolutional neural networks AlexNet, GooglLeNet, VGGNet, and ResNet were evaluated using various image sizes and various deep-learning optimizers for training purposes. All four
neural networks were trained with input images of 200x200 pixels. The images in the validation and testing datasets contained images of both broadleaf and grass weeds.

Table 2. Image classification using deep convolutional neural network architectures under different image sizes in validation and testing datasets for detection of

weeds in alfalfa crops.®?

VD TD TD1 TD 2
Image Fy Fy Fy Fy
Architecture size Precision  Recall score Precision  Recall score Precision  Recall score Precision  Recall score
AlexNet 200%200 0.98 0.99 0.99 0.98 0.99 0.99 1.00 0.92 0.96 1.00 0.99 0.99
400x400 0.91 0.95 0.93 0.88 0.96 0.92 0.97 0.96 0.96 0.91 0.98 0.94
600x600 0.87 0.81 0.84 0.90 0.85 0.87 0.94 0.93 0.93 0.89 0.99 0.93
800x800 0.93 0.68 0.79 0.93 0.70 0.80 0.98 0.57 0.72 0.88 0.69 0.78
GoogleNet 200%200 0.98 0.99 0.98 0.99 0.98 0.99 1.00 0.95 0.98 1.00 1.00 1.00
400x400 0.93 0.95 0.94 0.94 0.97 0.95 0.98 0.93 0.96 0.92 0.94 0.93
600x600 0.93 0.72 0.81 0.94 0.74 0.83 0.99 0.79 0.88 0.90 0.94 0.92
800x800 0.98 0.27 0.42 1.00 0.25 0.40 1.00 0.13 0.23 0.89 0.44 0.59
VGGNet 200%x200 0.98 0.99 0.98 0.99 1.00 1.00 1.00 0.96 0.98 0.99 1.00 0.99
400x400 0.90 0.94 0.92 0.92 0.97 0.94 0.96 0.95 0.96 0.99 0.95 0.97
600x600 0.93 0.52 0.66 0.93 0.51 0.66 0.98 0.88 0.93 0.99 0.66 0.79
800x800 0.97 0.28 0.43 0.99 0.28 0.44 0.96 0.19 0.32 0.97 0.19 0.31
ResNet 200%200 0.91 0.98 0.94 0.94 0.98 0.96 0.96 0.96 0.96 0.73 1.00 0.85
400x400 0.78 1.00 0.88 0.86 0.99 0.92 0.78 1.00 0.88 0.63 1.00 0.77
600x600 0.75 0.99 0.85 0.73 0.99 0.84 0.76 1.00 0.86 0.68 0.99 0.81
800x800 0.68 0.99 0.81 0.70 1.00 0.82 0.77 0.99 0.87 0.74 0.93 0.83

2Abbreviations: VD, validation dataset; TD, testing dataset; TD 1, testing dataset 1; TD 2, testing dataset 2.
5The models were trained to detect all types of weeds. The training datasets contained 3,000 positive and 3,000 negative images; the validation dataset contained 600 positive and 600 negative
images; the testing results contained 300 positive and 300 negative images; and the TD 1 and TD 2 contained 700 positive and 700 negative images.

testing datasets when the neural networks were trained with images
of 800x800 pixels.

In the experiment, the image datasets of the four pixel sizes and
the model that had been trained with the 200%200 image datasets
demonstrated the greatest ability to recognize weeds. The four net-
works trained by the four different pixel images and the loss curve
is shown in the schematic diagram on the left of Figure 2. Under the
training image sizes of 200x200, the model iterated for a total of 30
steps, started to converge within 5 steps, and then tended to stabi-
lize. This size outperformed other cropping sizes, achieved stable
convergence in less time, and obtained the lowest loss convergence
value and the highest accuracy.

Transfer learning is the process of recycling previously trained
neural networks by updating a small part of the original weights
using new data (Bengio et al. 2012). The use of transfer learning
can reduce the amount of data required for training DCNNs
(Espejo-Garcia et al. 2020) and is therefore widely adopted for
deep-learning models of training (Geng et al. 2021; Mohanty
etal. 2016; Singh et al. 2018; Yu et al. 2019a, 2019b, 2020). In addi-
tion, He et al. 2015 noted that the use of fixed-size input images
might significantly reduce the recognition accuracy of images or
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sub-images of arbitrary size. Mishkin et al. (2017) reported a sim-
ilar finding: that the size of training images could significantly
affect the recognition accuracy of DCNNS. As the input image size
increases, the number of pixels in the images also increases. Using
excessively large images may reduce the abstract level of the infor-
mation, leading to increased calculation requirements and thereby
reduced recognition accuracy; however, the critical information for
feature extraction may not be well preserved when excessively
small images are used. In addition, the small image size (200X
200pixels) performed best, likely because it is close to the initial
spatial tensor image sizes used for pre-training the neural net-
works. AlexNet was pre-trained with the spatial tensor image size
of 227x227 pixels, while GoogLeNet, VGGNet, and ResNet were
pre-trained with images of 224x224 pixels (He et al. 2016;
Krizhevsky et al. 2012; Simonyan and Zisserman 2014; Szegedy
et al. 2015). Therefore, further reducing the image size used for
training (i.e., smaller than 200x200 pixels) may not improve weed
detection accuracy. Further study is needed to verify this
assumption.

In previous research, neural networks exhibited excellent
weed detection accuracy, but they were exposed to too many
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Figure 2. Loss curve of convolutional neural network training.
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Table 3. Image classification using deep convolutional neural network architectures under different deep learning optimizers in validation and testing datasets for

detection of weeds in alfalfa.2?

VD TD TD1 TD2
Fy F1 Fi Fy
Model Optimizer  Precision  Recall score Precision  Recall score Precision  Recall score Precision  Recall score
AlexNet AdaDelta 0.98 0.98 0.98 0.98 0.99 0.98 1.00 0.92 0.96 0.99 1.00 1.00
Adagrad 0.97 0.87 0.91 0.97 0.87 0.92 0.80 0.90 0.85 0.63 0.85 0.73
Adam 0.98 0.98 0.98 0.98 0.98 0.98 1.00 0.88 0.94 0.54 0.96 0.69
SGD 0.98 0.99 0.99 0.98 0.99 0.99 1.00 0.92 0.96 1.00 0.99 0.99
GoogleNet  AdaDelta 0.98 0.99 0.98 0.98 0.98 0.98 1.00 0.94 0.97 0.99 1.00 1.00
Adagrad 0.98 0.98 0.98 0.98 0.98 0.98 1.00 0.90 0.95 0.93 0.97 0.95
Adam 0.98 0.98 0.98 0.98 0.98 0.98 1.00 0.86 0.93 0.58 0.96 0.72
SGD 0.98 0.99 0.98 0.99 0.98 0.99 1.00 0.95 0.98 1.00 1.00 1.00
VGGNet AdaDelta 0.98 0.99 0.98 0.99 1.00 1.00 1.00 0.96 0.98 0.99 1.00 0.99
Adagrad 0.98 0.98 0.98 0.98 0.98 0.98 1.00 0.88 0.93 0.72 1.00 0.84
Adam 0.98 0.98 0.98 0.98 0.98 0.98 1.00 0.86 0.93 0.58 0.94 0.71
SGD 0.99 0.94 0.96 0.98 0.91 0.94 1.00 0.89 0.94 0.79 1.00 0.89
ResNet AdaDelta 0.98 0.85 0.91 0.98 0.91 0.94 0.95 0.98 0.96 0.79 0.89 0.84
Adagrad 0.98 0.92 0.95 0.96 0.92 0.94 0.97 0.95 0.96 0.78 0.90 0.84
Adam 0.95 0.95 0.95 0.97 0.93 0.95 0.94 0.89 0.92 0.81 0.53 0.64
SGD 0.89 0.99 0.94 0.90 1.00 0.94 0.80 1.00 0.89 0.66 0.93 0.77

2Abbreviations: VD, validation dataset; TD, testing dataset; TD 1, testing dataset 1; TD 2, testing dataset 2.
5The models were trained to detect all types of weeds in images at 200x200 pixels, and the training dataset contained 3,000 positive and 3,000 negative images. The VD contained 600 positive
and 600 negative images; the TD contained 300 positive and 300 negative images; and the TD 1 or TD 2 contained 700 positive and 700 negative images.

training images (Ferreira et al. 2017; Yu et al. 2020). For exam-
ple, Yu et al. (2020) used a dataset of 8,000 positive and 9,000
negative images to train a neural network to detect and classify
multiple grass weed species growing among bermudagrass
plants; the authors reported that VGGNet outperformed
AlexNet and GoogLeNet in their ability to do so. Based on
the present study’s findings, we suggest that using the most
appropriate training image size can substantially enhance the
performance of weed detection and thereby reduce the need
to train the programs to detect image quantity. Furthermore,
using an appropriate image size may also minimize the differ-
ence between the neural networks’ ability to detect weeds,
although this assumption needs to be further verified.

Effect of Optimizers

AdaDelta and SGD optimizers generally outperformed Adagrad
and Adam. The F; scores of AlexNet trained with AdaDelta and
SGD were >0.96 with VD, TD, TD 1, and TD 2; whereas F,;
scores were <0.92 when AlexNet was trained with Adagrad,
and <0.98 when it was trained with Adam (Table 3). The F,
scores of GoogLeNet did not significantly differ between the
optimizers when the VD and TD were used. However, the F,
scores for GoogLeNet were >0.97 when TD 1 and TD 2 were
used and when it was trained with AdaDelta and SGD, but
the scores were <0.95 when it was trained with Adagrad and
<0.93 when it was trained with Adam (Table 3). The F; scores
for VGGNet were >0.98 when VD, TD, TD 1, and TD 2 were
used and when it was trained with AdaDelta, but the scores were
<0.98 when it was trained with Adagrad and Adam (Table 3).
ResNet trained with SGD and Adam exhibited significantly
lower F; scores when TD 1 and TD 2 were used than when it
was trained with Adagrad and AdaDelta. These characteristics
were evidenced in the loss curve on the right side of Figure 2.
For AlexNet, Adagrad and Adam were obviously unsuitable
compared to SGD and AdaDelta. SGD converged faster than
AdaDelta, and eventually, the two curves tended to be stable.
For GoogLeNet, the curves of the four optimizers exhibited little
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difference and leveled off in the end. For VGGNet, Adam per-
formed worse than the other three optimizers. Among the opti-
mizers, AdaDelta reached convergence faster, and finally, the
three curves became stable. For ResNet, the four curves fluctu-
ated greatly and did not tend to be stable when the number of
iterations was 30 steps. These findings indicate that the classi-
fication accuracy of weed detection can be improved when the
neural networks are trained with appropriate optimizers.

To date, hundreds of deep-learning optimizers have been devel-
oped (Schmidt et al. 2021). However, the research community
commonly relies on benchmarking or even personal and anecdotal
experiences to choose an optimizer (Geng et al. 2021; Nagaraju and
Chawla 2020). During deep learning, an optimization algorithm is
required to reduce losses that occur by updating the weight param-
eters (Choi et al. 2019; Schmidt et al. 2021). The optimization algo-
rithm can significantly affect the training speed and determine the
final performance of the neural network being trained (Choi et al.
2019). Our results confirmed the importance of selecting an appro-
priate deep-learning optimizer during the period when neural net-
work models are being trained for weed detection purposes. The
neural networks evaluated here needed different optimizers to
achieve the best performance in weed detection.

To the best of our knowledge, this is the first report to investigate
the effect of using optimizers on neural networks for purposes of
weed detection. For detection of fruits or plant diseases, recent
empirical comparisons revealed the differences between the neural
networks when they were trained with different optimizers
(Postalcolu  2020; Schmidt et al. 2021). Adam, SGD, and
RMSProp were used for training DCNNs for fruit detection and
found that Adam and RMSProp outperformed SGD (Postalcolu
2020). In another study, Xception trained with the optimizer
Adam achieved higher F; scores for classifying plant disease images
than other optimizers, including Adagrad, Adamax, SGD, and
RMSProp (Saleem et al. 2020). Wilson et al. (2017) reported that
adaptive learning-rate methods (e.g, Adagrad, AdaDelta,
RMSProp, Adam) generally performed worse than SGD Contrast
software (Ithaca, NY: Cornell University) in terms of object recog-
nition character-level language modeling and constituency parsing,
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Table 4. Image classification using deep convolutional neural network architectures in validation and testing datasets to detect broadleaf vs. grass weeds in alfalfa.?

VD D TD1 TD2

Weed F1 F1 F1 F1
Model species Precision  Recall score Precision  Recall score Precision  Recall score Precision  Recall score
AlexNet Broadleaves 0.95 0.96 0.96 0.97 0.98 0.97 0.73 0.98 0.84 0.97 0.97 0.97

Grasses 0.96 0.95 0.96 0.98 0.97 0.97 0.97 0.64 0.77 0.97 0.97 0.97
GoogleNet  Broadleaves 0.99 0.98 0.99 0.98 0.97 0.98 0.80 0.91 0.85 1.00 0.98 0.99

Grasses 0.99 0.98 0.98 0.98 0.98 0.98 0.92 0.79 0.85 0.98 0.98 0.98
VGGNet Broadleaves 0.99 0.99 0.99 1.00 0.98 0.99 0.93 0.85 0.89 0.98 0.99 0.99

Grasses 0.99 0.99 0.99 0.98 1.00 0.99 0.86 0.94 0.90 0.99 0.98 0.99
ResNet Broadleaves 0.95 0.59 0.73 0.95 0.53 0.60 0.64 0.49 0.49 0.66 0.45 0.53

Grasses 0.31 0.87 0.45 0.32 0.89 0.47 0.33 0.48 0.39 0.18 0.35 0.24

2Abbreviations: VD, validation dataset; TD, testing dataset; TD 1, testing data set 1; TD 2, testing data set 2.
The models were trained to detect all types of weeds with training images of 200x200 pixels, and the training dataset contained 3,000 positive and 3,000 negative images. The validation dataset
contained 600 positive and 600 negative images; the testing results contained 300 positive and 300 negative images; the TD 1 or TD 2 contained 700 positive and 700 negative images.

Predictions Predictions Predictions Predictions

atalfa <D A [ 94.96% ] broadieaves [ 100.0% ] grass 100.0%
weed [ 0.01% } weed [4.01%) grass [0.0% ] DloATEaVes [0.0% ]

Correct recognition examples
B

W

e

Predictions Predictions Predictions Predictions
weed €D wew [74.92% ] grass (9.2 ) grass 024 ]
alllta D  aan €D beoacieaves D beoaeaves oD

False recognition examples

Figure 3. Classification results of the VGGNet in the testing dataset.

Detection of Broadleaf vs. Grass Weeds networks we evaluated, VGGNet consistently produced the highest
F, scores when VD, TD, TD 1, and TD 2 were used (classification
results are shown in Figure 3), whereas ResNet consistently pro-
duced the lowest F; scores in its ability to detect broadleaf and grass
weeds. VGGNet achieved high F, scores (>0.99) with high recall
(>0.98) when VD, TD, and TD 2 were used, whereas the F; scores
of ResNet never exceeded 0.73. GoogLeNet outperformed AlexNet
in its ability to detect broadleaf and grass weeds; the F; scores of

Based on the results presented in the two sections above, AlexNet,
GoogLeNet, VGGNet, and ResNet performed best with images of
200x200 pixels in detecting multiple broadleaf and grass weeds
and the most effective deep-learning optimizers. No obvious
differences were observed among any neural networks in their abil-
ity to detect broadleaf plants vs. grasses, as evidenced by the pre-
cision, recall, and F; score values (Table 4). Among the neural
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GoogLeNet were consistently higher than those of AlexNet when
VD, TD, TD 1, and TD 2 were used.

Although the neural networks achieved excellent performance
in their ability to detect weeds when they were trained with the
best-performed image size and optimizer, various factors may
affect their performance. In the present study, except for
ResNet, the precision and recall values were lower when TD 1
was used than when TD 2 was used. This result might be because
the TD 1 photographs were acquired primarily on cloudy days and
thus were darker than the TD 2 images. Additional studies are
needed to evaluate the training and testing of neural networks with
images from a wide range of geographic locations, weed species,
weed densities, weed, crop growth stages, and light intensities,
and their ability to adapt to more complex situations.

DCNNs detect weeds based on plant morphological features,
including leaf pattern and texture (Kamilaris and Prenafeta-
Boldu 2018). For this reason, the detection of broadleaf weeds
growing in alfalfa fields is hypothetically more difficult than the
detection of grasses. However, among all the neural networks
tested here, the present study clearly showed no obvious
differences in their ability to detect broadleaf and grass weeds.
We note that a high image processing speed is vital for real-time
weed recognition and precision herbicide application (Yang
et al. 2000). The neural networks in this study exhibited fast image
processing using the NVIDIA Geforce 2080T1i graphics processing
unit in the present study. The image processing speeds were 23 ms,
35 ms, 64 ms, and 68 ms image! for AlexNet, GoogLeNet,
VGGNet, and ResNet, respectively.

Conclusion

This research demonstrated the feasibility of using DCNNs for
purposes of weed detection in alfalfa crops. AlexNet,
GoogLeNet, VGGNet, and ResNet trained with small input images
of 200x200 pixels performed better than when large images of
400x400, 600x600, and 800x800 pixels were used. Furthermore,
the choice of a deep-learning optimizer can significantly affect
the performance of neural networks. The optimizers AdaDelta
and SGD outperformed Adagrad and Adam when they were used
with AlexNet and GoogLeNet; AdaDelta outperformed Adagrad,
Adam, and SGD when used with VGGNet; and Adagrad and
AdaDelta outperformed Adam and SGD when used with
ResNet. All neural networks showed no differences in their ability
to detect broadleaf and grass weeds. When the neural networks
were trained with the best-performing input image size and opti-
mizer, the neural networks were ranked as follows, from the high-
est to lowest classification accuracy: VGGNet > GoogLeNet >
AlexNet > ResNet. Future research will integrate these neural net-
works into the machine vision subsystem of smart sprayers.
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