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Cross-stream oscillations in the granular flow
through a vertical channel
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The gravity flow of a granular material between two vertical walls separated by a width
2W is simulated using the discrete element method (DEM). Periodic boundary conditions
are applied in the flow (vertical) and the other horizontal directions. The mass flow rate
is controlled by specifying the average solids fraction ¢, the ratio of the volume of the
particles to the volume of the channel. A steady fully developed state can be achieved
for a narrow range of ¢, ¢max > ¢ > ¢cr, and the material is in free fall for @ < @min.
For an intermediate range of ¢ (¢or > ¢ > ¢mm) there are oscillations in the horizontal
coordinate of the centre of mass, velocity components and stress. As ¢ decreases in
the range d)cr > qb > ¢mm, the amplitude of the oscillations increases proportional to
v ¢er — ¢ and the frequency appears to tend to a non-zero value as ¢ — ¢, indicating
a supercritical Hopf bifurcation. The relation between the dominant frequency and the
higher harmonics of the position, velocity and stress fluctuations are explained using
the momentum balance. It is found that dissipation in the inter-particle and particle—wall
contacts is critical for the presence of an oscillatory state.

Key words: dry granular material

1. Introduction

The gravity flow of granular materials through standpipes, hoppers and bunkers is
encountered in numerous unit operations such as reactors, mixers, separators and heat
exchangers. Examining the pressure exerted by the flowing material on the walls has
practical importance for developing a reliable design. Earlier studies reported fluctuations
in the wall stresses (Rao & Venkateswarlu 1975; Tiiziin & Nedderman 1985; Roberts
& Wensrich 2002; Ramirez, Nielsen & Ayuga 2010; Wang er al. 2020). The ‘stick-slip’
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motion of particles past the wall and ‘silo-quaking’ are some common sources of such
fluctuations (Tiiziin & Nedderman 1985; Tejchman & Gudehus 1993; Dhoriyani et al.
2006). Apart from this, instability in the flow can lead to a rich variety of patterns that
affect the wall stresses significantly. Using the discrete element method (DEM) based
simulations, the current work explores an instability-driven oscillatory flow and oscillatory
wall stresses in gravity flow through a vertical channel.

Instability in granular flows is as fascinating as that in the hydrodynamic stability of
simple fluids. Inelastic inter-particle collisions in these dry frictional materials, which
are the major source of energy dissipation, drive an instability resulting in formation of
anisotropic structures, clusters of particles, vortices and density waves (Hopkins & Louge
1991; Goldhirsch & Zanetti 1993; Raafat, Hulin & Herrmann 1996; Kudrolli, Wolpert
& Gollub 1997; Kumaran 1998; Hua & Wang 1999; Luding & Herrmann 1999; Alam &
Hrenya 2001; Liss, Conway & Glasser 2002; Conway & Glasser 2004; Mitrano et al. 2011;
Fullmer & Hrenya 2017). Their presence in the flow has a crucial impact on stress states,
which is analogous to turbulent stress in simple fluids, and mixing and segregation (Liss &
Glasser 2001; Conway, Liu & Glasser 2006). The kinetic theory based models for inelastic
hard-particles predict a strong connection between inelastic dissipation and instability
(Babic 1993; Brey et al. 1998; Garz6 2005), which is in agreement with hard-particle
simulations (Hopkins & Louge 1991; Goldhirsch & Zanetti 1993; Mitrano et al. 2011,
2013).

In a molecular gas, their fluctuating motions are due to their mean motions and true
temperature, whereas the fluctuating motions in athermal granular materials, a measure
of the ‘granular temperature’, are only because of the mean motions of the particles.
In granular flow, the fluctuating velocities and the mean free path of the particles are
strongly related to the nature of inter-particle collisions. If the collisions are significantly
dissipative, there is a tendency to form clusters of particles where the frequency of
collision increases resulting in a further decrease in the mean free path — this phenomenon
is known as ‘clustering instability’. Luding & Herrmann (1999) have shown that the rate
of cooling is higher at the beginning in freely cooling systems and subsequently reduces
resulting in an inelastic collapse. If there is an energy source and the flow sustains, then
rich patterns form.

Raafat et al. (1996) performed experiments with a narrow long vertical tube of circular
cross-section. They observed three regimes: (i) at high mass flow rates, the material is very
dilute and in free fall; (ii) the dense material flows down slowly and uniformly through
the length of the pipe at low mass flow rates and (iii) the wave regime at intermediate
mass flow rates where the stream breaks down into dense and dilute clusters in the flow
direction, characterised as ‘density waves’. These waves appear after traversing a certain
distance from the inlet of the pipe. Aider et al. (1999) observed an oscillatory velocity in
the downward (flow) direction in the wave regime. They mentioned that the material is in
free fall up to a distance from the inlet before density waves appear downstream inside the
pipe, and the oscillatory velocity may resemble stick-slip motion.

To capture density waves, Hua & Wang (1999) measured the temporal variation of
the density at a circular cross-section using electrical capacitance tomography, which is
more accurate than the methods used earlier. Their results showed an oscillatory trend
of the density with time at the central region. The earlier work reported the appearance
of density waves in the flow direction whereas Hua & Wang (1999) observed these in a
cross-section at a distance from the inlet. They proposed that the particle collisions are the
only mechanism for the formation of density waves. The particles bounce back towards
the centre after colliding with the wall forming a dense zone of high solids fraction ¢.
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Further collisions allow the particles to spread across the cross-section and hence a
reduction in ¢ at the centre. The radial variation of the solids fraction seems asymmetric in
some of their results. This may indicate that there is a possibility of cross-stream velocity
and stresses oscillating with time, which has not been reported there. It must be noted that
the studies mentioned above could not minimise the effect of air drag on the particle phase
in their experiments. Further, the flow is quite dilute, with the maximum value of ¢ being
only approximately 0.16.

Wang, Jackson & Sundaresan (1997) studied the stability of fully developed gravity
flow bounded between two vertical walls at a distance 2W using the kinetic theory based
model of Lun et al. (1984) and the boundary conditions of Johnson & Jackson (1987). The
effect of air drag was neglected in the model. The stability criteria of the particle phase
depends solely on the average solids fraction ¢ (ratio of the volume of the particles to
the volume of the channel) and the width of the channel 2W. They reported that there are
three dominant growing modes which are travelling waves. At an unstable base state, these
waves propagate in the flow direction generating three types of density waves.

Later, Wang & Tong (2001) solved the unsteady equations based on kinetic theory
numerically for a two-dimensional flow and analysed different types of density waves.
Depending on the ratio of the height H* of the channel to its width 2W, the distribution of
¢ with respect to the central plane is either symmetric or anti-symmetric. A cross-stream
flow is evident, and the formation of dense and dilute clusters in the flow direction is
shown by their results. These instabilities are shown to be of inertial nature and dependent
on inelastic particle—particle collisions. However, they did not integrate the equations for
a long period of time, and the values of ¢ = 0.15 and 0.4 used are very small. Intuitively,
one can expect a very low resistance from the walls on the material for small values of ¢,
resulting in an accelerated flow when air drag is neglected. Surprisingly, this is not seen in
their results. They stated that the inertial effects and significant dissipation due to inelastic
collisions cause the instability; however, the dominant mechanism for instability is not
clearly understood from their work.

Liss et al. (2002) performed simulations with rigid disks flowing inside a
two-dimensional vertical channel and applied periodic boundary conditions in the flow
direction. The degree of inelastic collision and roughness of particles are determined by
the coefficients of normal and tangential restitution (e, ¢;). For a small value of (H*/2W),
the cross-stream flow and density waves are absent in their simulation. The reason is the
following. The spatial variations of length scale higher than the dimension of a periodic
domain H* are suppressed because of the use of periodic boundaries, and thus cannot be
captured (Babic 1993; Allen & Tildesley 2017). The predictions of simulations by Liss
et al. (2002) reflect a stronger dependence of the dimension of the periodic domain on the
manifestation of different types of density waves, qualitatively in agreement with Wang &
Tong (2001).

The work of Wang & Tong (2001) is based on the integration of the equations of
the kinetic theory for smooth particles in a two-dimensional flow. The only source
of dissipation is the normal coefficient of restitution e, for inter-particle collisions.
Subsequently, Liss et al. (2002) used event-driven hard particle DEM simulations of disks,
where the dissipation is modelled by the coefficients of restitution e, and e;. The parameter
e, accounts for the roughness of the particles. The present work is based on soft particle
DEM simulations where dissipation can occur because of viscous damping in the normal
and tangential directions, and the surface friction is also included. It is of interest how
these different factors influence the dissipation and the instability.
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Figure 1. Flow in a vertical channel. The dimensions of its rectangular cross-section in the z and x directions
are B x 2W. (a) A static bed is filled up to height H — AH with a bottom. (b) In the flowing bed, the bottom is
removed and periodic boundary conditions are applied in the z and y directions. The height of the flowing bed
is H.

The granular flow through a vertical channel was examined by Debnath, Kumaran &
Rao (2019, 2022a); Debnath, Rao & Kumaran (2022b); they found a narrow range of the
average solids fraction (¢qx, @cr) for which a steady flow can be obtained. The flow ceases
when ¢ is above ¢y, and there is an oscillatory flow followed by an accelerated flow when
¢ is below ¢.,. Four different shear regimes were identified for a steady fully developed
flow: a central plug region where there is no shear; a dense shearing zone adjoining the
plug region where the solids fraction ¢ exceeds 0.587, which is the solids fraction for
the arrested dynamics (Kumaran 2008); a loose shearing zone where ¢ is less the 0.587
and a wall shearing zone extending over a distance of 2-3 particle diameters from the
wall where the shear rate is large. It was shown that the rheology is well explained using
the hard-particle model in the loose shearing zone, but the particle stiffness affects the
rheology in the dense shearing zone and the plug zone. An extended kinetic theory has
been proposed by Berzi, Jenkins & Richard (2020) where the effect of the particle stiffness
is incorporated, and applied for the present flow configuration by Debnath et al. (2022a)
and Islam, Jenkins & Das (2022). B

The present work demonstrates the presence of an oscillatory state when ¢ is lower than
that for the steady flow in a vertical channel. These oscillations are self-induced and the
characteristics of these oscillations are examined. The flow configuration and simulation
method are discussed in § 2, the analysis of the flow characteristics is the subject of §§ 3
and 4, and the important results are discussed in § 5.

2. Flow configuration and simulation method

The gravity flow of particles through a vertical channel of rectangular cross-section is
simulated. The channel is of finite width 2W in the x (cross-stream) direction, and periodic
boundary conditions are used in the other two directions, the horizontal z (spanwise)
direction of width B and the vertical y (flow) direction of length H. A schematic of the
flow configuration is shown in figure 1.

The initialisation protocol is the following. A flat bottom is placed below the channel
initially and the particles are poured into the channel by raining them uniformly and
allowing them to settle under gravity. The channel is filled up to a height H — AH,
and there is a vacant head space of height AH above the particles (figure la). The
average solids fraction ¢, the ratio of the volume of the particles to the volume of the
channel, of the static bed is close to ¢4, = 0.64, the solids fraction corresponding to
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the dense random packing. During the onset of flow, the flat bottom is removed and
periodic boundary conditions are applied (figure 1b). In the flowing state, the value of
¢ is set by changing AH. The spherical particles are polydisperse to avoid crystallisation,
with a number fraction 0.3 for 0.9 dj,, 0.4 for d, and 0.3 for 1.1 d,. In the simulations,
(H — AH)/d, and B/d,, are set to 60 and 40, respectively, and 2W/d,, is varied in the
range 40-120.

The DEM is used to integrate the motion of particles and the flow is simulated using
LAMMPS open source software (Plimpton 1995). The event driven simulation method for
inelastic hard spheres is computationally more expensive for the present system. This is
because the solids fraction ¢ is close to ¢y, in the centre of the channel and the time
interval between successive collisions is very small. It results in longer simulation times
to capture collisions of all particles. Apart from that, the former method cannot be used if
there are enduring frictional contacts. Contact dynamics allows instantaneous collisions,
but multi-body collisions are permitted within one time step. As we are interested in
tracking particle overlaps and frictional contacts, the DEM has been used in the present
work.

The linear spring-dashpot model is used, with spring constants (k,, k) in the normal
and tangential directions to the surfaces at contact, damping constants (&,, &), and the
coefficient of inter-particle friction j,,. Unless otherwise specified, the results correspond
to ky = 10°0,8d5, ki = 2/Tky, & = 180,/g/dp, & = 1/2&, and 1, = 0.5, where p,, is the
intrinsic density of a particle and g is the acceleration due to gravity. The values of the
parameters for the particle—wall interactions are same as for the inter-particle interactions.
Details of the DEM and methods to calculate properties are described by Debnath et al.
(2022a,b).

The variation of the flow characteristics with &, in the plug region was examined by
Debnath et al. (2022b) (see figure 10 and the accompanying discussion). It was shown that
the particle stiffness has a significant effect on the temperature profile in the plug region.
However, there was no change in the profiles of the solids fraction, velocity and shear rate
for &,/ (ppgd[%) > 10°. As the interesting oscillatory dynamics is observed in the shearing

zone close to the wall, the scaled spring stiffness has been chosen to 10° in the present
study. We have verified that an increase in the scaled spring stiffness to 107 has no effect
on the dynamics to within the simulation resolution.

All results are shown for the scaled quantities, where the length, time, velocity, granular
temperature, force and stress are scaled by d,, \/d,/g, \/g&dp, gdp, ppgd; and ppgdp,

respectively. Without loss of generality, d), o, and g are set equal to 1.

3. Results

The flow dynamics is characterised by the variations in the coordinates and the velocities
of the centre of mass, denoted by the subscript .,

(3.1)

where N is the total number of particles in the simulation box and m; is the mass of
particle i. The variation of the x coordinate of the centre of mass x.,;, and the flow velocity
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Figure 2. Variation of the x coordinate of the centre of mass x., (solid curves, left ordinate) and the flow
velocity of the centre of mass —uy¢,, (dashed (red) curves, right ordinate) for a channel of width 2W = 100; ¢,
¢ = 0.625 (no flow); A, ¢ = 0.60 (steady fully developed flow); o, ¢ = 0.57 (oscillatory flow); [J, ¢ = 0.552
(accelerated flow). The time series data are shown for fr = 1/(500 At), where fir is the sampling frequency
(see Appendix A) and At is the simulation time step.

of the centre of mass —uy).;, with time 7 are shown in figure 2. The following states are
observed.

®
(i)

(iii)

(iv)

There is no flow for ¢ > 0.62. There is a very small initial velocity, but it decreases
quickly to zero, and the material between the two walls reaches a jammed state.

For ¢ = 0.60 < 0.62, the material is in free fall initially, and —uy ., increases
linearly with time as expected. There are oscillations in x,, of very small amplitude
till = * = 100. After r* = 100, the material experiences equal resistance from both
the walls where the walls bear the weight of the material, and the flow reaches a
steady fully developed state. B

For ¢ = 0.57, the initial transients are similar to those of ¢ = 0.60. The amplitude
and frequency of x,, increase with time till #* ~ 1050. There is a sharp transition
in the profile of —uyc, after t* ~ 1050 where there is traction with the walls;
the acceleration decreases nearly to zero. The flow is not steady, and x.,, exhibits
oscillations with frequency much higher than that of the initial transients. The
amplitude and frequency of the oscillations attain a constant value. This is termed
as an ‘oscillatory flow’. In this state, the upward forces exerted by the two walls on
the material are not equal as x.,, oscillates. However, the time average of the upward
forces exerted by the walls are equal, and their sum is equal to the weight of the
material.

If ¢ is further reduced to 0.552, the material is in a state of vertical free fall till
t = 1500, and this state is termed as an ‘accelerated flow’. The simulations have been
performed till = 4000, but the flow continues to accelerate and there is no sign
of a steady state. If a mass accelerates with gravitational acceleration g (= 1) and
zero initial velocity, its velocity after traversing a distance, say H, would be +/2gH.
Hence, figure 2 implies that the flow reaches an oscillatory state after traversing

a distance ~7 x 103 H for H =66 and ¢ = 0.57. However, for H = 68.15 and
¢ = 0.552, the free fall persists even after traversing a distance of ~110 x 10° H.
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Figure 3. Flow regime map for a vertical channel of rectangular cross-section with flat frictional walls fixed
at a distance 2W.

Due to constraints on the computational time, the motion of the particles could not
be simulated beyond ¢ = 4000.

When ¢ is low, the resistance to flow from both the walls is not experienced significantly
by the material in the transition period (f < *). The material drifts very slowly (in the
cross-stream direction) from one wall to the other while flowing down. At some instances
while drifting, the material is completely detached from both walls. This causes the free
fall in the time period ¢ < r*. When both the walls exert equal resistance, the flow reaches
a steady state, and if the effect is unequal, that drives the flow to a new oscillatory state.

The flow regime map for the width of the channel in the range 2W = 40-120 and flat
frictional walls is shown in figure 3. (A preliminary study can be found in the paper by
Debnath et al. 2019.) As 2W increases, the range of ¢ for the different reglmes decreases.
The boundary between no flow and a steady flow at ¢ = @nee = 0.62 is independent of
2W. The boundaries between a steady and an oscillatory flow, and between an oscillatory
and an accelerated flow depend on 2W. The steady fully developed flow is observed in a
very narrow range ¢., < ¢ < ¢puax. The features of the steady fully developed flow and
the predictions of different classes of continuum models were discussed by Debnath et al.
(2022a,b). An oscillatory flow is observed when @ is decreased below ¢er. An accelerated
flow is observed when ¢ is further decreased below a value ¢, where the material is in
free fall. The oscillatory regime in the range ¢, < ¢ < ¢ is the focus of the present
work.

3.1. Oscillatory regime

The centre of mass coordinate and velocities are shown with a greater magnification in
figure 4. The x component of the velocity of the centre of mass uy., oscillates with the
same frequency as x.,, and a phase difference of 7/2, because the velocity is a maximum
when x.,,, passes through the centre of the channel. Here —uy., decreases when x| is a
maximum in either direction due to a larger traction with the wall, and increases when x,
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Figure 4. In the oscillatory regime, the expanded view of X, tx|cm and —uy|cn in a very small time interval

for 2W = 100 and ¢ = 0.57. The black and red curves correspond to the left and right ordinates, respectively;
Xem, black solid curve; uyem, black dotted curve.

passes through the centre of the channel. The frequency of —uy|¢, is two times that of x¢,
and a possible reason will be provided shortly using the momentum balance equations.

In the oscillatory state, a variable @ is defined as the sum of its time-averaged ‘base’
state @ ?, which is time-independent, and the oscillations about the base state @,

o =o'+ (3.2)

b

b
om and Uy ATC both zero, and

The time-averaging is done over 5 x 103 time steps. Here, x

uﬁl om 7 018 the time-averaged velocity in the vertical direction. In the time series profiles,
the data are collected at a sampling frequency fyr. The effect of the sampling frequency on
the results is discussed in Appendix A.

The effect of the ratio of the height H to width 2W has been examined in Appendix B
to investigate whether the time series of x.,, varies with the distance along the flow. The
value of H/2W is increased up to a maximum of 2.5 for 2W = 80 and H = 200. Even for
this large height, no variation of x., with time has been found at different locations in the
flow direction, as shown in Appendix B.

3.2. Solids fraction

The variation of the solids fraction ¢ and the wall stresses are shown in figure 5. The
time series of ¢ at the centre of the channel is nearly steady, and it has a high value of
approximately 0.63-0.64 (the dotted curve in figure 5a). In contrast, ¢ at the the walls (the
solid and dashed curves in figure 5a) shows oscillations in the range ¢ = 0.08-0.3 with
an average ~0.16. (Note that the properties at the walls are obtained by averaging in a bin
adjacent to the walls of thickness 1.5 dj,.) The wall shear and normal stresses (figure 5b)
exhibit sharp maxima when ¢ passes through a maximum, and are close to zero when
¢ passes through a minimum. The maxima in the stresses are sharp, but the minima are
shallow and close to zero. Therefore, the maximum is more than two times the average
values shown by the dotted horizontal lines in figure 5(b).

The solids fraction ¢ and the normal and shear stresses at the two walls are
anti-correlated (figure 5a,b), i.e. when ¢ is a minimum at one wall, it is a maximum at the
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Figure 5. A typical time series of (a) the solids fraction ¢ at the walls and (b) wall stresses oy, (black, left
ordinate) and o,y (red, right ordinate). In panels (a) and (b), the solid curves represent the left wall at X =
x4+ W = 0 and the dashed curves for the right wall at x' = 2W; the dotted curve in panel (a) is at the mid-plane
x' = W. The solid horizontal line in panel (a) represents the time-averaged value of ¢; the dotted (black and
red) horizontal lines in panel (b) represent the time-averaged values of o, and |oyy|. (¢) Variation of ¢ with
the distance from the left wall x’. In panel (c), ¢ and [J represent profiles for time #; = 6001.2 and #, = 6003.6
when the material is fully compressed to the left and right walls, respectively, o represents the time-averaged
base state ¢”, and the inset is a magnification of the profiles near the right wall. The parameter values are 2W =
100 and ¢ = 0.57. The time series data are shown for fsr = 1/(500A1), where fir is the sampling frequency
(see Appendix A) and At is the simulation time step.

other wall, implying that the material cyclically detaches from one wall and accumulates
near the other wall. The same trend is reflected by the normal and shear stresses exerted
by the material on the walls which is expected. The stresses are close to zero when the
material detaches from a wall. There is a large traction at one wall for a short period of
time when ¢ at that wall is close to 0.3; at the same instant, the other wall experiences
nearly no traction when ¢ is approximately 0.08.

The profiles of ¢ corresponding to the time instants when the wall stresses are maximum
and minimum are shown in figure 5(c). The time-averaged profile ¢” is symmetric about
the centre of the channel, while the other two are asymmetric and (almost) mirror images
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Figure 6. Variation of (a) M€|(rm with ¢ and (b) its scaled values with ¢, — ¢. The magenta curve in panel

(a) marks the boundary between the oscillatory and the steady fully developed states. In panel (b), the
oscillatory and steady states correspond to the right and left of the vertical dashed line, respectively. Parameter
values: ¢, 2W = 60; [, 2W = 80; o, 2W = 100; A, 2W = 120.

about the centreline. The distance between the time-averaged value of ¢ at the wall and the
corresponding values of the profiles of ¢ for #; and #; (see caption of figure 5) are 4.75 and
3.25, respectively. The mean distance is 4.0, which is approximately twice A,,, = 2.14 £
0.11, where A, is the amplitude of the dominant frequency of x.,. When the material is
fully compressed towards one wall, the thickness of the layer is found to be approximately
2(W —A,,,), in accordance with x., which traverses a maximum distance 24, , in half
a period of oscillation. The corresponding value of ¢ in this layer of dimensions H x
B x2(W —A,,,) is & ¢.r. Hence, the effective width of the flowing layer turns out to
be 2(W —A,,,), two times the difference between the half-width of the channel and the
amplitude of oscillations.

Xem

3.3. Flow velocity

As mentioned earlier, the time-averaged flow velocity ”;JI on =0, and it exhibits a

monotonic variation with 2W and ¢ (figure 6). Here, u is shown both for the steady

b

ylem
fully developed state (q_& > chr) and the oscillatory state (qS < q_Scr) — the two are separated
by the pink filled circles in figure 6(a). The magnitude of ”f'l o INCTEases as ¢ decreases and
2W increases. Figure 6(a) shows a clear discontinuity in the slope at the transition between
the steady and the oscillatory states. This suggests a continuous transition between the two
states. The scaled velocity, —uf,l em/ v/ 2(W — Ay, is plotted as a function of (¢, — ¢) in
figure 6(b), where A, is the amplitude of the oscillation in x.,,. The data fall on a single
curve for (¢.r — ¢) — 07 in the oscillatory state, implying that the Froude number based
on the average velocity and the effective width 2(W — A, ) is independent of the width
2W. A similar collapse is not observed for the steady fully developed state for ¢ > der as
¢cr 1s a function of 2W (see figure 3). However, our earlier work (Debnath ef al. 2022b) has

shown that the scaling is valid if the scaled velocity —ui’,l om/~2W is plotted as a function of
¢ for the steady fully developed flow. This suggests a Beverloo-type correlation (Beverloo,
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Figure 7. Variation of the time-averaged stresses (a) . and (b) Tys

]

and their scaled values with ¢, — ¢

on the left wall X' = 0; solid and dashed curves correspond to the left and right ordinates, respectively. The
oscillatory and steady states correspond to the right and left of the vertical dashed line, respectively. Parameter
values: ¢, 2W = 60; O, 2W = 80; o, 2W = 100; A, 2W = 120.

Leniger & Van de Velde 1961) for the oscillating mass of particles with a characteristic
length scale (W — Ay, ). There is a departure from this scaling near the transition to the
accelerated regime where ¢ is close to ¢yip.

3.4. Stress

The time-averaged stresses are shown in figure 7. From the momentum balance, the normal
stress o)ﬁ’x is a constant across the channel, i.e. oy, = o*xl; = constant, and the magnitude of
b

oy, increases from the centre to the wall for the steady fully developed flow (Debnath

et al. 2022a,b). The maximum value of |a)€’y| at the wall is equal to the weight of the
material in one half of the channel, i.e. |ofy|(x = W) = W¢ for both the steady and the
oscillatory states. The stresses are continuous at the transition between the steady and the
oscillatory states. There is a distinct change in the shape of the normal stress Gfx at the
transition; — afx decreases as ¢ is decreased in the steady fully developed flow. However,
the normal stress shows only a small variation with ¢ in the oscillatory state (figure 7a).
As the variation of ¢ is in a very small range (<6 %), the variation of Ufy at the wall with

¢ is small (figure 7b). The stresses vary with 2W. In the oscillatory state, the ratio of the
stresses and the width is independent of 2W and (¢¢, — ¢), as shown by the red dashed
curves in figure 7. Because ¢, varies with 2W, the scaling is not suitable in the steady
fully developed state for (¢.r — ¢) < 0. However, our earlier work (Debnath et al. 2022b)
has shown that the scaling is suitable if it is a function of ¢ for the steady fully developed
flow.

It is interesting to note that Gfx is approximately independent of (¢., — @) > 0
(oscillatory state). A plausible reason is the following. The stress arises from inter-particle
contacts and fluctuating velocities (see Debnath et al. 2022b, (2.4)). In the steady fully
developed flow, u, is zero and the square of the velocity fluctuation u, is negligible. Hence,

the major contribution to ofx is due to the contact forces which decrease with ¢ (intuitively)

and perhaps saturate as ¢ — ¢ The data for 2W = 60 and 80 show this trend, whereas
there is no clear trend for larger widths. Now, in the oscillatory state, the normal stress is
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Figure 8. Variations of |oyy| with oy, (black markers, left ordinate) and \a;y| with o}, (red markers, right

ordinate) at the left (o) and the right ((J) walls for (a) 2W = 100 and (b) 2W = 80. The slope of the blue
dashed lines in panels (a) and (b) is 0.45.

due to the contact forces, the oscillatory velocity of the centre of mass in the x direction and
the fluctuating velocity of the particles about the latter. It is speculated that the oscillations
in u, only affect the perturbed normal stress o, and not the time-averaged base state
fo. Because of this, afx is independent of ¢ in the oscillatory regime for a given width.

As 2W increases, Gfx increases for a given value of ¢., — ¢ and the former appears to
be proportional to 2W, consistent with the Janssen solution at large depths (Rao & Nott
2008).

As both the shear and normal stresses are proportional to 2W, the wall friction

coefficient ,u’v’v = la)fyl(x =W) /cr)gc, appears to be a constant for the time-averaged base

states in the oscillatory flow, which is independent of ¢ and 2W. In contrast, the coefficient
of friction strongly depends on ¢ and does not depend on 2W in the steady fully developed
state (Debnath ef al. 2022b). The wall stresses, oy, and oy, and their perturbed states, oy,
and a;y, are plotted against each other at many time instants (figure 8). The ratio, which
is the coefficient of friction, is close to 0.45 for both |oyy|/0oy, and |a;y| /o... Though it
appears that the friction law can be applied to the oscillatory component of the stress as
well, a common friction coefficient may not be applicable to model the wall stresses in the

oscillatory state.

3.5. Effect of dissipation on oscillations
The effect of the dissipation on the oscillatory flow is examined. There are two sources of
dissipation — frictional dissipation and damping dissipation. Two important observations
are the following:

(1) It has been observed that if the coefficient of inter-particle friction is reduced from
mp = 0.5 to 0.25 (keeping inter-particle damping constant &, fixed), the material

accelerates even if ¢ is in the range ¢ > ¢ > ¢, and the flow does not reach
a steady fully developed state. Hence, a decrease in the frictional dissipation has a

destabilising influence on the flow and the choice of 1, appears to be significant.
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Figure 9. Amplitude—frequency spectra for (a) x;, and (b) u;‘ om- Parameter values: 2W = 100; red,

¢ = 0.61; blue (A), ¢ = 0.59; black (), ¢ = 0.58; magenta (o), ¢ = 0.57; fyr = 1/(500A0).

(ii) The effect of the inter-particle damping constants &, , , and the particle-wall
damping constants &, ,,, are examined separately. The ratio of the tangential to the
normal damping constants are set the same in all cases. For the cases studied here,
it is found that the oscillations disappear and the flow is steady if the inter-particle
damping is absent, i.e. §, ,—, = 0 (keeping u, = 0.5 fixed) in the range ¢, > ¢ >
@min. Hence, a reduction in the damping dissipation has a stabilising influence on the
flow, in contrast to the role of the frictional dissipation. However, oscillatory states
are present even if the particle-wall damping coefficient is set to zero, &, ,—,, = 0.
Thus, damping in particle—wall collisions seems to have no effect on the oscillatory
states. A detailed analysis of the friction and damping coefficients is provided in
Appendix C.

4. Spectral analysis of the oscillations

/

4.1. xe and Uyjem

The amplitude—frequency spectra of x., and “;I om are shown in figure 9 for 2W = 100

and different values of ¢. For ¢ = 0.61 (red curve), the frequency spectrum is noisy
and exhibits no clear maxima. As ¢ is decreased, one clear maximum appears for
¢ = 0.59 (blue), but the amplitude of oscillations is found to be approximately 5-7 times
smaller than a particle diameter. As ¢ is further decreased to 0.58 and 0.57 (black and
magenta), there are multiple maxima, with the largest maximum (higher than a particle
diameter) denoted by A, and A”(=\cm at the dominant frequencies denoted by f,, and fu;lcm,
respectively, and smaller maxima at the higher harmonics. The amplitudes of the higher

harmonics of x.,;, and ”;I m are orders of magnitude smaller than that at the dominant one.

For definiteness, ¢, (see figure 3) is chosen such that the largest amplitude of the dominant
peak in the amplitude—frequency spectra of x., is less than half a particle diameter. (Note
that if the former criterion to obtain ¢, is slightly changed, i.e. the value is reduced from
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Figure 10. Amplitude—frequency spectra for (a) o), and (b) o;y at the walls. Parameter values: 2W = 100

and q} = 0.57; fyy = 1/(5000A1); black curve (LJ), left wall (x = —W); green curve (o), right wall (x = W);
red curve (A), the terms on the right-hand side in (4.1) and (4.2). The insets in panels (a) and (b) show the
corresponding time series of the perturbed wall stresses.

0.5 to 0.2 particle diameter (60 % reduction), the change in ¢cr is observed to be in the
range 0.5-0.8 %). _

For example, the dominant frequency of x., is fx,,, = 0.18 for ¢ = 0.57 and 2W = 100,
which corresponds to 18 Hz for d, = 1 mm and g = 10 m s72 and the frequencies of the
higher harmonics are 3, 5, 7, . . . times the dominant frequency f;_,,. As the variation of x,
with time is symmetric about its mean value (figure 4), the amplitude—frequency spectra of
Xem contains maxima only at odd multiples of the dominant frequency f; . The dominant
frequency of fu;\cm is 2fy,,,- This is because the vertical velocity has two minima when x,

passes through one maximum and one minimum, and the wall shear stress on either wall
is the largest. The higher harmonics of u;l om @re 2,3, ... times the dominant frequency

f"/l , as the time series of «/,  is not symmetric about its mean value.
ylem

ylem

4.2. Wall stress
" and o/

The spectra for the perturbed normal and shear stresses, oy, yy» at the walls are
shown in figure 10, and the corresponding time series profiles are shown in the insets.
The dominant frequency of the largest maximum in the spectrum of the normal and shear
stress at both the walls is the same as that for x.,, and other maxima are at 2, 3,4, ...
times the dominant frequency. The relation between the stress and the velocity spectra can
be understood using the momentum balances integrated over the width of the channel.
The time-averaged velocity, the time-averaged body force and the time-averaged stresses
exerted by the walls have been subtracted to obtain the equations for the perturbations to
the acceleration of the centre of mass.

(i) The momentum balance in the cross-stream x direction (for the perturbed state) is

In duxlcm n dzxcm
2Wp———— = 2W.
¢ dr ¢ dr?

= —(Opele=w — O li=—w). (4.1)
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The left-hand side of the above equations is the scaled mass times acceleration in the
x direction per unit area in the x—z plane, and the right-hand side is the stresses (force
per unit area) exerted by the walls. On the right-hand side of (4.1) is the difference
in the normal stress at the left and the right walls, as the right wall exerts a normal
force in the —x direction and the force due to the left wall is in the +x direction. The
time series of the perturbed wall normal stresses and their difference are shown in
the inset of figure 10(a). If one oscillation of the centre of mass x.,, is considered, o,
on each wall passes through one maximum and one minimum. Thus, the difference
of o], between two walls passes through one maximum and one minimum, and
hence the dominant frequency of the difference (o), |x=w — 0y, |x=—w) is the same
as that of x.,,. As the time series of o}, on either wall is not symmetric about its
time-averaged value with a sharp maximum and a shallow minimum, the spectrum
contains all the frequencies f, 2f, 3f, . ... However, the difference in a;x between
two walls is necessarily symmetric about its time-averaged value which is zero, and
therefore it only contains the frequencies f, 3f, 5f, . ... Because of this, the spectra
of X¢, and uy|e, contain only odd frequencies.

(i) The momentum balance in the y direction (for the perturbed state), equivalent to
(4.1), is

/

uy lem

_d
2We ”

On the right-hand side of (4.2) is the negative of the sum of the absolute values
of the shear stresses on the two walls, because the shear stress acts opposite to the
flow direction on both the walls. The perturbed shear stress o);y on each wall has one
maximum and one minimum displaced by a phase 7 over one cycle of the centre
of mass x.;,. Therefore, the sum of these two stresses contains two maxima and two
minima over one cycle (figure 10b). This has frequency 2f, if f is the frequency of
Xcm- Because of this, the dominant frequency of u;l om 18 two times that of x.,, and
Uyem- As the sum of the perturbed shear stresses at the walls is not symmetric about
its time-averaged value, the higher harmonics are at 4f, 6f, . . ..

= —(logyle=w + oy li=—w). (4.2)

4.3. Spectra near bifurcation

Let us consider the variation of the amplitude and frequency of the dominant peak with
¢. As expected, the amplitude of x.,, denoted by A, , increases as ¢ decreases (the
solid curves in figure 11a). The values are approximately independent of 2W, and the
dependence on 2W is accounted for by the variation of ¢, (figure 3). The amplitude of
Uyjem 1s related to Ay, by 2mfy,, Ay, if the variation of x., with time 7 is sinusoidal.
The inset in figure 11(a) shows that this is indeed the case, even though the variation

is not strictly sinusoidal. The variation of Aug. o with (¢ — ¢) shows a similar trend
as that of Ay, (the dashed curves in figure 11a). The data can be fitted by the power
law A AM;W X (per — @) '/2, as shown by the pink lines in figure 11(a). The variation
of the dominant frequency is shown as a function of (Per — @) in figure 11(b), where
the frequency does not depend on 2W significantly. However, it decreases with (¢. — @)
which implies that the mass takes a longer time to travel a longer distance, as expected.
The frequency appears to tend to a constant value for ¢. — ¢ < 1. Both of these
are characteristics of a supercritical Hopf bifurcation with a non-zero frequency at the
bifurcation point.

Xem?
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Figure 11. Variation of (a) the amplitude and (b) the frequency of the dominant peak in the
amplitude—frequency spectra of x., and ”;I om With (ch, — qS). The solid and dashed curves are for x., and
u;|cm’ respectively; o, 2W = 60; [, 2W = 80; o, 2W = 100; A, 2W = 120; fir = 1/(500A¢). The inset in
panel (a) is for 2W = 100. The magenta curves represent the fit y = ax'/? in panel (), where a is a constant;
a = 14 for the solid curve and 1.5 for the dashed curve.

4.4. Sustained oscillations

The oscillations cannot be modelled by considering the granular material as a block
colliding sequentially with the two walls with inelastic or frictional collisions. The
magnitude of the horizontal velocity will decrease after each successive collision with the
wall, and the vertical velocity will increase due to the gravitational acceleration, resulting
in an accelerated state. Even if the collisions are frictional, i.e. the vertical impulse at a wall
collision depends on the horizontal momentum of the block, the system will eventually
reach an accelerated state. For sustained oscillations, the exchange of the fluctuating
energy between the vertical and the horizontal fluctuations is essential.

Consider a simple model for the change in the velocity fluctuations v, and v; of the
material before and after collisions with the two walls,

W) i = ;WD | + kW) = @Dlr, (4.3)

2Av!
W) [ = ;W) |+ k@WD* — WDl + 8 —=| (44)

/
X

t

where 7 is the time period for successive collisions. Here, e, and e, are the effective
coefficients of restitution (not to be confused with coefficients of restitution of a particle in
a granular medium) for the decrease in the fluctuating velocities after successive collisions
with the two walls. The term proportional to k results in an exchange of energy from the
vertical to horizontal direction for (v;)2 > (v)’c)2 and vice versa. As the energy dissipation
during collisions is expected, both e, and e, must be less than 1, and they can be functions
of the coefficient of friction and damping constants. Here, k is positive so that there is
a transfer of energy from the direction with higher energy to that with lower energy.
The last term on the right in (4.4) is the total change in the energy per unit mass after
collisions with the two walls due to the acceleration in the vertical direction. The change
in momentum per unit mass is the product of the gravitational acceleration g and the
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time (24 /v}) required to travel the distance 2A in the horizontal direction, where A is the
amplitude of the oscillations. The energy input per unit mass is the product of the change
in momentum and the velocity v;.

There is an oscillatory state if v/|.+, = v}|; and U;lt_l,_-[ = U;|t,

IN2 2 N2 m2Ag
(vx) =m (vy) - (] . 65 + k(] o mz)) ’ (45)
2Ag

m(l — e + k(1 —m?))’

(4.6)

(vy)? =

where m? = (k/(1 — e)zc +k)). As ey and ey are less than 1 and & is positive, solutions for
the fluctuating velocities exist only if k is non-zero. For k = 0, there is an accelerating state
where v/, decreases to zero and v}, diverges. Thus, this simple model demonstrates that the
transfer of energy between the horizontal and vertical velocity fluctuations is essential
for sustained oscillations; oscillations cannot be captured by a lumped parameter model
where the granular material is treated as a block. The rotational degree of freedom of the
particles and the inter-particle and particle—wall friction facilitate this transfer of energy,
thereby stabilising the oscillations. Similarly, the inter-particle damping seems to disrupt
the transfer of energy between the vertical and horizontal directions, thereby resulting
in the absence of oscillations. The effect of the coefficient of friction and the damping
constants on the flow was summarised in § 3.5, and is examined in Appendix C. To identify
the parameter regimes and mechanisms for oscillations, a stability analysis that includes
the nonlinear interactions is required. This is more complicated than the linear stability
analysis and is not attempted here.

5. Discussion

The flow of a granular material through a vertical channel between two flat frictional walls
is considered in the present analysis with the periodic boundary conditions in the flow
and the spanwise directions. Different flow regimes are observed for a fixed value of 2W,
when the average solids fraction ¢, the ratio of the volume of the solids to the volume
of the channel, is varied. There is no flow when ¢ > ¢px. The steady fully developed
flow (@max = @ > @) has been discussed by Debnath ez al. (2022a,b). When ¢ decreases

below a minimum value q_ﬁmin, there is an accelerated flow where the material is in the
state of vertical free fall. In between these two regimes, there is a new ‘oscillatory’ regime
for ¢.r > ¢ > ¢min, where there are cross-stream oscillations of constant amplitude. The
regime of the oscillatory flow is the focus of the present work. If the flow is initiated from a
static configuration, there are initial transients where the material is in free fall and shows
transverse oscillations of growing amplitude. Here the transient states and the accelerated
flow (¢ < ¢in) are not examined in detail.

When the material oscillates, the variation of the solids fraction in the cross-stream
direction at different time instances is asymmetric. During half a period of an oscillation, it
is compressed towards one wall and is very loosely packed near the other wall. That results
in oscillations in the wall stresses. The resistance to the flow by the two walls are not equal
instantaneously, even though they are equal in the time-averaged sense. The profiles of the
wall normal and shear stresses with the time exhibit sharp maxima and shallow minima.
The maximum stresses are 3—4 times the time-averaged values. This could be important
for practical applications, as it is necessary to design equipment to withstand instantaneous
stresses which are multiples of the time-averaged values.
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The wall normal and shear stresses vary continuously as ¢ is decreased. There is a
transition from the steady fully developed regime to the oscillatory regime with a distinct
change in the slope of the stresses with respect to $. An interesting observation is that the
time-averaged base state of the normal stress is independent of ¢, — ¢ in the oscillatory
regime, in contrast to that in the steady fully developed regime. The analysis reveals a
complex relationship between the wave forms and the spectra of the different quantities.
If the dominant frequency of the centre of mass is f, some dynamical quantities oscillate
with frequencies f, 3f, 5f, ..., some oscillate with frequencies, 2f, 4f, 6f, ..., and some
with frequencies f, 2f, 3f, .... The reasons for these are explained on the basis of the
momentum balances.

The amplitude of the x coordinate of the centre of mass and the perturbed state
of the vertical velocity of the centre of mass vary as ~ (¢per — @)V/2. For lumped
parameter systems, such a scaling suggests a supercritical Hopf bifurcation (Strogatz
1994). However, it is shown that the sustained oscillations cannot be explained on the
basis of a lumped-parameter model, where the granular material is considered as a block
colliding with the two walls. The exchange of the fluctuating energy from the vertical to
horizontal velocity fluctuations is essential for the sustained oscillations. Particle rotation,
inter-particle and particle—wall friction and dissipation seem to be essential for this transfer
of energy.

Dissipation plays a key role in the flow to reach a steady state or an oscillatory state.
There are two sources of dissipation — damping and friction. It is observed that the
reduction in the damping dissipation has a stabilising influence, whereas the reduction
in the frictional dissipation has a destabilising influence. For a fixed width of the channel,

the stability of the flow appears to depend on ¢ and the rate of dissipation, which depends
on the inter-particle coefficient of friction 1, and the inter-particle damping (&,, &).
An energy balance analysis was attempted by Debnath (2023) to examine the reasons
for the oscillations. Using a pseudo thermal energy and mechanical energy balance, it
was hypothesised that the different states are due to the relative magnitudes of the rate
of energy input E; due to gravity and the rate of dissipation D, due to damping and
friction. The material will be jammed for D, > E, and accelerating for D, < E,. A steady
flow is observed if .D, = E, instantaneously. An oscillating flow is expected if the time
averages of D, and E; are equal, but they are not equal at each instant. The energy balance
analysis of Debnath (2023) is preliminary and does not provide a detailed derivation for
the mechanism of instability. A more rigorous approach such as the nonlinear stability
analysis is suggested which has the potential to unravel the mechanism and to identify
different parameter regimes.
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Figure 12. Error bar calculation for the amplitude and frequency of the properties of the centre of mass.

Appendix A. Effect of the sampling frequency

The error bars in the results are calculated as follows. When the flow oscillates with a
frequency after a period of time, samples are collected over a time interval, marked by the
blue box in figure 12(a). This time interval is further divided into ten sub-intervals (red
boxes in figure 12b). For each sub-interval, the amplitude and frequency are calculated
(figure 12¢). The error bars represent 95 % confidence limits and are obtained from these
ten sub-intervals. In many results, the error bars are smaller than the size of the symbols
and are not shown.

To check the effect of sampling frequency on the results, the data are collected
for four different sampling frequencies, fiy = 1/(500A7), 1/(1000A¢), 1/(2500A¢) and

1/(5000A7) in a time interval, where A is the simulation time step 1.2 x 10™*. The
variations of the amplitude and frequency corresponding to the dominant peak in the
amplitude-frequency spectrum of x.,, with ¢ is independent of fs (figure 13).

Appendix B. Effect of the height to width ratio

The effect of system size on the dynamics of the oscillatory flow is examined in this
section. Earlier studies have reported that the ratio of the height to the width of the
channel, (H/2W), affects the pattern of the density wave in the flow and the cross-stream
directions (Wang & Tong 2001; Liss et al. 2002). For example, Wang & Tong (2001)
predicted a symmetric density wave type 1 for (H/2W) = 71, a symmetric density wave
type 2 for (H/2W) = 24 and an antisymmetric density wave for (H/2W) = 2.7. In all
cases, the variations in the flow direction are evident. The simulations of disks flowing
through a two-dimensional channel by Liss er al. (2002) captured similar types of waves
for (H/2W) > 2; they are absent in (H/2W) < 1, where 2W = 33.3 and 66.

The present study considers a three-dimensional system which has an additional degree
of freedom. The values of ¢ are significantly higher and the results in the earlier sections
are shown for (H/2W) in the range 0.5-1.1. The results discussed earlier imply that the
confinement effect may not become significant for 2W > 80. Therefore, a few simulations
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Figure 13. For 2W = 100, variation of (@) A, and (b) fy,, with ¢ for different sampling frequency fsrifsr =
1/(500A¢1) (o), 1/(1000A1) ([0), 1/(2500A¢) (A), 1/(5000A1) (o).

were carried out with larger heights for 2W = 80-120 to investigate the effect of (H/2W)
on the results. The system with the largest height considered is (H/2W) = 2.5 for 2W =
80 and ¢ = 0.565.

The wall normal stress at five different heights for larger values of (H/2W) in the
range 2-2.5 is shown in figure 14. Simulations for these different heights show identical
variations in time, and there is no change in the normal stress with stream-wise positions.
This indicates that there is no stream-wise variation for a system where the ratio (H/2W)
is <2.5, and the material oscillates only in the cross-stream direction. Because of
computational constraints, we could not simulate systems having (H/2W) > 2.5 and
2W > 80. It is speculated that the variations in both the flow and cross-stream directions
may appear in systems if the value of (H/2W) is much higher. Simulating such large
systems is beyond the scope in the present work.

Appendix C. Effect of dissipation and friction

In the soft-sphere DEM simulations, there are two sources of dissipation, namely viscous
damping &, and Coulomb friction . If the friction coefficients, ) and piyqy, vanish, a
state of vertical free fall is attained, at least up to the time the equations are integrated. A
few simulations are performed by setting w, = ey = 0.25 without changing &,, and only
an accelerated state has been observed even if ¢ is in the range ¢c < ¢ < Pnar. Therefore,
a stable flow becomes unstable if the frictional dissipation is reduced. Henceforth, we set
Mmp = Mwan = 0.5 and examine the roles of the inter-particle and particle-wall damping on
the oscillations.

The black solid curve in figure 15 corresponds to an inter-particle damping coefficient
&np—p = 180 > 0 and a particle-wall damping coefficient &, ,_,, = 180 > 0 (case A).
Here sustained oscillations are observed after some time, as discussed earlier. In figure 15,
the black dotted, blue and red curves (referenced to the left ordinate) correspond to
(gn,pfp >0, gn,pfw = 0) (case B), (Sn,pfp =0, ’i:n,pfw > 0) (case C), and (gn,pfp =0,
§n,p—w = 0) (case D), respectively (see table 1). (Note that the tangential damping
constant, &, is set to 2/7 &,; hence, if &, is set to zero, & = 0.) We expect the extent
of dissipation to be in the order case A > case B > case C > case D.
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Figure 14. Variation of the wall normal stress oyx|y—o with the time ¢ at different heights y/d, = 20 (o),
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Figure 15. Variation of x., and uyc; with the time . Left ordinate: black solid curve, case A; black dotted
curve, case B; blue solid curve, case C; red solid curve, case D (see table 1). Right ordinate: magenta dashed
curve, case A; magenta dotted curve, case B; blue dashed curve, case C; red dashed curve, case D. Parameter
values: 2W = 100, ¢ = 0.57.
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Damping constant &,

Particle—Particle Particle—Wall
A Enpp = 180 Enpw = 180
B En,p—p = 180 Sn,p—w =0
C Sn,pfp =0 é:n,pfw = 180
D En.p—p =0 sn,p—w =0

Table 1. Damping coefficients for different cases for inter-particle and particle-wall interactions.

Case B is qualitatively similar to case A, except that the onset of oscillation is earlier
and —uy|c, is lower in the former (see the dashed magenta curve (case A) and the dotted
magenta curve (case B) referenced to the right ordinate in figure 15).

For the cases examined here, the oscillations disappear and a steady fully developed
state is attained when the particle—particle damping is zero irrespective of the nature of
particle-wall damping (cases C and D), and —uy¢y, is higher for case C compared to case
D. In the transition period, the material is always in free fall before the flow reaches either a
steady fully developed state or an oscillatory state. The flow reaches a steady state quickly
in case D where the dissipation due to damping is the least. Hence, figure 15 implies that
a reduction in the damping dissipation has a stabilising influence, opposite to the role of
the frictional dissipation.

The y component of the velocity of the centre of mass is the highest for case A and
lowest for case D (see the right ordinate in figure 15). The centreline velocity as a function

of ¢pe — q_S shows the same trend in figure 16(a), irrespective of the width of the channel.
This is counter-intuitive as the dissipation due to damping is higher for case A, and hence
a lower velocity would be expected. The higher velocity for case A is mainly due to the
higher slip velocity, as shown in figure 16(b). The variation of the velocity across the
channel, which is an indication of the mean shear rate within the flow, is approximately
similar for cases A and D (figure 16¢). However, the slip velocity averaged over cycles for
the oscillatory state is approximately two times higher for case A (oscillatory state) than
that for case D (steady fully developed state).

The normal stress and its scaled value is measurably lower for case A in comparison
to case D (figure 16d). This may be because of the contact stress which is expected to be
higher for case D as there is no viscous damping. As the shear stress required to balance the
weight of the material does not vary for a fixed value of ¢, this indicates that the effective
coefficient of friction at the wall is higher for case A than that for case D.

A comparison of the time-averaged base state of the solids fraction ¢”, velocity uly’ , rate

of deformation %|duy /dx|? and granular temperature 7 among cases A to D is shown as
a function of the distance x’ = x + W from the left wall in figure 17. Here, the domain
has been separated into zones following the work of Debnath er al. (2022b) — the plug
zone at the centre where the solids fraction is a constant and >0.63, the adjoining dense
shearing zone where the solids fraction is in the range 0.587-0.63 and the loose shearing
zone where the solids fraction is less than 0.587.

Figure 17(a) shows that ¢” is approximately similar for all the cases. However, ¢” in
the plug zone is slightly higher for cases A and B, where it is close to the dense random
packing ¢4y = 0.64. In contrast, #” in the plug for cases C and D is close to 0.63. We
have verified that there is no crystalline structure in either case, so the higher packing
for the oscillatory state is not due to crystallisation. Close to the wall, ¢? is lower for
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Figure 16. Variation of (a) the time-averaged centreline velocity (—ufv’ )|x=0, (b) the slip velocity (—ui’, Vx=w,
(c) their differences, (d) the normal stress (black curves, left ordinate) and its scaled value (red curves, right
ordinate) with ((735, — qS): solid and dashed curves are for cases A and D, respectively; [J, 2W = 80; o, 2W =
100; A, 2W = 120.

cases A and B where there are oscillations. Because of the oscillation, ¢ at the left wall
is very low when the centre of mass is at its right extreme, and vice versa. This results

in a lower ¢? near the wall. As ¢ is the same for cases A to D, ¢” in the plug region
for cases A and B is expected to be higher than that for cases C and D. The significantly
higher velocity for cases A and B than cases C and D is shown in figure 17(b). Figure 17(c)
shows that the rate of deformation within the plug region decreases to zero within the
simulation resolution, as indicated by the large error bars. The temperature at the plug
is clearly non-zero because the error bars are smaller than the symbols (figure 17d). The
granular temperature for cases A and B is higher than that for cases C and D in the plug
and dense shearing zones, but lower near the walls in the loose shearing zone. The higher
temperature in the dense and plug zones could be due to the higher rate of deformation in
the dense shearing zone adjoining the plug for cases A and B. In the loose shearing zone,
both the rate of deformation and the granular temperature are lower for cases A and B in
comparison to cases C and D.

Thus, the different shear regimes for different cases are qualitatively similar and the
locations of the boundaries are also the same to within simulation accuracy. However, the
solids fraction, rate of deformation and granular temperature are higher near the centre,
and lower at the wall for cases A and B where there are oscillations in comparison to cases
C and D where there is no oscillation.
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