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Inertial wave attractors in librating cuboids
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Perturbed rapidly rotating flows are dominated by inertial oscillations, with restricted
group velocity directions, due to the restorative nature of the Coriolis force. In containers
with some boundaries oblique to the rotation axis, the inertial oscillations may focus
upon reflections, whereby their energy increases whilst their wavelength decreases and
their trajectories focus onto attractor regions. In a linear inviscid setting, these attractors
are Delta-like distributions. The linear inviscid setting is obtained formally by setting
both Ekman number E (ratio of inertial to viscous time scales) and Rossby number
Ro (non-dimensional amplitude of the forcing that drives the inertial oscillations) to
zero. These settings raise fundamental questions, in particular concerning the nature of
energy dissipation in the vanishing Ekman number regime. Here, we consider a simple
container geometry, a rectangular cuboid, in which the direction of the rotation axis
is oblique to four of its walls, subject to librational forcing (small-amplitude harmonic
oscillations of the rotation rate). This geometry allows for accurate and efficient direct
numerical simulations of the three-dimensional incompressible Navier–Stokes equations
with no-slip boundary conditions using a spectral-Galerkin spatial discretisation along
with a third-order temporal discretisation. Solutions with Ekman and Rossby numbers as
small as E = Ro = 10−8 reveal many details of how the inertial oscillations focus, at the
libration frequency considered, onto attractors, and how the focusing leads to increased
localised nonlinear and dissipative processes as E and Ro are reduced. Even for extremely
small forcing amplitudes, nonlinear effects have important dynamic consequences for the
attractors.
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1. Introduction

Rapidly rotating confined flows are encountered extensively in nature as well as in
many engineering applications. The Coriolis effect in such flows acts as a strong
restoring force against perturbations away from solid-body rotation, with responses to
low-amplitude external perturbations dominated by inertial oscillations (Greenspan 1968).
These responses generally take the form of circularly polarised inertial waves, which
are maximally helical with their velocity and vorticity vectors aligned (Davidson 2013).
Their dispersion relation relates their frequency and direction of propagation, but says
nothing about the magnitude of the associated wavevector. This results in peculiar laws of
reflections at solid walls, where the wavelength may change upon reflection, depending on
the wall orientation with respect to the rotation axis (Phillips 1963). Multiple reflections
may lead to focusing, resulting in an increase in wavenumber and energy density, as well
as to the wave energy converging to vertices or edges of the container (Greenspan 1969)
or onto thin attractor regions in the interior of the container (Maas 2005; Sibgatullin &
Ermanyuk 2019).

The origin of these inertial waves is tied to the nature of the forcing. In the weakly
viscous regime (quantified by Ekman number E � 1), small-amplitude (quantified by
Rossby number Ro � 1) parametric forcing, such as libration, leads to the formation
of oscillatory boundary layers on the container walls that tend to emit wave beams into
the interior from certain edges and vertices, or, if the container wall is smooth and
continuously curved, from points or lines of critical slope, where the wall normal is locally
orthogonal to the wave beam’s group velocity (Hollerbach & Kerswell 1995; Kerswell
1995).

An analogy is often drawn between inertial waves in rotating fluids and internal
waves in stably stratified fluids, mainly because both systems result in similar dispersion
relations. In stably stratified flows, buoyancy is the restoring force, and the stratification
gradient direction plays the role of the axis of rotation. For internal waves, which are
planar with their velocity and vorticity vectors orthogonal so that their helicity density
is identically zero, a quasi-two-dimensional (quasi-2-D) approximation can generally
be made. Detailed comparisons with experiments in an elongated container with a
trapezoidal cross-section and simulations of the Navier–Stokes–Boussinesq equations in
the same three-dimensional (3-D) geometry show excellent agreement on the details
of internal wave attractors and their near invariance in the elongated direction for
forcing amplitudes small enough to avoid instabilities (Brouzet et al. 2016). In rotating
axisymmetric geometries subjected to small-amplitude axisymmetric body forces, the flow
is independent of the azimuthal direction and depends only on two spatial coordinates,
but all components of the velocity and vorticity vectors are non-zero, and the flows
are intrinsically 3-D (Boury et al. 2021). Various attempts have been made to study
non-axisymmetric configurations that are invariant and unbounded in one direction, both
numerically and theoretically using a quasi-2-D setting with a three-component velocity
field (Jouve & Ogilvie 2014), and experimentally in elongated containers with a trapezoidal
cross-section (Manders & Maas 2003). However, such a quasi-2-D approximation is
generally not valid for inertial waves (Maas 2005), and the fate of inertial waves and
attractors is not a priori clear in fully enclosed non-axisymmetric 3-D containers (Maas
2001).

The fate of inertial waves is often explored in the linear (Ro = 0) inviscid (E = 0)
regime via ray tracing (Maas 2005). The linear inviscid vertex and edge beam analysis
(VEBA) presented in Welfert, Lopez & Wu (2023) determined the possible outcomes of
the ray tracing of beams emitted from active vertices and edges in a cuboid librating about
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Inertial wave attractors in librating cuboids

an axis passing through the midpoints of two opposite edges. Depending on the aspect
ratio of the cuboid and the librational frequency, the energy of a single beam either focuses
onto an edge orthogonal to the rotation axis (a point attractor) or a closed circuit in a plane
parallel to the rotation axis (interior attractor), or reflects from one edge to another and
back without focusing or defocusing for isolated values of the frequency (a retracing state
when viewed from a direction orthogonal to the walls parallel to the axis of rotation).

The nature of the forcing is typically not accounted for in theoretical (linear inviscid)
studies of wave attractors. The forcing (and the viscous terms) impose additional
constraints on the inertial response via symmetries. To determine how robust the linear
inviscid VEBA results are in light of this requires either direct numerical simulations or
experiments. Experiments typically have relatively large forcing amplitudes, resulting in
(additional) nonlinear effects. The resulting nonlinearities lead to a myriad of effects,
including triadic resonances, shear layer instabilities and geostrophic shears (Kerswell
1999; Wu, Welfert & Lopez 2020a; Lopez et al. 2022).

The attractors in the linear inviscid setting are singular distributions. Viscosity
regularises them, but it also dampens the inertial response to the extent that if the system
is not forced continuously, then it evolves to solid-body rotation (at which point there
are no singularities). In many theoretical studies (Rieutord & Valdettaro 1997, 2010,
2018; Rieutord, Georgeot & Valdettaro 2001; Rieutord, Valdettaro & Georgeot 2002;
Ogilvie 2009; Le Dizès & Le Bars 2017; Lin & Ogilvie 2021; He et al. 2022; Lin et al.
2023), it is assumed that either forcing is of such small amplitude (Ro � 1) that the
nonlinear advection term (u · ∇)u can be neglected, or the forced response is a single
monochromatic circularly polarised wave for which (u · ∇)u vanishes identically in open
space as a result of incompressibility. This is not the case in a finite container, where waves
necessarily interact nonlinearly with other waves of different wavevector orientations
emitted from other sites, or with the various reflections, including their own reflections.
Small Ro means small |u|, but not necessarily small spatial gradients of u, especially when
focusing takes place. In practice, it is unclear whether or not (u · ∇)u remains bounded
away from zero as Ro → 0. This is all exacerbated by taking E � 1. While this generally
implies reduced viscous effects, small E results in thin but intense boundary layers, and
internal shear layers in which spatial gradients are large so that (u · ∇)u and ∇2u are not
negligible.

The aim of the present study is to determine how robust the VEBA predictions described
in Welfert et al. (2023) are when 0 < E = Ro � 1 using direct numerical simulations
(DNS) of the full 3-D nonlinear Navier–Stokes equations, including the time-periodic
forcing and no-slip boundary conditions. In the librating cube, the focusing to edges
predicted by VEBA was confirmed in Wu, Welfert & Lopez (2022b) for all inertial forcing
frequencies and sufficiently small E = Ro � 10−3. However, the DNS also revealed flow
dynamics not predicted by VEBA, which were found to persist even as E = Ro → 0;
E = Ro = 10−8 were the smallest values considered numerically. Nonlinear and viscous
effects, which are neglected in VEBA, may not be small in the DNS even as E = Ro → 0.
Here, we extend the study from the cube to the cuboid, for which interior attractors do
exist.

2. Governing equations

A cuboid with square cross-section of side length L and height AL, where A is the
height-to-base aspect ratio, is completely filled with an incompressible fluid of kinematic
viscosity ν. The container is rotating around an axis passing through its centre and the
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Figure 1. Schematic of the cuboid librating around its axis of rotation Ω(t), for aspect ratiosA as indicated;
the meridional plane x = 0 is shown in blue.

midpoints of opposite horizontal edges at a mean rate Ω that is modulated harmonically
at a frequency σ with amplitude δΩ . The system is non-dimensionalised using L as the
length scale and 1/Ω as the time scale, and is described in terms of a non-dimensional
Cartesian coordinate system x = (x, y, z) ∈ [−0.5, 0.5]2 × [−0.5A, 0.5A] that is fixed
in the container, with the origin at the centre. The corresponding non-dimensional velocity
field is u = (u, v,w). In these coordinates, the non-dimensional angular velocity is

Ω(t) = [1 + Ro cos(2ωt)]Ω0, Ω0 = (0, 1,A)/
√

1 +A2, (2.1a,b)

where 2ω = σ/Ω > 0 is the non-dimensional libration frequency, and the relative
amplitude Ro = δΩ/Ω is the Rossby number. Figure 1 shows a schematic of the system
for the three aspect ratios A = 1/2, 1 and 2 considered in the DNS. The two walls of
the container at x = ±0.5 are parallel to the axis of rotation. The four remaining walls are
inclined at angles α = arccot(A±1) relative to the rotation axis Ω0. Four of the edges are
orthogonal to Ω0; the two bisected by the rotation axis are termed the north and south polar
edges, and the other two are the tropical edges. The remaining eight edges are inclined at
angles π/2 − α relative to Ω0.

The non-inertial frame of reference attached to the librating cuboid introduces Coriolis
and Euler body forces into the (non-dimensional) governing equations:

∂u
∂t

+ (u · ∇)u + 2Ω × u + dΩ

dt
× x = −∇p + E ∇2u, ∇ · u = 0, (2.2)

where E = ν/(ΩL2) is the Ekman number, and p is the reduced pressure that incorporates
the centrifugal force. In this frame of reference, the no-slip boundary conditions are
u = 0 on all six walls of the container. For small but non-zero Ro, it is convenient
to introduce v = u/Ro and pr = p/Ro, as in Lopez et al. (2022). Using (2.1a,b), the
governing equations then become
∂v

∂t
+ Ro (v · ∇)v + 2Ω × v − 2ω sin(2ωt)Ω0 × x = −∇pr + E ∇2v, ∇ · v = 0.

(2.3)

For 0 < E = Ro � 1, solutions v and pr of (2.3) are typically synchronous limit cycles
that respect the centrosymmetry of the governing equations and boundary conditions,

C : [v, pr](x, t) �→ [−v, pr](−x, t), (2.4)

corresponding to a reflection through the origin. In the linear inviscid setting (E = Ro =
0), the system (2.3) is formally reduced to a non-homogeneous linear system whose forcing
is cognisant of the libration of the container, i.e. the Euler force persists.
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Inertial wave attractors in librating cuboids

The numerical scheme and code used here is essentially the same as that used in closely
related problems (Lopez et al. 2022; Wu et al. 2022b). The governing equations (2.3) are
discretised using a third-order linearly implicit scheme in time, and a spectral scheme in
space. At each time step, the velocity components are updated via a third-order backwards
difference formula scheme, with the viscous terms as well as the Coriolis and Euler
forces treated implicitly, while the pressure gradient and nonlinear terms are evaluated via
third-order extrapolation. This leads to a coupled system of elliptic equations with variable
coefficients. The pressure is then updated via the solution of a Poisson problem posed in
the cuboid, including the boundary, leading to a constant-coefficient Poisson equation.
The number of time steps δt used per librational forcing period is 200 for all Ekman and
Rossby numbers considered here.

The elliptic and Poisson problems are discretised in each of the three spatial directions
using Legendre polynomials of degree M for the velocity components, and degree M − 2
for the pressure, with M ranging from M = 100 for E = 10−5 to M = 650 for E = 10−8.
Specifically, the velocity and pressure at times t = nδt are expanded as

vn(x, y, z) =
M∑

i,j,k=2

an
ijk ψijk(x, y, z), pn

r (x, y, z) =
M−2∑

i,j,k=0

bn
ijk ψijk(x, y, z), (2.5a,b)

in terms of basis functions

ψijk(x, y, z) = ψi(2x) ψj(2y) ψk(2z/A), (2.6)

with
ψi(ξ) = ri[𝔏i−2(ξ)− 𝔏i(ξ)], i ≥ 0, −1 ≤ ξ ≤ 1, (2.7)

where 𝔏k is the Legendre polynomial of degree k, with 𝔏k(ξ) = 0 for k < 0, and
normalising constants ri. The property ψi(±1) = 0 for i ≥ 2 guarantees vn = 0 on
the walls of the cuboid, while the lower degree of pn

r compared to vn guarantees the
well-posedness of the resulting discrete problems. The resulting banded linear systems
for the velocity and pressure updates are then diagonalised and solved. An optional
scalar auxiliary variable procedure developed in Wu, Huang & Shen (2022a) introduces a
third-order correction of the velocity that guarantees unconditional stability and improves
the robustness of the scheme, in particular during transient dynamics.

3. Overview of ray tracing analysis

Ray tracing is normally performed on the unforced homogeneous system, neglecting
the Euler force, but the forcing determines the locations from which beams are
emitted. Viscous interactions between the oscillatory boundary layers driven by the
small-amplitude librational forcing lead to inertial wave beams being emitted into the
cuboid from vertices and/or edges. Which vertices and/or edges emit depends onA and ω.
In general, a vertex may emit along a double cone of directions with its apex at the emission
point forming a conical sheet. However, a point on an edge may emit in only at most
four directions because of continuity requirements with beams emitted from neighbouring
points and tangentiality with conical sheets emitted from its endpoints, if any. The inviscid
theory presented in Welfert et al. (2023) shows that a beam emitted from a vertex or an
edge tends to be attracted, after many reflections, towards a plane with constant x, parallel
to the axis of rotation. Ultimately, the beam focuses either onto a corner point in this
planar cross-section, which is a point on an edge orthogonal to the axis of rotation, or onto
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Figure 2. Inviscid (ω2,A)-regime diagram for wave beams in the plane x = 0: the bold black curves ω2 =
1/(1 +A±2) delimit regions of differing criticality of wave beam reflections on the walls at y = ±0.5 or z =
±0.5A and focusing of the beams onto m : n or n : m attractors. The red stars correspond to cases discussed
in this study. The figure has been adapted from Welfert et al. (2023).

a closed-loop interior attractor in this x-plane. In the inviscid setting, this x-plane depends
non-smoothly on the location of the point or direction of emission because of boundary
singularities (edges and vertices) creating jumps in the wall normal direction. However, in
practice, these are regularised by viscous effects.

A closed-loop attractor is characterised by the number of reflections m at the wall
z = 0.5A and n at the wall y = 0.5, with an equal number of reflections at walls z =
−0.5A and y = −0.5 by the centrosymmetry. Such an attractor is denoted m : n. Figure 2
shows the inviscid (ω2,A)-regime diagram for wave beams contained completely in the
meridional plane x = 0. The region of existence of interior attractors is delimited by
the curves ω2 = 1/(1 +A±2), along which either the walls y = ±0.5 or the walls z =
±0.5A have critical reflection slope. Inside this region, all reflections are supercritical,
whereas outside the region, reflections on the walls at y = ±0.5 and z = ±0.5A are
subcritical. ForA = 1, reflections are not supercritical for any ω2, and they are critical
only for ω2 = 1/2. Outside these regions, but for ω2 < 1, inertial wave beams focus onto
edges and/or vertices. ForA = 1, there are no interior attractors, and asω2 is varied across
1/2, there is a switch in the edges and vertices to which wave beams focus. Note that in
the limitsA±1 → ∞, the walls of the container tend to be either parallel or orthogonal
to the rotation axis, yet the range of existence of interior attractors extends to 0 < ω2 < 1.

Although the attractors in a given x-plane in the DNS and VEBA associated withA = a
andA = 1/a can be mapped to each other via a 90◦ rotation and rescaling, other details
differ away from the attractors due to conical shears originating from the vertices of
the cuboids. These differences are due to the spanwise widths of the two configurations.
A perfect match exists between the 1 × 1 × a and 1/a × 1 × 1/a, rather than 1 × a × 1/a,
configurations, albeit with a different effective Ekman number; see Appendix A for details.

4. Direct numerical simulations of simple attractors

We consider simple attractors, either a point attractor at edges for A = 1, or a 1 : 1
attractor for A = 1/2 and A = 2, all at the same libration frequency corresponding
to ω = 0.55 (ω2 = 0.3025); these cases are indicated by the red stars in figure 2. They
are examined via DNS over the range E = Ro ∈ [10−8, 10−5]. The spatial and temporal
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Inertial wave attractors in librating cuboids

E = Ro 10−5 10−5.5 10−6 10−6.5 10−7 10−7.5 10−8

A = 1/2 100 120 150 200 300 400 500
A = 1 100 120 150 180 200 300 400
A = 2 100 150 200 250 350 500 650

Table 1. Degree M of the Legendre polynomials in each of the three spatial directions used in the DNS with
ω = 0.55 and E = Ro, andA as indicated.

resolutions used for these DNS are listed in table 1. For all cases, E and Ro are sufficiently
small that the responses to librational forcing are C-invariant synchronous limit cycles. It
is important to reduce both E and Ro in lock-step; fixing 0 < Ro � 1 and reducing only E
will lead to the fixed libration amplitude Ro being sufficiently large for a sufficiently small
E to trigger flow instability. On the other hand, fixing 0 < E � 1 and reducing only Ro
ultimately results in a synchronous forced response flow whose magnitude ‖u‖ scales with
Ro, so that ‖v‖ remains O(1) and tends towards being temporally harmonic, corresponding
to the solution of (2.3) with Ro = 0. The interest in studying the response as both Ro and
E are reduced in problems involving geometric focusing onto attractors is that even as Ro
is reduced, the gradients in the flow velocity grow as E is reduced and the combined result
is not a priori obvious.

It is informative to put into perspective the ranges of E and Ro considered here compared
to current state-of-the-art laboratory experiments investigating inertial wave attractors (e.g.
Brunet, Dauxois & Cortet 2019; Boury et al. 2021). The smallest Ekman numbers achieved
experimentally are E � 2 × 10−6, corresponding to a background rotation Ω ≈ 2 rad s−1

in a container of length scale L ≈ 0.5 m filled with water of kinematic viscosity ν ≈
10−6 m2 s−1. To achieve E = 10−8 with water at the same background rotation rate, the
container length scale needs to be L ≈ 7 m. As for the Rossby number Ro characterising
the forcing amplitude in the experiments, this is no smaller than approximately 7 × 10−3

due to signal-to-noise ratio issues; this is small enough for the flows to be strongly affected
by the Coriolis force, but is nevertheless large enough to correspond to a developed
nonlinear regime.

The flows are characterised primarily by using their enstrophy density ω2 = |∇ × v|2,
its mean

ω2 = 1
τ

∫ t∗+τ

t∗
ω2 dt, (4.1)

and its standard deviation

ω2
SD =

√
1
τ

∫ t∗+τ

t∗
(ω2 − ω2)2 dt, (4.2)

where τ = π/ω is the libration period, and t∗ is a time by which the response flow is
τ -periodic (typically of the order of 103τ ).

At aspect ratios A = 1/2 and 2, in the limit with both E → 0 and Ro → 0, 1 : 1
attractors exist in the range ω2 ∈ (0.2, 0.64) (Welfert et al. 2023). Figure 3 illustrates
these cases for ω = 0.55 and E = Ro ∈ [10−8, 10−5], along with the A = 1 case for
which focusing is to point attractors on the tropical edges. The figure shows ω2 and ω2

SD
in the meridional plane x = 0, seen from the positive x direction, which summarise the
synchronous response flow. Supplementary movie 1 animates ω2 for the E = Ro = 10−8

973 A20-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

77
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.772


K. Wu, B.D. Welfert and J.M. Lopez

E = Ro = 10–5 10–6 10–7 10–8 VEBA

y
z

100

104

108

ω2

yz

yz

E = Ro = 10–5 10–6 10–7 10–8

100

104

108

√
2ω2

SD

= 1/2
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(a)
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Figure 3. (a) Mean enstrophy density ω2 and (b) standard deviation of the enstrophy density
√

2ω2
SD in the

meridional plane x = 0 (where the rotation axis is vertical through the top and bottom corners), forA and
E = Ro as indicated. The last column in (a) has the VEBA results showing beams emitted from the four corners
in blue and the attractor in red; traces of the primary conic beams emitted from the vertices of the cuboid and
planar beams emitted from edges at x = ±0.5 are in light blue. Secondary traces due to reflections of these
beams, which are visible in the DNS, are not included in VEBA. The black lines through the origin in panels in
the first column of (a), (0, y, 0) and (0, 0, z), are used to plot profiles of ω2 and ω2

SD in figure 4. Supplementary
movie 1 (available at https://doi.org/10.1017/jfm.2023.772) animates ω2 for the E = Ro = 10−8 cases over one
libration period τ = π/ω.
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Inertial wave attractors in librating cuboids

cases over one libration period τ = π/ω. ForA = 1/2 and 2, the traces of wave beams
emanating from the four corners (the north and south poles and the midpoints of the
tropical edges) focus onto an interior attractor that becomes thinner with deceasing E,
while forA = 1, the focusing is into the tropical corners. For all cases, ω2 and ω2

SD on
the attractor seem to grow slightly faster than E−1, while the response in the interior away
from the attractor remains essentially independent of E as E is decreased. In the x = 0
plane, VEBA of wave beams emitted from the four corners into the plane is also performed
and compared to the DNS results. The VEBA in the last column of figure 3(a) captures
well how the beams (depicted in blue) focus towards the attractor (depicted in red). Traces
of the primary conic beams emitted from the vertices of the cuboid and of planar beams
emitted from edges at x = ±0.5 intersecting the plane x = 0 are also shown in light blue in
the VEBA; these are also evident in the DNS. Secondary traces due to reflections of these
beams, which are also visible in the DNS, are not included in VEBA (see Appendix B for
further details concerning these beams).

Away from the attractor region, the mean and standard deviation of the enstrophy
density are related by ω2 ≈ √

2ω2
SD. This is a strong indication that in regions where

this relationship holds, the periodic flow is very close to being temporally harmonic (see
Appendix C for details). On the other hand, along the attractor for decreasing E and Ro, ω2

becomes increasingly larger than
√

2ω2
SD, indicating that the oscillations are increasingly

non-harmonic and nonlinear. To quantify this further, figure 4 shows profiles of ω2 and√
2ω2

SD along the line segments from (x, y, z) = (0,−0.5, 0) to (0, 0, 0) to (0, 0, 0.5A),
which traverse the two branches of the attractor region. These profiles provide some insight
into how the shape and strength of the response across the viscous shear layers associated
with the attractor regions vary with decreasing E and Ro. At larger E, the wave beams
emanating from the corners of the x = 0 meridional plane can hardly be differentiated
from their long-term location, with a broad diffuse transverse profile of the shear. With
decreasing E, the emitted shears become thinner, making it possible to distinguish them
clearly from their ultimate location (the attractor) following multiple reflections on the
walls of the cuboid. As a result, the transverse profiles become more spatially oscillatory,
with each local maximum representing the crossing of successive reflections of the shears.
Figure 4(b) shows zoom-ins of the attractor regions (y ∼ −0.4 and z ∼ 0.8) for theA = 2
cases, with additional intermediate values of E = Ro. These clearly show how, for the
largest E = 10−5, the shear layer is a fusion of the beams emitted from the corners and all
of their reflections. By E ∼ 10−6, the layer separates into two with one more intense than
the other. Further decreasing E, the more intense layer further splits at E ∼ 10−7, again
with one of them becoming more intense. By E ∼ 10−8, the weaker of the two layers
that split at E ∼ 10−6 is about to split. The various split shear layers that appear with
decreasing E follow the VEBA trajectories of the beams emitted from the corners as they
reflect off the walls and focus towards the attractor; the most intense of the split layers
converges towards the VEBA attractor, which in the linear inviscid setting of VEBA is a
Delta-like distribution.

Returning to figure 4(a), the secondary peaks due to the conical shears originating from
the vertices of the cuboid, located at z ≈ 0.35 forA = 2 and y ≈ −0.25 forA = 1/2,
grow, without splitting, at a much smaller rate with decreasing E than the shears in the
attractor region. These secondary peaks correspond to the primary intersection of the
conical shears with the x = 0 plane, and show a self-similar convergence with decreasing
E towards a Delta-like distribution.
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Figure 4. (a) Profiles of ω2 and
√

2ω2
SD along the line segments shown in figure 3, (x, y, z) = (0, y, 0) and

(x, y, z) = (0, 0, z), forA and E = Ro as indicated. (b) Zoom-ins for theA = 2 cases in the attractor regions,
with additional intermediate values of E and Ro as indicated. The vertical lines correspond to the locations as
determined by VEBA of the attractor (in red) and primary (before any reflection, farther away from the red
line) or secondary (after one wall reflection, closer to the red line) vortex sheets originating from tropical or
polar edges (in blue); compare with the VEBA panel from figure 3(a). Note the more rapid growth of ω2 at the
attractor.

Figure 4(a) also shows that while the ω2
SD profiles have essentially the same shape as

the ω2 profiles, the ratio ω2/ω2
SD becomes increasingly larger with decreasing E in the

attractor region. However, this ratio remains close to
√

2 away from the attractor region.
This is a clear indication of the oscillations in the shear layers in the attractor region
becoming increasingly nonlinear and non-harmonic with decreasing E and Ro.

Figure 5 shows ω2 and ω2
SD along the attractor in the x = 0 plane, using the ( y, z)

location of the attractor predicted from VEBA, which is parametrised by the arc length
along the attractor s. The mean enstrophy along the attractor scales as ω2 ∼ E−4/3,
whereas the standard deviation scales as ω2

SD ∼ E−3/4. While both grow with decreasing
E, the mean grows much faster, an indication that the shear flow in the attractor region
becomes more nonlinear as E and Ro are reduced. These scalings, however, do not apply
in the localised regions where the attractor reflects at the walls. In these regions, s ≈ 0.94
and s ≈ 2.48, the spikes in both ω2 and ω2

SD are several orders of magnitude larger than
in other locations along the attractor. Figure 6 zooms in on these locations, and shows
that ω2 ∼ ω2

SD ∼ E−5/3 at the peaks. Furthermore, the arc length distance over which this
very different scaling holds scales as E1/2, suggesting that the E−5/3 scaling may be due
to interactions between the shear in the attractor and the oscillatory Ekman layers at the
walls.
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Figure 5. Scaled ω2 and ω2
SD as functions of arc length s along the attractor (localised using VEBA), for

A = 2 and E = Ro as indicated.
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Figure 6. Rescaled profiles of ω2 and ω2
SD from figure 5, showing (a,b) zoom-ins around s = s1 =

(
√

1 − ω2 − 0.75ω)
√

5 ≈ 0.9451 together with the same zoom-ins in terms of a scaled arc length centred
at s1, and (c,d) zoom-ins around s = s2 = (

√
1 − ω2 + 0.5ω)

√
5 ≈ 2.4824 together with the same zoom-ins

in terms of a scaled arc length centred at s2, showing self-similarity of the peaks associated with the reflections
on the short and long walls, respectively. The total length of the attractor path is L = 2s2 ≈ 4.9648 (Welfert
et al. 2023, (2.34)).

The ω2 and ω2
SD boundary layers at the walls y = −0.5 and z = 0.5A are very thin and

difficult to discern in figure 4. Instead, boundary layer profiles are plotted in figure 7, which
illustrates how their thickness and intensity vary with decreasing E = Ro along the line
segments shown in figure 3, (x, y, z) = (0, y, 0) and (x, y, z) = (0, 0, z), which are away
from locations where the attractor reflects on the walls. In the oscillatory Ekman boundary
layers, away from where any interior shear layers reflect, we find that the relationship
ω2 ≈ √

2ω2
SD holds, so that the oscillations are very nearly temporally harmonic, both ω2

and ω2
SD scale with E−1, and the boundary layer thickness for both scales with E1/2.

Figure 8 shows ω2 along the cuboid walls, with distance parametrised by the arc length
s ∈ [0, 6] (only s ∈ [0, 3] is shown as s ∈ [3, 6] is the same by C symmetry), in the
meridional plane x = 0 for A = 2 and several values of E = Ro. Almost everywhere
on the wall, ω2 ∼ E−1. At the corners s = 0 and 1, ω2 = 0, and in the regions where
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Figure 7. Profiles of scaled ω2 and ω2
SD in the boundary layer along the line segments shown in figure 3,

(x, y, z) = (0, y, 0) and (x, y, z) = (0, 0, z), forA and E = Ro as indicated.

the shear layers in the attractor regions reflect at the walls at s ≈ 0.2 and s ≈ 1.5, the
scaling for the peak changes to ω2 ∼ E−5/3, as noted earlier. It is of interest to consider ω2

and ω2
SD on the whole cuboid boundary. These are shown in figure 9 for the three aspect

ratiosA = 1/2, 1 and 2. Both 3-D perspective views and unfolded views of the walls are
illustrated (only three walls are shown; the other three walls are the same by symmetry).
The x = 0.5 wall, which is parallel to the rotation axis (indicated by a black arrow), shows
the footprints of the attractor shear layers depicted in the x = 0 planes in figure 3. On
the walls oblique to the rotation axis, footprints of the conical beams emitted from the
vertices are evident. On these walls forA = 1/2 and 2, ω2 and ω2

SD have strong peaks
in the regions where the shear layers in the attractor region reflect at the walls, whereas
forA = 1, the peaks are at the tropical edges ( y, z) = (±0.5,±0.5A) to which beams
focus. There is considerable variation in the x direction for all cases. Also, away from
localised regions where reflections occur, ω2 ∼ √

2ω2
SD, indicating that the oscillatory

Ekman layers are nearly harmonic. Supplementary movie 2 animates ω2 on the surface
over one libration period τ = π/ω, and shows that the nearly harmonic oscillations are
dominated by progressive waves that sweep through the regions, with more intense ω2

corresponding to the shear layer footprints on x = 0.5 and the regions where the shear
layers reflect on the y = 0.5 and z = 0.5A walls.

Now consider the structure of the attractor shear layer. Figure 10 shows ω2 and
√

2ω2
SD

on two branches of the attractor (the distributions on the other two branches are the same
with x → −x by the C symmetry), whose location is predicted from VEBA, for A =
2 and E = Ro ∈ [10−8, 10−5]. The general trends on these quantities along the attractor
intersection with the meridional plane x = 0 reported in figures 5 and 6 are borne out, but
there is considerable variation in the x direction, which becomes larger with decreasing E
and Ro. Also evident are signatures of where the conical beams emitted from vertices, and
a number of their reflections, intersect the attractor shear layer. For the larger E, these are
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Figure 8. Scaled ω2 along the boundary at x = 0, forA = 2 and E = Ro as indicated.
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Figure 9. Perspective and unfolded views of (a) ω2 and (b)
√

2ω2
SD on the cuboid surfaces for E = Ro =

10−8 and A as indicated. Supplementary movie 2 animates ω2 on the surface over a libration period τ =
π/ω.
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Figure 10. Illustrations of ω2 and
√

2ω2
SD on two branches of the attractor (the other two are the C conjugates),

forA = 2 and E = Ro as indicated, as well as a 3-D perspective of ω2 on the attractor for the case E = 10−8.
The bottom row presents intersections with the attractor of the wave beams emitted from edges and vertices,
and their subsequent reflections, as determined via VEBA. Supplementary movie 3 includes animations of ω2

over one libration period.

evident faintly in the mean enstrophy, but as E is reduced, the amplification of ω2 swamps
these completely. However, as the enstrophy in the attractor shear layer tends towards a
steady state with decreasing E, the conical beam intersections become much more evident
in

√
2ω2

SD, as they are locally the dominant contribution to the flow oscillations. The last
row in figure 10 shows the intersections with the attractor of the wave beams emitted
from edges and vertices, and their subsequent reflections, as determined via VEBA. This
captures the fine details in the DNS

√
2ω2

SD on the attractor, especially for the smaller
E and Ro. This is clear evidence that in the DNS, the wave beams are oscillatory, but
as they eventually focus onto the attractor, they fuse into a mean shear flow that locally
overwhelms the inertial oscillations.

Figures 5, 6, 9 and 10 show that there is a considerable increase in ω2 as the attractor
shear reflects on the walls of the cuboid, and this gain appears to increase as E and Ro
are reduced. In the linear inviscid regime, VEBA gives what the gains are due solely to
geometric focusing at the reflections. ForA = 2, the gains g1 at reflections on the long
walls at y = ±0.5, and g2 on the short walls at z = ±1, are (Welfert et al. 2023, (2.5) and
(2.7))

g1 = sin(θ + α)

sin(θ − α)
= Aω + √

1 − ω2

Aω − √
1 − ω2

≈ 7.31 (4.3)
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Figure 11. Gains in ω2 at reflections at x = 0 on the long and short walls as functions of E and Ro forA = 2.

and

g2 = cos(θ + α)

cos(θ − α)
= ω +A√

1 − ω2

ω −A√
1 − ω2

≈ 1.98. (4.4)

The enstrophy density scales with the fourth power of the gain, and hence increases by
approximate factors 2851 on the long walls and 15.43 on the short walls. Figure 11 shows
how the gains in ω2 at these wall reflections vary with decreasing E and Ro in the DNS.
These gains were determined simply on the x = 0 plane, and clearly figures 9 and 10 show
that there is considerable variation in ω2 with x at the reflections. Nevertheless, the point
to be made is that the ω2 gains in the DNS with decreasing E and Ro surpass the geometric
gains from VEBA, indicating that nonlinear processes are playing an increasing role.

The primary nonlinear processes contributing to the enhanced gains in ω2 at the
reflections are most likely to be vortex tilting and stretching. These nonlinear mechanisms
are inherently 3-D and play a prominent role in hydrodynamics in regimes where the
inertial time scale is many orders of magnitude smaller than the viscous time scale, in
our case E � 1 (Frisch 1996; Majda & Bertozzi 2002; Davidson 2013). Figure 12 shows
the magnitudes of the mean and standard deviation of the vortex stretching/tilting term,
|(ω · ∇)v| and |[(ω · ∇)v]SD|, on a long and short attractor branch; supplementary movie
3 includes animations of |(ω · ∇)v| over one libration period, and figure 13 shows their
profiles at the meridional plane x = 0. As with the enstrophy, |(ω · ∇)v| on the attractor
tends towards a steady state with decreasing E and Ro, unsteadiness becoming localised to
regions where the attractor reflects on the walls and to a lesser extent where beams emitted
from edges and vertices intersect the attractor shear layer. As was the case with

√
2ω2

SD on
the attractor, |[(ω · ∇)v]SD| also matches the VEBA results shown in figure 10.

With nonlinearities not vanishing in the attractor with decreasing E and Ro, it is
interesting to determine to what extent v and ω are aligned on the attractor, i.e. to determine
α = arccos(ω̂ · v̂). In the linear inviscid theory of a single circularly polarised inertial
wave, either α = 0◦, ω · v > 0 and the group velocity is from south to north, or α = 180◦,
ω · v < 0 and the group velocity is from north to south. In open space, such a Beltrami flow
has (v · ∇)v = 0. Appendix D shows that there is in general no expectation of alignment
between v and ω for superpositions of circularly polarised waves, such as on an attractor.
Figure 14 shows the mean and standard deviation of α along the attractor forA = 2 and
various E = Ro. As E and Ro are reduced from 10−5, the flow on the attractor tends to
become more Beltrami-like, but as these are reduced below 10−7, this trend is reversed.
This departure from Beltrami-like flow for increasingly smaller E and Ro is consistent with
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Figure 12. Illustrations of |(ω · ∇)v| and |[(ω · ∇)v]SD| on two branches of the attractor (the other two are the
C conjugates), forA = 2 and E = Ro as indicated. Supplementary movie 3 includes animations of |(ω · ∇)v|
over one libration period.
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Figure 13. Scaled |(ω · ∇)v| and |[(ω · ∇)v]SD| as functions of arc length s along the attractor (localised
using VEBA), forA = 2 and E = Ro as indicated.

the flow in the attractor shear layer region becoming increasingly more nonlinear, and the
thickness of the shear layers becoming increasingly thinner as they focus onto Delta-like
distributions. Figure 15 shows ᾱ and αSD on the attractor; the 3-D perspective view for the
E = Ro = 10−8 case illustrates how ᾱ ≈ 180◦ almost everywhere on the branches with
the group velocity going north, and ᾱ ≈ 0◦ almost everywhere on the branches with the
group velocity going south.

5. Zeroth law: EE /= 0 as E → 0

In this section, the global energy balance is considered for decreasing E and Ro. Using
∇ · v = 0 and the identities

(v · ∇)v = ∇
(

v2

2

)
+ ω × v and ∇2v = ∇(∇ · v)− ∇ × ω = −∇ × ω, (5.1a,b)
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Figure 14. Variations of the mean and standard deviation of α = arccos(v̂ · ω̂) with arc length s along the
attractor (localised using VEBA) at x = 0, for A = 2 and E = Ro as indicated. Only two branches of the
attractor are shown; on the other two branches, the mean angle is 180◦ − ᾱ and the standard deviation is the
same.
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Figure 15. Mean and standard deviation of the angle between velocity and vorticity, α = arccos(ω̂ · v̂), on two
branches of the attractor, forA = 2 and E = Ro as indicated, as well as a 3-D perspective of ᾱ on the attractor
for the case E = 10−8. Supplementary movie 3 includes animations of α over one libration period.

the Navier–Stokes equation (2.3) can be rewritten as

∂v

∂t
+ ∇

(
pr + Ro

v2

2

)
+ (Ro ω + 2Ω)× v + E ∇ × ω = 2ω sin(2ωt)Ω0 × x. (5.2)

Multiplying (5.2) by v, using ∇ · v = 0 and the identity

v · (∇ × ω) = ω2 + ∇ · (ω × v), (5.3)

yields the energy equation (Wu et al. 2022b)

∂

∂t

(
v2

2

)
+ Eω2 − 2ω sin(2ωt) v · (Ω0 × x) = −∇ ·

[(
pr + Ro

v2

2

)
v + E(ω × v)

]
.

(5.4)

973 A20-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

77
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.772


K. Wu, B.D. Welfert and J.M. Lopez

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

–0.2

0

0.2

–0.2

0

0.2
d
K

/d
t

W
0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.00

0.005

0.010

Time (periods)

EE

10–5 10–6 10–7 10–8

10–5.5 10–6.5 10–7.5

–0.0001

0

0.0001

0.0002

0.0003

0.0004

Time (periods)
d
K

/d
t +

 E
E +

 W

(a) (b)

(c) (d )

Figure 16. Variations over one libration period of the three terms on the left-hand side of (5.5), dK/dt, EE
and W(v), and their sum, forA = 2 and E = Ro as indicated.

Integrating (5.4) over the volume of the cuboid V leads to

dK/dt + EE + W = D(v), (5.5)

where

K =
∫
V

v2

2
dx (5.6)

is the kinetic energy,

E =
∫
V

ω2 dx (5.7)

is the enstrophy,

W = −2ω sin(2ωt)
∫
V

v · (Ω0 × x) dx (5.8)

is the work done by the librational (Euler) force, with v · (Ω0 × x) = Ω0 · (x × v) the
(relative) axial angular momentum, and

D(v) = −
∫
V

∇ ·
[(

pr + Ro
v2

2

)
v + E(ω × v)

]
dx (5.9)

is a residual term. When v has sufficient regularity, Gauss’s divergence theorem together
with the no-slip boundary conditions results in D(v) = 0. This is the case for numerical
simulations with sufficient spatial resolution obtained at small but non-zero E.

Figure 16 plots the three terms on the left-hand side of (5.5) over one libration period
τ = π/ω forA = 2 and E = Ro ∈ [10−8, 10−5], with dK/dt determined from the time
series of K via Fourier spectral differentiation. The figure shows that dK/dt and W
almost balance each other. The dissipation term EE is much smaller but appears to remain
bounded away from zero with decreasing E. This property is known as the zeroth law or
the dissipative anomaly in the context of turbulent flows (Onsager 1949; Dubrulle 2019;
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Figure 17. Variations over one libration period of the three terms on the left-hand side of (5.5), dK/dt, EE
and W(v), and their sum, forA = 2 and E = Ro = 10−8, and spatial resolution M as indicated.

Drivas 2022). The same property holds here as a result of large gradients that develop
in the direction transverse to the increasingly thinner interior viscous shear layers that
ultimately lead to the low-regularity properties of the attractor as E → 0. The finite size of
EE is consistent with the scaling ω2 ∼ E−4/3 obtained in figure 5 along the interior viscous
shear layer, over a shear layer thickness of order E1/3 at small non-zero E. Note that in
the regions where the beams forming the shear layer reflect on the walls, they are more
intense, with a scaling ω2 ∼ E−5/3 (see figure 6). This occurs in localised regions with an
extent scaling with E(1/2+1/2), corresponding to the combination of viscous boundary layer
depth (E1/2) and the along-wall region of the reflections (E1/2), resulting in a vanishing
contribution to EE as E → 0.

The sum of the terms on the left-hand side of (5.5), shown in figure 16, although at
least four orders of magnitude smaller than both dK/dt and W, and an order of magnitude
smaller than the mean dissipation EE, does not seem to vanish as E → 0. In this limit,
(5.5) has to be understood in a distributional sense, and D(v) may not vanish, resulting in
anomalous dissipation.

Figure 17 plots the three terms on the left-hand side of (5.5) and their sum for the
E = 10−8 case computed with a range of spatial resolution (using Legendre polynomials
of degree ranging from M = 500 to M = 650). The results are virtually indistinguishable,
indicating that the numerical solutions are well converged, and the finite dissipation and
anomaly observed in figure 16 are not numerical artefacts.

6. Summary and conclusions

A detailed numerical investigation of the structure of inertial wave attractors in rectilinear
cuboids is conducted at very small Ekman and Rossby numbers in order to assess which
aspects are captured by the linear inviscid theory, implemented in the vertex and edge beam
analysis (VEBA) presented in Welfert et al. (2023), and which are not. VEBA captures
most of the geometric features of the intricate network of shear layers emanating from
edges and vertices, and their ultimate focusing, at the forcing frequency considered, onto
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Figure 18. Relationship between flows in 1 × 1 × a and 1/a × 1 × 1/a cuboids.

an attractor. This attractor has a quasi-invariant structure in the x direction as a result of
the container walls at x = ±0.5 being parallel to the rotation axis. VEBA also predicts
correctly the blow-up of enstrophy density at the attractor due to the overall geometric
focusing of wave beams at wall reflections.

The simulations of the full incompressible Navier–Stokes system enable a quantification
of this blow-up as the Ekman and Rossby numbers are decreased, with a resulting global
viscous dissipation that does not vanish, but instead approaches a static, positive mean
value. The development of a non-trivial mean flow in attractor shear layers has also been
reported in forced rotating spherical shells (Tilgner 2007). Our simulations also show
that vortex stretching and tilting persist within the attractor, as well as where beams of
energy interact with each other, with decreasing Ekman and Rossby numbers, so that
the flows are fundamentally three-dimensional and nonlinear. Even for extremely small
forcing amplitudes, nonlinear effects have important dynamic consequences for the shear
layers forming on attractors. Such a dichotomy between predictions of attractors based
on linear inviscid theory and their intrinsically nonlinear and dissipative nature has long
been recognised (Maas 2005). The configuration studied here, in which the flow remains a
perfectly symmetric synchronous limit cycle, not only offers a simple set-up for studying
the roles of dissipative and nonlinear effects on inertial waves, but is also a promising
candidate for assessing numerically the existence of anomalous dissipation and/or work in
the limits of vanishing Ekman and Rossby numbers.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.772.
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Appendix A. Relationship between flows in 1 × 1 × a and 1/a × 1 × 1/a cuboids

The solution v and pr to (2.3), in a 1 × 1 × a cuboid rotating around an axis directed by
Ω0 = (0, 1, a)/

√
1 + a2, is related to the solution ṽ and p̃r in a 1/a × 1 × 1/a cuboid

rotating around Ω̃0 = (0, a, 1)/
√

1 + a2, described by a modified version of (2.3) derived
below, using the same length scale L; see figure 18.
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Inertial wave attractors in librating cuboids

Let
x = Sx̃, v(x, t) = S ṽ(x̃, t) and pr(x, t) = a2 p̃r(x̃, t), (A1a–c)

with

R =
⎡⎣−1 0 0

0 0 1
0 1 0

⎤⎦ and S = aR. (A2a,b)

Here, S maps each point x̃ ∈ [−0.5/a, 0.5/a] × [−0.5, 0.5] × [−0.5/a, 0.5/a] to a point
x ∈ [−0.5, 0.5]2 × [−0.5a, 0.5a], and R is the matrix of a rotation of angle π around the
axis directed by (0, 1, 1).

The following relations all hold:

∂v/∂t = S ∂ ṽ/∂t,
(v · ∇)v = S[(ṽ · ∇̃)ṽ],

Ω0 = RΩ̃0,

Ω0 × x = SΩ̃0 × Rx̃ = S[Ω̃0 × x̃],
Ω0 × v = SΩ̃0 × Rṽ = S[Ω̃0 × ṽ],

∇pr = a2S−1 ∇̃p̃r = S ∇̃p̃r,

∇2v = a−1R ∇̃2ṽ = a−2S ∇̃2ṽ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A3)

where ∇̃ = ∇x̃.
As a result, (2.2) becomes

∂ ṽ

∂t
+ Ro (ṽ · ∇̃)ṽ + 2Ω̃ × ṽ + dΩ̃

dt
× x̃ = −∇̃p̃r + Ẽ ∇̃2ṽ, ∇̃ · ṽ = 0, (A4)

with Ω̃ = [1 + Ro cos(2ωt)]Ω̃0 and Ẽ = E/a2. Since ∇ × v = R ∇̃ × ṽ, v and ṽ have
equal enstrophy density at corresponding locations x and x̃. If the immersed length of the
rotation axis, L̃ = L

√
1 + a2, had been used as the length scale instead of L, then

Ẽ(1/a) = a−2 E(1/a) = a−2ν/[ΩL̃2(1/a)] = ν/[ΩL̃2(a)] = E(a). (A5)

Appendix B. Traces in x = 0 of conical vertex beams and edge beams from edges in
the y direction

Potentially, each vertex of the cuboid emits wave beams into the cuboid along rays on
a cone of aperture 2ϑ with its apex at that vertex and its axis directed by Ω0. For
ω = 0.55 considered here, ϑ = arcsinω ≈ 33.4◦. The cone with apex at ν = (X, Y, Z) =
(0, 0, 0), where (X, Y, Z) = (x − 0.5, y − 0.5, z − 0.5A), is illustrated in figure 19. It is
parametrised by (Wu et al. 2022b, (4.5))

ν + tâ+ = t[cosϑ Ω0 + sinϑ (cosϕ êx + sinϕΩ0 × êx)]

= t√
A2 + 1

⎡⎣√
A2 + 1 sinϑ cosϕ

cosϑ +A sinϑ sinϕ
A cosϑ − sinϑ sinϕ

⎤⎦ , (B1)

and intersects the plane X = 0.5 (x = 0) along the hyperbolic conic section

(Y, Z) = 0.5(cotϑ secϕ +A tanϕ,A cotϑ secϕ − tanϕ)/
√
A2 + 1, (B2)
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X
Z

xx
y

z

Y

Figure 19. Conic vertex sheet emitted from the vertex at (x, y, z) = (−0.5,−0.5,−0.5A) and planar edge
sheet emitted from the edge (x, z) = (−0.5,−0.5A) (both shown in grey), together with their traces (thick red
curve) in the meridional plane x = 0 (cyan), for a cuboid withA = 2 and ω = 0.55. Only the portion of the
edge sheet with x < 0 is shown. The red dashed line represents the intersection of a similar conic sheet emitted
from the apex at (x, y, z) = (−0.5, 0.5,−0.5A).

shown in red in figure 19. The limits

ϕ ∈ [− arcsin(cotϑ/A), α − arcsin(cotϑ/
√

5A2 + 4)], (B3)

with tanα = 2
√
A2 + 1/A, guarantee Y ∈ [0, 1]. Edge beams are emitted from points

at X = Z = 0 in a direction such that the resulting planar edge sheet is tangent to the conic
sheet from ν. This direction is that of the line between ν and the point in the plane x = 0
corresponding to the minimum of Z in (B2):

Z′(ϕ) = 0 ⇒A cotϑ secϕ tanϕ = sec2 ϕ ⇒ sinϕ = tanϑ/A. (B4)

We have tanϑ/A < 1 only forA > 1 when interior attractors exist (Welfert et al. 2023).
Substitution into (B2) then yields the coordinates

(Y, Z) =
(

1

2ω
√
A2 + 1

√
1 − ω2(1 +A−2)

,
A

√
1 − ω2(1 +A−2)

2ω
√
A2 + 1

)
(B5)

of the point in the conic section with minimum Z (i.e. z). This point always has Z <A/2,
i.e. z < 0, but has Y < 1 only for∣∣∣∣ω2 − 1

2(1 +A−2)

∣∣∣∣ <
√

1 −A−2

2(1 +A−2)
. (B6)

ForA = 2 and ω = 0.55 considered here, (B6) reduces to |0.3025 − 0.4| < √
3/5 ≈

0.35, which is satisfied. The trace of the resulting edge sheet emanating from the edge
at X = Z = 0 is then a line segment from (0.5, Y, Z) to (0.5, 1, Z) with (Y, Z) given by
(B2), also shown in red in figure 19. Note that (B6) extends to the whole inertial range as
A→ ∞, in which case Y < 1 is typical and the manifestation of the edge sheet is visible
in the meridional plane x = 0. On the other hand, (B6) does not intersect the attractor
region ω2 ∈ (A−2/[1 +A−2], 1/[1 +A−2]) ifA < 2/

√
3, and the edge sheet cannot

be observed in the plane x = 0.
The vertex at (X, Y, Z) = (0, 1,A), i.e. (x, y, z) = (−0.5, 0.5, 0.5A), emits conic

beams whose intersections with x = 0 are symmetric about (x, y, z) = (0, 0, 0) compared
with those emitted from ν. Likewise, the edge (x, y, z) = (−0.5, y, 0.5A) emits a
planar edge sheet with a trace that is the symmetric image of the one from (x, y, z) =
(−0.5, y,−0.5A). Vertices and edges at x = +0.5 emit beams that are mirror images,
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Inertial wave attractors in librating cuboids

with respect to x = 0, of those emitted from x = −0.5, and thus have the same trace
in the plane x = 0. No wave beam seems to be emitted from the vertices (x, y, z) =
(±0.5, 0.5,−0.5A) and (±0.5,−0.5, 0.5A), despite the respective cones having a
non-trivial intersection with the cuboid. Their would-be traces in the plane x = 0, one
of which is represented by a dashed line in figure 19, are absent in the DNS. This resolves
an outstanding question raised in Welfert et al. (2023) about conflicting tangentiality
requirements between (planar) edge sheets and (conic) vertex sheets emanating from the
endpoints of the edge: one vertex sheet dictates the orientation of the edge sheet, which in
turn prevents the other vertex from emitting if it cannot merge tangentially.

Appendix C. Relation between mean and standard deviation of the square of a
periodic function

Consider a periodic function f : R → R with period τ = π/ω and Fourier expansion

f (t) =
∑
k∈Z

ak e2ikωt, (C1)

with ak and a−k conjugate. Then

[ f (t)]2 =
∑

k,�∈Z

aka� e2i(k+�)ωt ⇒ [ f (t)]2 =
∑
k∈Z

aka−k =
∑
k∈Z

|ak|2 (C2)

and

[ f (t)]4 =
∑

k,�,m,n∈Z

aka�aman e2i(k+�+m+n)ωt ⇒ [ f (t)]4 =
∑

k,�,m,n∈Z

k+�+m+n=0

aka�aman, (C3)

where the over-bar designates taking the time average over the period τ . The ratio of the
variance of f 2 to the square of its mean is the factor

γ := ([ f (t)]2 − [ f (t)]2)2

[ f (t)]22 = [ f (t)]4

[ f (t)]22 − 1 =

∑
k,�,m,n∈Z

k+�+m+n=0

aka�aman

(∑
k∈Z

|ak|2
)2 − 1. (C4)

For a purely harmonic function with a0 = a±2 = a±3 = · · · = 0, {k, �,m, n} =
{1, 1,−1,−1}. Since there are

(4
2

) = 6 such arrangements, the ratio (C4) becomes

γ1 = 6a2
1a2

−1

(|a1|2 + |a−1|2)2 − 1 = 6|a1|4
4|a1|4 − 1 = 1

2
. (C5)

Thus the ratio of the standard deviation to the mean of f 2, with f harmonic, is
√
γ1 =

1/
√

2.
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{k, �,m, n} Number of arrangements

{0, 0, 0, 0} 1
{1, 1,−1,−1}, {2, 2,−2,−2} (4

2

) = 6
{0, 0, 1,−1}, {0, 0, 2,−2}, {0, 1, 1,−2}, {0,−1,−1, 2} (4

2

)× 2 = 4 × 3 = 12
{1, 2,−1,−2} 4! = 24

Table 2. Number of arrangements of zero-sum quadruplets {k, �,m, n} from values in {0,±1,±2}.

For a function f with ak = 0 for |k| > 2, there are eight possible combinations of four
values from {0,±1,±2} with 0 sum, summarised in table 2. As a result,

γ2 + 1

= a4
0 + 6(a2

1a2
−1 + a2

2a2
−2)+ 12(a2

0a1a−1 + a2
0a2a−2 + a0a2

1a−2 + a0a2
−1a2)+ 24a1a2a−1a−2

(a2
0 + |a1|2 + |a−1|2 + |a2|2 + |a−2|2)2

= a4
0 + 6(|a1|4 + |a2|4)+ 12(a2

0|a1|2 + a2
0|a2|2 + 2 Re[a0a2

1a−2])+ 24|a1|2|a2|2
(a2

0 + 2|a1|2 + 2|a2|2)2
. (C6)

If f is weakly non-harmonic, i.e. |a0|, |a2| ≈ ε|a1| with ε � 1, then

γ2 ≈ 6 + 12(1 + 2 cosϕ)ε2 + 24ε2

(2 + 3ε2)2
− 1 ≈ 1

2
(1 + (12 cosϕ − 3)ε2), (C7)

where ϕ represents the phase of a2
1a−2. The ratio of the standard deviation to the mean of

f 2 thus becomes
√
γ2 ≈ [1 + (6 cosϕ − 1.5)ε2]/

√
2.

The ratio (C6) can be shown to reach its maximum, approximately 3.48, for
|a0| ≈ 0.93 |a1| and |a2| ≈ 0.74 |a1|. Thus

√
γ2 � 2.64/

√
2. Larger values of (C4) can

be obtained for sequences {|ak|}k≥0 decreasing only slowly (e.g. algebraically) with k, as
a result of the dimensionality of the summations involved (4 − 1 = 3 for the numerator
versus 2 × 1 = 2 for the denominator). This slow decrease is associated typically with
low regularity of f , that may, for example, result from spatial low regularity for f 2 = ω2

associated with the solution of (2.3).

Appendix D. Non-alignment of velocity and vorticity in attractor region

The inviscid theory predicts correctly the location of the attractor by considering circularly
polarised waves (Wu, Welfert & Lopez 2020b), with

v ≈ a sinϕ + b cosϕ, ϕ = k · x − 2ωt, b = ±a × k̂. (D1)

The orthogonality between the direction a of energy propagation and the wavevector k,
i.e. a · k = 0, implies that the nonlinear term (v · ∇)v or equivalently, the Lamb vector
ω × v, vanishes. Specifically, (D1) yields ω = ∇ × v = ∓|k| v. In general, however,
superpositions of circularly polarised waves v1 and v2 of the form (D1) are themselves
not circularly polarised. Indeed,

±∇ × (v1 + v2)× (v1 + v2) = (|k1| v1 + |k2| v2)× (v1 + v2) = (|k1| − |k2|)v1 × v2
(D2)

shows that v1 + v2 aligns with its curl only if the waves have the same wavelength, |k1| =
|k2|, or if their velocity vectors v1 and v2 are aligned at all times. A beam a1 tracing exactly
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Inertial wave attractors in librating cuboids

on the attractor onto a beam a2 will have |k2| > |k1| due to focusing at wall reflections,
while the phases ϕ1 and ϕ2 will in general be different, depending on the length of the
attractor. As such, no alignment of the vorticity with the velocity can be expected at the
attractor.
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