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Abstract

Weed invasion has become increasingly recognized as a major threat to the practice of
sustainable agriculture and the maintenance of natural ecosystems around the world. Without
effective and ongoing management strategies, many weed species have the aggressive capacity
to alter ecosystem functions and reduce the economic potential of the land into which they have
been introduced. Although traditional weedmanagement strategies can be useful in eliminating
certain weeds, these approaches can be costly, economically damaging, and laborious and can
result in variable long-term success. To further add to these challenges, several weed species
have now developed resistance to a range of herbicidemodes of action, which, to date, have been
the major mechanism of weed control. As a result, it is anticipated that the use of emerging
technology will help to provide a solution for the economical and environmentally sustainable
management of various weeds. Of particular interest, emerging technology in the areas of
weed detection and control (chemical, mechanical, electrical, laser, and thermal) has shown
promising signs of improving long-term weed management strategies. These methods can also
be assisted by, or integrated alongside, other technology, such as artificial intelligence or
computer vision techniques for improved efficiency. To provide an overview of this topic, this
review evaluates a range of emerging technology used for the detection and control of various
weeds and explores the challenges and opportunities of their application within the field.

Introduction

The intrusion of weeds into agricultural and natural ecosystems is considered as a major driver
toward agricultural production loss and biodiversity decline around the world (Kumar Rai 2022;
Storkey et al. 2021).Weeds have the capacity to compete against and displace native or desirable
species, and without deliberate and ongoing management interventions, they will continue to
economically and environmentally degrade the land they have invaded (Kumar Rai 2022;
Kumar Rai and Singh 2020). Exacerbating the urgency for efficient weed management, it is
anticipated that the global population will reach 10 billion by 2050, and as a result, the
global demand for agricultural products is expected to increase by more than 56% during this
time (van Dijk et al. 2021). For the agricultural industry to meet such challenges, careful
consideration regarding the most economical and environmentally sustainable production
methods are required (Westwood et al. 2017). It has also been noted that the influence of climate
change, which is likely to result in elevated atmospheric CO2 levels, higher temperatures, and
more variable weather events, will further add to the challenges, particularly in the area of weed
management (Clements and Jones 2021; Malhi et al. 2021; Varanasi et al. 2016). These changes
will likely impose stronger selection pressures on existing flora and further increase the
expansion and impact of several weed species into regions where they may not have previously
occurred (Beaury et al. 2020; Clements and Jones 2021; Ziska et al. 2019).

Although conventional weed control methods using herbicides or mechanical devices can
provide some level of control, they often show variable success and require repeated, ongoing
modifications to provide long-term success (Langmaier and Lapin 2020; Maqsood et al. 2020;
Shahzad et al. 2021). A confounding issue is that, given the current reliance on chemical
approaches for managing weeds, the repeated use of some herbicides can contribute to the
development of herbicide resistance—there are now 269 species reported to have evolved
resistance to 21 of the 31 known herbicide modes of action across 72 countries (Benbrook 2016;
Heap 2023). Not only is the widespread use of chemicals adding to the potential development of
herbicide resistance, but they can also contaminate and pollute the surrounding environment
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and waterways if they are not appropriately applied to the actively
growing plant (Creech et al. 2017; Sankhla et al. 2016). To combat
these concerns, innovations in weed management approaches are
urgently required to assist land managers with more economical
and environmentally sustainable methods of weed control.
To address these concerns, it is suggested that the use of a range
of emerging technologies will contribute to more sustainable weed
management practices. In this regard, this review explores the use
of emerging technology in the areas of weed detection and control
(chemical, mechanical, electrical, laser, and thermal). It also
identifies both the challenges and opportunities of where this
technology can be applied in the field or integrated with other
techniques such as artificial intelligence or computer vision
methods. This information will be of value in identifying future
directions and research opportunities in the field of emerging weed
technology.

Artificial Intelligence in Weed Management

It is encouraging to recognize that the use of artificial intelligence
has shown significant global potential in assisting the agricultural
industry, particularly in the field of weed management (Amend
et al. 2019; Costello et al. 2022; Fernandez-Quintanilla et al. 2018;
Ghatrehsamani et al. 2023). Artificial intelligence can be described
as an advanced machine learning system that can emulate the
actions of humans, providing alternatives to constant and costly
human intervention (Amend et al. 2019; Fernandez-Quintanilla
et al. 2018; Ghatrehsamani et al. 2023; Partel et al. 2019). This form
of technology has already provided several benefits in the area of
weed management and is capable of further assisting, or being
integrated with, machine learning systems and robotic devices for
improved weed detection and control (Partel et al. 2019). As this
area of research is increasingly developing and its full potential has
yet to be discovered, the following sections of this review will
highlight where artificial intelligence has the capacity to be used
alongside a range of emerging technology to assist with improved
weed management.

Weed Detection Methods

It is widely agreed that the early detection and control of a weed is a
critical step within a weed management program to help reduce its
long-term impact on the surrounding environment (Roslim et al.
2021). To assist in this task, recent developments have identified
several data and imagery detection methods that can improve the
time taken to identify and control a weed within the field (Esposito
et al. 2021;Mohidem et al. 2021; Singh et al. 2020). Of the identified
weed detection methods within the literature, the most promising
that have been recently developed or that are undergoing further
research for improvement include the use of (1) unmanned aerial
vehicles, (2) all-terrain vehicles, (3) field robotics, (4) remote
sensing, (5) proximal sensing, (6) plant signaling methods, and
(7) crop genetic modification (Table 1). A common challenge
when using certain detection methods such as unmanned aerial
vehicles, all-terrain vehicles, and field robotics is their uninten-
tionalmovement when capturing data or imagery. Thismovement,
often caused by the wind or vehicle motion, increases the risk of
motion blur, which can limit the quality of data and imagery and
limit the success of deep learningmodels analyzing the data (Genze
et al. 2023). To address this issue, research by Genze et al. (2023)
has proposed the use of a deblurring segmentationmodel known as
DeBlurWeedSeg, which has shown to successfully mitigate motion

blur when detecting weeds such as common lambsquarters
(Chenopodium album L.) in grain sorghum [Sorghum bicolor
(L.) Moench]. Although this model shows promising signs of
reducing motion blur and increasing detection, further factors
such as crop and weed height, the type of weed species, and
environmental conditions all need to be considered due to
their potential influence (Genze et al. 2023). If these factors can
be accounted for, or if additional models, data, or imagery can be
integrated, then it may be possible to mitigate the influence of
motion blur, although further investigation into this combination
across a range of crop–weed scenarios would be required.

A common aspect of these detection methods is their ability to
capture high-quality data and imagery within the field (Coleman
et al. 2023; Esposito et al. 2021; Lati et al. 2014; Mohidem et al.
2021; Pallottino et al. 2019; Su 2020; Sujaritha et al. 2017; Weiss
et al. 2020). To achieve this, the use of specialized cameras systems
or sensors are required, which will often include the use of
hyperspectral imagery, multispectral imagery, red-green-blue or
VIS (visible) imagery, satellite imagery, thermal imagery, and 3D
stereo imagery (Esposito et al. 2021; Rosle et al. 2022; Su 2020; Xia
et al. 2015; Table 2). The most commonly used system is the
red-green-blue imagery system, as it is a low-cost operational
option that can calculate different vegetation indices to distinguish
between crop and weed species (Su 2020; Xia et al. 2015). Although
this system has the capacity to effectively identify various weed
species, it requires significant geometric plant data abilities to
confidently recognize a range of species with high-level accuracy
(Su 2020; Xia et al. 2015; Xu et al. 2021). To improve its efficiency
in situations where crop and weed species appear geometrically
similar, it is suggested that the use of multimodal information that
uses red-green-blue imagery with depth information will help to
improve weed detection accuracy (Xu et al. 2021, 2024). This
approach has been referred to as the WeedsNet system, and
Xu et al. (2024) demonstrate that the use of multimodal
information has the potential to complement red-green-blue
imagery in accurately detecting several grass and broadleaf weeds
in a wheat (Triticum aestivum L.) crop. In this regard, such
technology may have the potential to complement red-green-blue
imagery systems in other agricultural settings, although this
developing technology would require further detailed investigation
in a range of other crop situations to determine its applicability and
effectiveness in the field.

Another scheme known as the multispectral system has proven
to be a powerful alternative to the red-green-blue imagery system,
as it can capture and calculate a wider range of vegetation indices
and spectral band wavelengths (Esposito et al. 2021; Lara et al.
2020; Lu et al. 2020). In a similar way, hyperspectral sensor camera
systems are also powerful, being able to record thousands of
radiometric narrow-band images from hundreds of spectral
band wavelengths (Esposito et al. 2021; Su 2020). Although
hyperspectral imagery has the potential to provide high accuracy in
identifying several weeds, research has identified a range of
inconsistencies, including insufficient feature extractions and
calibration issues that limit its repeated accuracy (Diao et al. 2023;
Peleg et al. 2005). It has also been noted that multispectral and
hyperspectral systems often take a long time to calculate and collect
data accumulation, as well as requiring specified [tailored]
algorithms for analysis. As a consequence, there is an increase
in the challenges and time taken to produce detailed precision
weed maps (Zou et al. 2021). To attend to some of these issues, it
has been suggested that the use of specialized models or machine
learning techniques can provide further enhancement and
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detection efficiency (Murad et al. 2023). In this respect, a range of
techniques have been developed to assist in this area, with some
examples including the use of (1) artificial intelligence-based image
analysis (Aitkenhead et al. 2003; Haq et al. 2023); (2) deep learning
systems and algorithms (such as artificial neutral networks,
convolutional neutral networks, deep neutral networks) (Hasan
et al. 2021; Murad et al. 2023); (3) image processing techniques
(including clustering, generative adversarial networks, Hilbert
transformation, histograms of gradients, linear iterative, local
binary patterns) (Murad et al. 2023; Nixon and Aguado 2019); and
(4) machine learning systems and algorithms (such as adaptive

boosting, artificial neutral networks, decision trees, k-nearest
neighbor, and support vector machines) (Murad et al. 2023).

Chemical Control

Recent developments in the field of chemical control have shown
promising signs in improving the management of a range of weed
species around the world (Amend et al. 2019; Ghatrehsamani
et al. 2023; Roslim et al. 2021; Table 3). One area in particular that
has been shown to be of assistance in this field is the use of
autonomous chemical control, which allows for a weed to be

Table 1. Benefits, challenges and limitations of various weed detection methods

Detection
method What is it? Benefits Challenges/limitations Reference

Unmanned
aerial
vehicles

The use of aerial devices to collect
data and imagery, such as an
aircraft or drone

• Can be used in difficult to
access terrain

• Can be automated with GPS
or sensory system

• Can be used in variable
weather conditions

• Quick method to cover
large areas

• Limited battery life
• Prone to motion blur
• Requires a skilled operator or
GPS navigation system

• Influenced by wind
• May not be practical in
all agricultural settings
(e.g., orchards)

Anderegg et al. 2023;
Esposito et al. 2021;
Mohidem et al. 2021

All-terrain
vehicles

The use of a ground vehicle to collect
data and imagery

• Data and imagery collected
closer to the plant.

• Can be used in variable
weather conditions

• Can be automated with GPS
or sensory system

• Limited access to certain areas
• Slow process to cover a large
area

• Prone to motion blur
• Limited movability around
sensitive areas

Coleman et al. 2023;
Laursen et al. 2017

Field robotics The use of robotic devices such as
small autonomous vehicles

• Flexible movability
(between crops or sensitive
areas)

• Can provide high-quality
data and images (closer to
the plant)

• Can be used in variable
weather conditions

• Can be used alongside
some control methods

• Large devices have limited
access to certain areas.

• Limited battery life if not
integrated with another power
source

• Some devices are bulky and
expensive.

• May diverge from a planned
path if GPS systems or
pathways are not accurate

Francoeur-Leblond 2006;
Sujaritha et al. 2017

Remote
sensing

Classification of a plant/weed using
distinct spectral signatures from
satellite imagery or imagery data
from a distance

• Provides accurate crop and
weed density maps

• Data can be obtained
instantaneously (in the field
of view).

• Nondestructive method to
monitor vegetation

• Requires high-resolution data
and satellite imagery

• Timing of data collection is
critical (may be influenced by
weather patterns).

Lamb and Brown 2001;
Sishodai et al. 2020;
Weiss et al. 2020; Xue
and Su 2017

Proximal
sensing

Classification of a plant/weed using
field-based sensors close to the
plant

• Data can be obtained
almost instantaneously.

• Can provide high spatial
resolution

• Provides data and imagery
from different angles rather
than just from above the
plant

• Variable lighting or weather
conditions may influence
results.

• Spatial resolution will depend
on the distance from and
proximity of the sensor to the
plant.

Pallottino et al. 2019;
Rançon et al. 2023

Plant signaling
methods

Uses exogenous fluorescent signals on
crop plants to help differentiate
them from other species

• Generally not influenced by
environmental factors

• Fluorescent markers
naturally break down

• Differentiates between crop
plants and weeds

• If a plant does not display high
enough fluorescent markers,
it may be identified as a weed.

• Markers may break down
before certain weeds emerge.

Andújar et al. 2018;
Longchamps et al.
2010; Su 2020

Crop Genetic
Modification
(e.g., crop
coloring)

Genetically modifies a crop species,
allowing it to express certain
characteristics that can be detected
more easily by imagery

• Increases imagery
detection and classification
between a crop and weed
species

• Consistent accuracy in
detection

• Limited research in this field
for a range of crop species

• Genetic modification of a crop
may be redistricted due to
regulations.

• If plants do not have the
modification, they may be
detected as a weed, resulting
in crop loss.

Lati et al. 2014
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selectively targeted and sprayed, reducing off-target damage and
the need for large-scale or widespread applications (Partel et al.
2019). These benefits can reduce excess herbicides leaching into the
soil or into surrounding waterways, while also having the benefit of
reducing the cost of materials and labor needed to treat a field each
season (Balafoutis et al. 2017; Partel et al. 2019). While a range of
autonomous chemical control options are currently available or
under development for the control of various weed species
(Table 1), it has been noted that most of these chemical devices
have been tested or designed to be used within cropping systems,
all of which generally have heterogeneous weed distributions that
occur at a range of levels (Allmendinger et al. 2022). In this regard,
this technology may be difficult to use within natural ecosystems
and is problematic in difficult-to-access terrain or regions with
varying levels of weed infestations. As such, the use of a range of
weed detection methods and imagery or sensor systems discussed

earlier in this review may have the potential to assist in this area.
Of particular interest, integrating such methods may enable more
accurate detection and subsequent control of a weed in areas where
it may appear geometrically similar to a crop or native species
(Ghatrehsamani et al. 2023; Partel et al. 2019), although this area
of research would require specific investigation relating to each
scenario.

Herbicide-Resistance Management

It has been claimed that the use of artificial intelligence and
specialized camera systems have the potential to assist in the field
of herbicide-resistance management in agroecosystems (Amend
et al. 2019; Ghatrehsamani et al. 2023; Picoli et al. 2017; Roslim
et al. 2021). With the growing concern of more frequent
occurrences of herbicide resistance, it is important to quickly

Table 2. Benefits, challenges and limitations of various imagery and sensor systems for weed detection

Imagery system What is it? Benefits Challenges/limitations Reference

Red-green-blue or
VIS (visible)
imagery

Uses a digital camera that is
equipped with a red, green, and
blue filter with an image sensor

• Low operational cost
• Easy to use and often
readily available

• Often a quick method of
weed detection

• Can be integrated with
machine learning for
improve accuracy

• Requires significant
geometric plant variations for
accurate detection

• May not be suitable for all
agricultural settings (e.g.,
when crops appear similar to
a weed species)

Park et al. 2016; Su 2020;
Xu et al. 2021

Hyperspectral
imagery

Captures data and imagery from a
series of signals with continuous
channels of narrow spectral bands

• Rapid classification of a
plant species

• Can also be used for other
purposes (e.g., mapping of
soil conditions)

• Records hundreds to
thousands of radiometric
bands

• Can be integrated with
machine learning systems

• Can have complexities with
radiometric calibration

• Expensive to use
• Often a much larger system
that may require specialized
devices for field application

• Can only detect certain bands
at a given time

Che’Ya et al. 2021;
Esposito et al. 2021; Lu
et al. 2020; Peleg et al.
2005; Scherrer et al.
2019; Su 2020

Multispectral
imagery

Captures data and imagery from
discrete bands across a broad
spectral signal

• Powerful operation that
can calculate a wide range
of vegetation indices

• More powerful then
red-green-blue imagery
systems

• Can be integrated with
machine learning systems

• Expensive to use
• Often a much larger system
that may require specialized
devices for field application

• Sometimes has a lower
resolution then
red-green-blue systems,
therefore needs
to be used closer to the
grounds surface
(e.g., lower altitude using
UAVs)

Esposito et al. 2021; Lu
et al. 2020; Mazzia et al.
2020

Satellite imagery Captures images above the plants
using satellites

• Quick method to collect
data and imagery

• Influenced by cloud or
weather patterns

• Does not provide the most
detailed imagery or data

Weiss et al. 2020

Thermal imagery Captures imagery based on the
surface temperature of a plant

• Can also be used for other
purposes (plant stress,
moisture stress, herbicide
resistance)

• Can be integrated with
other methods such as
remote sensing for
improved accuracy

• Not always consistent
• Can be influenced by
environmental factors

• May only be suitable for
certain situations

Eide et al. 2021; Xu et al.
2023

3D stereo imagery Uses a range of imagery (red-green-
blue, LiDAR, spectroscopy,
thermal, and ultrasound) to
detect and weed species in three
dimensions

• Capacity to create 3D
models of plant
characteristics

• Can provide high-quality
data and imagery with
high resolution (can be
expensive)

• Relies on a range of imagery
systems

• Time and cost of this method
needs further investigation.

• Highly complex due to
different plant structures,
therefore further automatic
programs needed

Andújar et al. 2011, 2018
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identify and manage invasive populations before they reproduce to
form a new generation of resistant plants. One method that has
shown promise in the identification of herbicide-resistant plants is
the use of thermal imagery assisted by machine learning systems
(Eide et al. 2021; Picoli et al. 2017). Research has indicated that
thermal imagery can assist in the detection of glyphosate-resistant
plants, as treated plants often experience stress and an inhibition of
stomatal conductance that leads to reduced photosynthetic rates
and increased surface temperatures (Eide et al. 2021; Picoli et al.
2017; Shirzadifar et al. 2020). As a consequence, thermal imagery,
assisted by machine learning techniques have the capability of
identifying these plants within a field, which can then be controlled
by other mechanisms (Eide et al. 2021; Shirzadifar et al. 2020).
On the other hand, research by Eide et al. (2021) suggests that
when thermal imagery is used in isolation, it is not a completely
reliable indicator to predict herbicide resistance, particularly when
dealing with herbicides with different modes of action. In this
regard, further research into combining thermal imagery with
other machine learning techniques may assist in identifying
herbicide-resistant weed populations before they can reproduce.
It has also been noted that integrating artificial intelligence in real-
time image processing may help to assist in identifying herbicide-
resistant and susceptible plants by identifying a range of plant and
soil characteristics, although this area of research requires further
investigation among different herbicides and crop–weed scenarios
(Ghatrehsamani et al. 2023). It has also been noted that due to the
limited number of new or emerging herbicide modes of action, the
integrated use of existing bioherbicides could be another option to
increase control efficiency and help reduce potential herbicide
resistance in some weed species (Roberts et al. 2022).

Mechanical Control

Robotics and machine learning capabilities have shown promising
signs as an emerging method to mechanically control a range of
invasive weeds (Fennimore et al. 2016; Oliveira et al. 2021). For
example, a study by Bakker et al. (2010) indicated that the use of
intelligent autonomous weeders with real-time kinematics global
positioning systems can be used to complete interrow hoeing
within corn (Zea mays L.) crops, with minimal to no damage to the

surrounding crop plants. Although this method seems promising,
the speeds of such devices are often much slower than traditional
methods that often operate at a minimum speed of 4 km h−1 or up
to 12 km h−1 for methods such as harrowing (Bakker et al. 2010;
Bowman 2002). Due to these slower rates of speed, some robotic
devices may not be able to completely bury or uproot certain weed
species in a given time, ultimately allowing them to reestablish
(Bakker et al. 2010). This clearly indicates that careful consid-
eration of both the type of weed species and the speed of the
mechanical device is needed for the implementation of these
methods. Another study by Nørremark et al. (2012) showed 91%
success rates in treating various interrow weeds with a robotic
cycloid hoe, while research by Kunz et al. (2015) showed that the
use of a camera-guided interrow hoeing device (Kult Robocrop®)
reduced weed density by 89% in soybean [Glycine max (L.) Merr.]
crops and 87% in sugar beet (Beta vulgaris L.) crops. It appears that
camera-guided devices, fitted with machine learning capabilities,
can be utilized to help guide the robotic device in targeting specific
weeds within these areas, which can markedly improve these
methods (Kunz et al. 2015). Such technology may also help to
identify weeds that are growing very close to a crop plant and
specifically target it or identify and map it for an alternative
treatment to minimize potential crop damage.

A study by Van Evert et al. (2011) was associated with the
development and testing of an autonomous robotic device to
control broadleaf dock (Rumex obtusifolius L.) on a commercial
farm. The device navigated using global navigation satellite system
technology and included a downward-facing camera for plant
detection and a mechanical tool with rotating blades that was
lowered and activated once the plant was identified (Van Evert
et al. 2011). This method was reported to have a 93% detection rate
and a 75% success rate in the control of the species. It is anticipated
that this method could be used to help decrease the quantity of
herbicide needed to treat a field and reduce the costs associated
with on-farm labor. Robotic weed control devices can also work in
conjunction with other devices, with research by Noguchi et al.
(2004) creating a primary and secondary system allowing for
several devices to work together.

Another device that has been developed as an autonomous
mechanical and chemical robot within the agricultural industry is

Table 3. Examples of autonomous chemical weed control devices reported within the global literature.a

Product name Brand/company How does it work?

ARA Ecorobotix Uses Convolutional neural network (CNN)-based detection with multi-camera vision to spot spray
weeds

Avirtech-MIMO Avirtech Uses 4D radar imaging and unmanned aerial vehicles to map and patch spray weeds
AutoWeed AutoWeed Uses deep learning machine technology fitted with high-resolution cameras to detect and spot spray

weeds
Bilberry Bilberry Uses red-green-blue imagery systems with an artificial intelligence–based detection system for spot

spraying
EcoPatch Dimensions Agri Technologies Uses red-green-blue imagery with an artificial intelligence–based detection system for spot spraying
FD20 Farmdroid Uses Real time kinematics - Global Positioning System (RTK-GPS) systems to record the precise

location of crop seeds and spot sprays weeds
Greeneye Greeneye Technology Uses red-green-blue imagery with an artificial intelligence–based detection system for spot spraying
H-sensor Agricon Uses a bi-spectral camera with artificial intelligence–based detection to identify weeds
Kilter AX-1 Kilter Systems Uses RTK-GPS to detect and selectively spray weeds
Ladybird University of Sydney Uses a hyperspectral and thermal camera to detect and sport spray weeds
Robotti Agrointelli Uses deep learning systems and RTK-GPS autonomous systems and a LiDAR camera
See and Spray Blue River Technology Uses red-green-blue imagery with a CNN-based detection method to spot spray weeds.
Smart Spraying BASF, Bosch, Amazone Uses bi-spectral cameras to identify weeds and spot sprays them
Weed-It Weed-It Uses a blue LED spectrometer to detect green vegetation
Weedseeker Trimble Agriculture Uses infrared sensor technology with a high-resolution spectrometer

aSources: Allmendinger et al. (2022); Amend et al. (2019); Utstumo et al. (2018); Wu et al. (2020); Zhang et al. (2022).
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the AgBotII. This device is capable of accurately identifying 90% of
the selected species and has shown success in controlling various
weeds such as wild oats (Avena fatua L.) and common sowthistle
(Sonchus oleraceus L.). It is a powerful alternative, as it can provide
both mechanical and chemical control, allowing an integrated
control method, and alternately addressing control mechanisms
with each pass (Fennimore et al. 2016; Oliveira et al. 2021).
Another device that has been developed for the use of robotic weed
control is the BoniRob platform produced by Bosch Deepfield
Robotics, which has shown up to 94% success in controlling
various weeds (Langsenkamp et al. 2014). This device is capable of
identifying and selectively targeting a weed by means of
mechanical control (Langsenkamp et al. 2014). Although
promising, this technique can be time-consuming and may not
be applicable for deeper or heavier clay-type soils, as it is more
suitable for sandy light soils (Langsenkamp et al. 2014). In this
regard, further investigation on a range of autonomous mechanical
devices will need to consider more localized conditions to allow
adjustment for greater efficacy in control options. Further
investigation will also need to consider (1) which weed species
can be mechanically controlled and which will require follow up
or integrated methods of control; (2) the accuracy of control to
limit potential off-target damage or unwanted soil disturbance,
particularly when used alongside planted crops or native
vegetation; (3) any potential spread of weeds and their propagules
into other areas of the field if the devices are not cleaned or treated
appropriately; and (4) the likely change to crop patterns or rows
to help facilitate automated cultivation in two directions for
improved efficiency (Fennimore et al. 2016; Sharma et al. 2017).

Electrical Weed Control

A range of research studies have shown that electrical weed control
has the potential to successfully control various weeds, with several
products already being commercially developed for use around the
world (Table 4). This method delivers an electrical current to
the targeted plant and can be applied by twomain methods: (1) the
spark-discharge method or (2) a continuous electrode–plant
contact method (Slesarev 1972; Wilson and Anderson 1981). The
spark-discharge method transfers a brief high-voltage current
directly into a plant, while the continuous electrode–plant contact
requires ongoing contact between the electrodes and the plant in
order to allow a lethal dose of electricity to pass through the foliage,
stems, and roots of the plant (Slesarev 1972; Wilson and Anderson

1981). These methods often cause damage to the plant’s cells
and structures by increasing temperature and vaporizing volatile
liquids, ultimately damaging cell membranes (Slesarev 1972;
Wilson and Anderson 1981). In some cases, electrical treatment
may not completely kill a plant and may only cause damage in
some areas, allowing the plant to regenerate over time (Slesarev
1972; Wilson and Anderson 1981). To achieve successful control,
several factors need to be considered, such as (1) the type of device
used and the amount of energy output for a lethal dose; (2) contact
time with the plant; (3) surrounding vegetation, to ensure targeted
plants are not shielded by other vegetation; (4) surrounding
environmental conditions; and (5) the potential risk of fire
(Bloomer et al. 2024; Landers et al. 2016; Lehnhoff et al. 2022;
Slesarev 1972; Vigneault et al. 1990; Wilson and Anderson 1981).
Of particular interest, research by Schreier et al. (2022) found a
strong correlation between the increase of plant moisture content
and the decreased level of weed control using electricity on several
weed species such as barnyard grass [Echinochloa crus-galli (L.)
P. Beauv.], common ragweed (Ambrosia artemisiifolia L.), giant
foxtail (Setaria faberiHerrm.), giant ragweed (Ambrosia trifida L.),
horseweed [Conyza canadensis (L.) Cronquist], waterhemp
[Amaranthus tuberculatus (Moq.) Sauer], and yellow foxtail
[Setaria pumila (Poir.) Roem. & Schult.], in a soybean-cropping
system. In this regard, the use of electrical weed control needs to
carefully consider any potential influence from the surrounding
environment, as this is likely to influence the success of this method
(Lati et al. 2021; Schreier et al. 2022).

It is clear that electric weed control can be suitable for a range of
cropping systems, with research suggesting that it can be successfully
used to control a diverse range of species (Bloomer et al. 2024;
Landers et al. 2016). Research by Landers et al. (2016) in Brazil and
Paraguay used a plant–electrode contact machine (16.6 km h−1) and
obtained between 94% to 100% control after 28 d for weeds such as
high mallow (Malva sylvestris L.), smallflower galinsoga (Galinsoga
parviflora Cav.), S. oleraceus, and wild poinsettia (Euphorbia
heterophylla L.). On the other hand, only up to 75% success rates
were realized when trying to control garden spurge [Chamaesyce
hirta (L.) Millsp.], thus showing that certain weed species may
respond differently to each treatment (Landers et al. 2016). Electrical
weed control can also be used to reduce seed development, with an
example of the Weed Zapper™ 6R30 (spark-discharge) achieving
54% to 80% reduction inA. artemisiifolia, A. tuberculatus,A. trifida,
S. faberi, S. pumila, and common cocklebur (Xanthium strumarium
L.) (Schreier et al. 2022).

Table 4. Common electrical devices commercially developed around the world for weed control

Name Brand/company Areas used Mode of action and use Reference

Lightening Weeder Lasco Inc. United States Uses spark discharge methods from electrodes
mounted onto machinery, generally positioned
slightly above the crop plants to target taller
weeds

Vigneault et al. 1990

Weed Zapper™

(Annihilator and
Terminator Series)

Old School
Manufacturing

Canada, United States Uses several electrodes mounted onto a flexible
boom arm with horizontal electrodes above the
crop canopy; allows models can be modified and
configured for specific use

Schreier et al. 2022

XPower Zasso™ (XPU and
XPS)

Europe, South America Uses continuous plant electrode contact and can be
flexible with its use in a wide range of areas (e.g.,
under trees, vines or along roadsides)

Slaven et al. 2023

Rootwave™ (PRO and
Top Fruit)

Rootwave™ Europe Uses continuous plant electrode contact with the
use of a handheld electric weeder for small spot-
spray applications of weeds

Feys et al. 2023
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Although there are several benefits of using electrical weed
control methods, there are also several risks associated with its use
(Bloomer et al. 2024). One drawback of using such methods is the
low rate of speed and the considerable time needed to treat large
fields (Llewellyn et al. 2016). A potential solution to this challenge
would be to integrate this technology with artificial intelligence or
machine learning devices to help identify and then treat weeds
autonomously (Llewellyn et al. 2016; Machleb et al. 2020). It is also
important to consider any potential resistance to electrical weed
control (Beckie et al. 2020; Somerville et al. 2017). In particular,
some species with higher levels of cellulose or lignin within their
cell walls may have a higher resistance to bursting or becoming
vaporized; likewise, plants with a hairy, thicker, or waxy epidermis
may also be more protected from electrical control (Bauer et al.
2020; Vigneault et al. 1990). Plants that are not completely
controlled may regenerate at a later time from their root systems;
therefore, careful postcontrol monitoring may be required
(Bloomer et al. 2024; Lehnhoff et al. 2022).

Research has suggested that the use of electrical weed control
can also impact soil biota, as it may travel through a plant’s root
system and into the soil or adjacent water, thus potentially affecting
the cellular constituents of surrounding organisms (Ruf et al.
2023). The effect of electrical weed control on the surrounding
organism will depend on the voltage and length of the application
(Ruf et al. 2023). For example, research by Lati et al. (2021) used an
application of 0.05 Wh, which resulted in an increase of more than
40 C in the shoots and roots of black nightshade (Solanum nigrum
L.) and redroot pigweed (Amaranthus retroflexus L.), which is
likely to influence the surrounding soil conditions. Ruf et al. (2023)
also found a reduction in earthworm biomass within the top 25 cm
of the soil profile after using the Zasso™ XPower XP300 applicator
at 3 km h−1 for 2 wk compared with an uncontrolled area. Research
has also shown several physical changes to the earthworms from
areas that have been treated with electrical weed control, such as a
change in skin color, the presence of necrotic tissue, and damage to
other cells (Ruf et al. 2023). On the other hand, contrasting results
have shown that some macro- and mesofauna can survive in areas
treated by electrical weed control and maintain more stable
populations compared with other methods such as mechanical
control where there are large soil disturbance events (Löbmann
et al. 2022). Based on the differences in these findings, it is
suggested that localized populations, environmental conditions, or
soil types may play an important role in the response of soil biota,
and therefore would require localized investigations to determine
any long-term effects of this method.

Laser Weed Control

The combination of lasers and various weed detection systems has
been shown to be a promising method in weed control, particularly
in the early life-cycle stage (Heisel et al. 2002; Rakhmatulin et al.
2021; Wang et al. 2019). These devices have the capacity to be
integrated with machine learning devices, including classification
algorithms and automated devices for efficient weed control within
agroecosystems (Ghatrehsamani et al. 2023; Rakhmatulin et al.
2021). The most commonly used lasers include carbon dioxide
lasers, diode lasers, and fiber laser devices (Coleman et al. 2021;
Gates et al. 1965; Heisel et al. 2002; Wöltjen et al. 2008). These
devices work by emitting an infrared beam that is absorbed by the
plant’s cells, consequently burning them (Gates et al. 1965; Heisel
et al. 2002). Several studies have shown that the use of lasers can be
effective in controlling various weeds at different rates, with some

examples including E. crus-galli at 54 J per plant (Marx et al. 2012)
and rigid ryegrass (Lolium rigidum Gaudin) at 76.4 J (Coleman
et al. 2021). Several other species that have also been severely
damaged or controlled using laser weed control include A. fatua
(Bayramian et al. 1992), cereal rye (Secale cereale L.) (Bayramian
et al. 1992), tobacco (Nicotiana tabacum L.) (Wöltjen et al. 2008),
and water hyacinth [Eichhornia crassipes (Mart.) Solms; syn.:
Pontederia crassipes (Mart.) Solms] (Couch and Gangstad 1974).
A common trend within the literature shows that each weed
species often requires a different contact time or energy dose to be
controlled or partially damaged by the use of lasers (Marx et al.
2012; Rakhmatulin and Andreasen 2020). Research has also shown
that many of these robotic devices, such as the commercially
available LaserWeeder by Carbon Robotics, are often very
expensive and very slow, only reaching speeds of 1.6 km h−1

(Vijayakumar et al. 2023). For such applications to become more
widely available, a time–cost–value analysis may be useful to
determine whether this is the most appropriate method for a
specific weed situation. Another important consideration regard-
ing laser weed control is its influence on the surrounding soil biota,
with long-term data on a range of environments required to
examine this influence at a broader range (Khan et al. 2020).

Thermal Weed Control

The use of thermal weed control has been successfully integrated
within the agricultural industry as a pre–crop emergence technique
for weed control (Seaman 2016). Thermal weed control works by
emitting quantities of intense heat directly to a targeted plant,
which can increase its temperature and thus physically disrupt its
cells (Brodie et al. 2019; Seaman 2016). Thermal weed control can
often be in the form of a flame, hot oil, steam, or radiation (Brodie
et al. 2019). Such technology has been implemented across various
agroecosystems for the control of various weeds such as
bermudagrass [Cynodon dactylon (L.) Pers.], E. crus-galli, hairy
beggarticks (Bidens pilosa L.), ragweed parthenium (Parthenium
hysterophorus L.), and several Amaranthus species (Mutch et al.
2008; Ulloa et al. 2012). Further research has also been used to trial
the use of hot foam as a thermal weed control, which has shown
success in controlling more than 75% of various species such as
little mallow (Malva parviflora L.) and wild mustard (Sinapis
arvensis L.) (Antonopoulos et al. 2023). The impact of thermal
weed control is claimed to be more successful on annual species,
with the effect on perennial species beingmore variable due to their
more developed and structured root systems or underground
rhizomes, which can reshoot if they are not completely damaged
(Cisneros and Zandstra 2008). As a consequence, thermal weed
control may not be suitable for all weed species andmay thus result
in surviving weed species creating monospecific stands, all of
which can result in the need for further control and resources. For
this method to be more widely used with confidence, further
investigation on thermal weed control on a range of weed species
across different environments would be needed.

The use of radiation-based thermal control, often referred to as
microwave radiation, has shown promising results in the control of
various weed species (Brodie 2012; Brodie et al. 2019). Under
laboratory conditions, Aygun et al. (2017) have shown that
microwave radiation energy has the capacity to kill various weed
species such as C. dactylon, johnsongrass [Sorghum halepense (L.)
Pers.], S. nigrum, and X. strumarium. Although this method
successful for individual species, each species generally required a
different speed and rate of microwave radiation for its effective
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control (Aygun et al. 2017). Further research also suggests that
different species respond differently to a changing application and
rate of microwave radiation (Brodie and Hollins 2015; Kaçan et al.
2018). In particular, a study in Australia by Brodie and Hollins
(2015) identified that wild radish (Raphanus raphanistrum L.)
required at least 60 J/cm−2 for 100% mortality, while L. rigidum
required 370 J/cm−2. Despite these successes, the use of microwave
radiation energy for weed control often requires at least 10 times
more energy than traditional methods such as chemical control,
which therefore has currently limited its commercial use (Brodie
2012). One solution that could improve this method is its potential
use alongside artificial intelligence and automated weed control
devices. This could allow for plant detection and specific plant
control usingmicrowave energy to limit the need for its use across a
large scale, although this method would require further inves-
tigation and an economic benefit analysis before it could be
confidently used as a key weed control method.

Conclusion and Future Management Considerations

It is clear that the use of emerging technology is helping to shape
the future of weed management and control around the world and
has provided improved and sustainable alternatives for the
detection and control of various weed species. Not only can these
advancements in technology improve the way various weeds are
controlled, but they can provide long-term economic and
environmental benefits compared with traditional methods of
weed control. However, despite their current success in agro-
ecosystems, several areas of consideration need to be taken into
account for their widespread and long-term application. Regarding
the use of weed detection systems, some methods will need to be
carefully chosen to ensure they are suitable to the specific
environments where they are intended to be used. For example,
unmanned aerial vehicles fitted with red-green-blue imagery may
provide coverage across a large area, but they might not be suitable
to all agricultural settings; for example, orchards or areas where
crop and weed patterns appear geometrically similar would not be
candidates for their use. In this case, the integration of other
methods or imagery and sensor systems will need to be considered
for improved accuracy. Artificial intelligence could also provide an
additional level of support in classifying imagery. Regarding the
use of chemical control and herbicide-resistance management,
emerging technology in the detection of weeds has allowed for
improved detection rates and subsequent control of a species
before it has the ability to produce seeds and further impact the
environment. Autonomous mechanical control has also been
shown to be a feasible option in controlling various weeds as a
nonchemical method of control. Despite promising signs, further
investigation will need to consider the cost-benefit of using such
devices, as they are often much slower and more expensive than
conventional methods, which is also a consideration for electrical,
laser, and thermal methods. It is suggested that this approach will
become more practical and provide greater confidence in sound
weed control strategies with the aid of machine learning systems
and the integration of artificial intelligence systems.

Acknowledgments. This research received no specific grant from any funding
agency or the commercial or not-for-profit sectors. Authors would like to
acknowledge Peter Vamplew (Federation University) and Manzur Murshed
(Deakin University) for the feedback on an earlier version of this article. The
authors declare no competing interests.

References

Aitkenhead M, Dalgetty I, Mullins C, McDonald A, Strachan N (2003) Weed
and crop discrimination using image analysis and artificial intelligence
methods. Comput Electron Agric 39:157–171

Allmendinger A, Spaeth M, Saile M, Peteinatos GG, Gerhards R (2022)
Precision chemical weed management strategies: a review and a design of a
new CNN-based modular spot sprayer. Agronomy 12:1620–1641

Amend S, Brandt D, Di Marco D, Dipper T, Gässler G, Höferlin M, Gohlke M,
Kesenheimer K, Lindner P, Leidenfrost R, Michaels A, Mugele T, Müller A,
Riffel T, Sampangi Y, Winkler J (2019) Weed management of the future.
Künstliche Intelligenz 33:411–415

Anderegg J, Tschurr F, KirchgessnerN, Treier S, SchmuckiM, Streir B,Walter A
(2023) On-farm evaluation of UAV-based aerial imagery for season-long
weed monitoring under contrasting management and pedoclimate
conditions in wheat. Comput Electron Agric 204:107558–107571

Andújar D, Calle M, Fernández-Quintanilla C, Ribeiro Á, Dorado J (2018)
Three-dimensional modelling of weed plants using low-cost photogram-
metry. J Sens 18:1077–1088

Andújar D, Escolà A, Dorado J, Fernández-Quintanilla C (2011) Weed
discrimination using ultrasonic sensors. Weed Res 51:543–547

Antonopoulos N, Kanatas P, Gazoulis I, Tataridas A, Ntovakos D,
Ntaoulis V-N, Zavra S-M, Travlos I (2023) Hot foam: evaluation of a
new, non-chemical weed control option in perennial crops. Smart Agric
Technol 3:100063–100072

Aygun I, Cakir E, Kacan K (2017) Determination of possibilities of microwave
application for killing weeds. Int J Adv Sci Eng Technol 5:33–36

Bakker T, Asselt K, Bontsema J, Müller J, Straten G (2010) Systematic design of
an autonomous platform for robotic weeding. J Terramech 47:63–73

Balafoutis A, Beck B, Fountas S, Vangeyte J, Wal T, Soto I, Gómez-Barbero M,
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