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TEMPERATURE-GRADIENT INDUCED MASS-INSTABILITY
THEORY OF GLACIER SURGE

By E. M. SHOEMAKER
(Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 186, Canada)

ABsTRACT. A theory is proposed that glacier surges are the result of a time-independent but positionally-
dependent temperature distribution in which the mean effective temperature increases down slope. The
theory is modeled by a slab analogy in which plane motion on a plane slope consists of uniform shear in a
sub-region called the reservoir region. Assuming the usual power function relationship between stress and
strain-rate, a thickening of the glacier in excess of its constant-state condition tends to induce instability;
i.e. as the reservoir region thickens the oscillation of the region (up and down the slope) becomes unstable.
Assuming an accumulation rate which increases lincarly with elevation, this oscillation is represented by a
non-linear ordinary differential equation. Numerical results are considered and reasonable assumptions,
where data does not exist, render surge cycle times in close agreement with observation. The theory does not
require basal sliding but this can be included.

REsuME. Une théorie des crues rapides des glaciers par Uinstabilité de masse due au gradient thermigue. La théoric
proposée est que les crues rapides des glaciers sont dues 2 une distribution des températures indépendante
du temps mais variable dans 'espace selon laquelle la température constatée croit d’amont en aval. La
théorie prend ’'exemple d’une plaque dans laquelle un mouvement plan sur une pente plane consiste en un
cisaillement uniforme dans une ‘“‘sous région” appelée zone réservoir. En admettant I'habituelle loi puissance
liant les efforts et la vitesse de déformation, un épaississement du glacier en excés par rapport 4 son état de
stabilité tend 4 induire son instabilité, c’est-a-dire que plus la zone réservoir s’épaissit, plus l'oscillation de la
zone (vers 'amont et vers I'aval) devient instable. Dans I’hypothése d’une vitesse d’accumulation qui
augmenterait linéairement avec l'altitude, cette oscillation est représentée par une équation différentielle
ordinaire non linéaire. On a examiné les résultats numériques et, lorsqu’il n’existe pas de données, des
hypothéses raisonnables conduisent 2 un cycle des crues dans le temps qui est en bon accord avec I'observa-
tion. La théorie ne requiert pas de glissement sur le lit, mais peut le prendre en compte.

ZUSAMMENFASSUNG. FEine Theorie der Gletscherausbriiche auf der Basis einer vom Temperaturgradienten induzierten
Masseninstabilitit. Es wird eine Theorie entwickelt, nach der Gletscherausbriiche die Folge einer zeitlich
unabhingigen, aber ortsabhingigen Temperaturverteilung sind, bei der die (wirksame) Temperatur
hangabwirts zunimmt. Als theoretisches Modell dient eine Plattenanalogie, worin cine ebene Bewegung
auf einer schiefen Ebene durch einheitliche Scherung in einer als Reservoirregion bezeichneten Subregion
ausgelost wird. Unter Annahme der iiblichen Potenzbeziehung zwischen den Verformungs- und Spannungs-
raten wird eine Verdickung des Gletschers tiber seinen stationdren Zustand hinaus eine Instabilitat verur-
sachen, d.h., wenn die Reservoirregion dicker wird, wird die Oszillation der Region (hangauf- und
hangabwirts) instabil. Bei Annahme einer Akkumulationsrate, die linear mit der Hohe zunimmt, lésst sich
die Oszillation durch eine nichtlineare, gewéhnliche Differentialgleichung darstellen. Numerische Losungen
werden betrachtet. Verniinftige Annahmen von Parametern, fiir die Messwerte fehlen, ergeben fiir die
Ausbriiche Zykluszeiten, die gut mit den Beobachtungen iibereinstimmen. Die Theorie benétigt kein Gleiten
am Untergrund, doch kann dies miteinbegriffen werden.

INTRODUCTION

There are at least three phenomena which are commonly advanced as agents in triggering
and /or propagating glacier surges, as reviewed by Robin (1g69): stress instability, water-film
instability, and temperature instability. Stress instability as treated by Robin (1967, 1969)
is proposed primarily as an explanation for the initiation of surges. Water-film instability,
proposed by Weertman (1g6g), and Robin and Weertman (1973), is essentially a phenomeno-
logical theory explaining how a ‘‘fast-sliding” mechanism could appear periodically in
glaciers with temperate bases. Temperature instability, treated by Robin (1955, 1969),
predicts a periodic surge-type phenomenon provided there exists a time-dependent tempera-
ture oscillation which periodically produces temperate conditions at the base of the glacier.
The last two theories are compatible and can be combined to produce a model in which the
basal temperature oscillates and fast sliding occurs periodically.

None of these theories is quantitative. The reason for this lies in the prevailing belief that
surging is essentially a fastsliding phenomenon and sliding is an extremely complicated
process which involves a description of water movement and heat transfer among other
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complexities. On the other hand, efforts at obtaining temperature data on surge-type glaciers,
while seemingly aimed at verifying the existence of temperate basal conditions, have not
conclusively established that the triggering of surges in cold glaciers does not involve a
mechanism other than sliding. Clarke and Goodman (1975) and Goodman and others (1975)
in their studies of Rusty and Trapridge Glaciers note that temperate basal conditions exist
in a central region but the glaciers are frozen to their bases at the upper and lower elevations,
This appears to be a common situation in cold surge-type glaciers. It is not clear that one
can assume in such a situation that the active region in a surge initiation involves only tem-
perate basal ice. Even in the situation of the surge of glaciers considered as fully temperate
there is some evidence of cooling between surges although a surge itself may involve only
temperate ice. There is an obvious pressing need for additional temperature data, parti-
cularly at the bases, on surge-type glaciers.

The model to be developed here applies to cold glaciers. Conditions at the base, however,
may be either cold, temperate, or a combination. It is necessary that the “mean’ temperature
through the ice thickness increase down-slope. The model may be viewed as presenting
another surge phenomenon independent of previous theories or be used in conjunction with
previous theories.” Our treatment is quantitative in nature. The model may be applied to
predict surge cycle times provided only that data exist on annual balance distribution and
temperature. Such predictions are attempted later subject to limitations on data.

'I'HE SURGE MODEL AND LINEAR ANALYSIS

The theory presented here is independent of previous theories, but certainly not in conflict
with them. The basic premise is that, as has been frequently noted, a surge consists of a
process whereby in a large region of the glacier, termed the ““reservoir region’, mass is
periodically accumulated over a relatively long time and discharged over a short time, during
which glacier speeds are typically ten to one hundred times the normal speed. This suggests
our first primary assumption that the mass of glaciers, at least those which surge, is not
constant even though climate is constant. (We shall neglect seasonal weather changes. There
is no evidence of periodic climatic conditions in phase with surge phenomena.) It is an
implicit part of the assumption that the net mass balance of glaciers oscillates between positive
and negative values; obviously, the net mass balance cannot remain either positive or negative
indefinitely. This oscillation in mass of glaciers is the physically observed situation although
the cause may normally be attributed to climate change.

The first assumption can be realized in our model only if we make a second assumption that
the balance distribution increases up-slope. That is, there exists an equilibrium line at which
the annual balance vanishes and above (below) this line the balance increases (decreases).
This is the usual physically observed situation. It will be shown that if the glacier temperature
is uniform a model obeying these first two assumptions exhibits periodic growth and decay of
the reservoir region.

An additional assumption is required in order to ensure that this periodic behaviour
becomes unstable. What seems to be required is an asymmetry of the flow process relative to
the midpoint (or equilibrium line) on the slope. That is, friction should decrease as we move
down the slope. Accordingly, we make the assumption that the glacier temperature increases
down-slope. Here, there is not much evidence to go on. Near the surface of subpolar glaciers,
melted water refreezes in the accumulation zone. This causes these glaciers to be colder in the
ablation than in the accumulation zone—at least near the surface. Our assumption, however,
need not apply near the surface, but only in the deeper regions where it appears more reason-
able. There, water percolation is absent and the down-slope mean air-temperature gradient
should contribute to the postulated effect. In addition, the greater part of frictional dissipa-
tion takes place at depth and has an accumulative effect which would tend to increase the
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temperature down-slope. Finally, geothermal input need not be uniform and there is no
reason why on some glaciers it should not increase down-slope. At this early stage it is clear
that the model is not applicable to strictly temperate glaciers.

In addition to the three fundamental assumptions above, we make certain simplifications
and note in so doing that this is a first-order theory intended primarily to produce qualitative
agreement with observation. We consider plane flow on a plane slope (Fig. 1).* "The reservoir
region, which is assumed not to be the entire glacier, is modeled by a slab, a rectangular
control volume of fixed length L, and height 4 which in general varies with time. The
mechanical behaviour of the slab will be assumed to be independent of the remainder of the
glacier and the deformation field will be assumed to consist of a uniform shear flow. To be
consistent with the latter assumption, the weight is assumed to act uniformly through the
entire thickness, i.e. the weight is applied to the top of the slab. The temperature distribution -
is assumed to be independent of time at points fixed with respect to bedrock. The temperature
distribution at a section x = constant can thus be replaced by a fixed mean effective tempera-
ture f(x). Sliding of the glacier on bedrock will be neglected merely as a simplification in
presenting results; its inclusion would present no mathematical complication. Additional
assumptions relating to motion and mass balance will be made within the context of the
mathematical formulation.

Fig. 1. The reservoir region is represented by a rectangular control volume which we term a slab. In the constant-state condition
it is centered at x = o (¢ = 0) and undergoes a uniform time-independent shear flow. Material flows into the control
volume on the right and exists on the left with velocity varving linearly from zero at the base to Vo at y = hy. Net forces
exerted on the control volume by the rest of the glacier vanish. In the general case the control volume moves with its position
determined by the position of its upper surface. To the observer it appears as a wave moving “through” the glacier. Although
Ly is fixed, h, ¢ and V vary with time. For V > V, (< Vo) it moves down (up) the slope.

We emphasize that the slab is a control volume which receives mass input from the glacier
at its upper boundary (normal to the base) and discharges mass at its lower boundary; the
material particles comprising the control volume change with time.t This mass input and
output are assumed to balance since we wish to consider the action of the reservoir region
independently of the rest of the glacier. The slab is intended to represent the active region of
an actual glacier and this is assumed here to be synonymous with the reservoir region. The
remainder of the glacier is assumed to be nearly dormant so that any imbalance of mass input
or output to the active reservoir region from the remainder of the glacier is likely to be
negligible compared to the net balance, accumulation or ablation, on the slab itself.

* Henceforth, all quantities will be expressed per unit distance normal to the x, y plane, Figure 1.

t As one of several alternatives, the entire glacier could be represented by a sliding slab fixed at its upper
extremity which undergoes extending flow with shear flow neglected; the location of the terminus as well as the
thickness would vary with time. In this model there is no external mass input or output to the slab. The qualita-
tive behaviour of the two models is similar.
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The mass balance of the slab, in accordance with the second fundamental assumption, will
depend entirely on the location of the slab relative to the equilibrium line. On the other hand,
if the slab thickness is increasing (decreasing) the slab will, as a consequence of equilibrium
and flow-law considerations, tend to move down (up) the slope after which motion the net
mass balance will tend to decrease (increase). There is thus an analogy to a spring where
the slab is “attracted’ towards a central position which might be, but is not necessarily, the
equilibrium line. If the slab is in a constant-state situation so that its mass and position remain
constant, it will appear to the observer to be stationary ; that is, the control volume is stationary.
Actually the slab is undergoing uniform, time independent, shear flow with material particles
flowing into and out of the slab (Fig. 1).

The remainder of this section is devoted to representing mathematically the features of
this slab oscillation. In particular, we are interested in investigating whether and under what
conditions the oscillation might become unstable.

Neglecting inertia forces, equilibrium of the slab implies

T = pLohsin a (1)

with p the weight density. The speed 1" of the upper surface of the slab is related to the shear
strain rate ¢ by

é = Vl2h. (2)
Assuming the usual power-function relationship between shear stress and strain-rate we can
write
T = k(x)(V[2h)'/" (3)

where the temperature #(x) and hence the friction coefficient k(x) are functions of x. For lack
of data we assume a linear relationship:

k(x) = ko+kxsin af L, (4)

where k£, > o corresponds to temperature increasing down-slope.

The origin x = o is chosen to coincide with the centre-line of the slab when it is in the
constant-state position (to be defined). If ¢ measures displacement of the slab relative to
the constant-state position (Fig. 1), integration of Equation (4) on —L,/2+e to L,/2+-¢
gives for the average or effective friction coefficient K(e):

K(e) = ky+kesin ofL,. (5)
Integration of Equation (3) then gives for the shear force T
T = (Vj2h)Un(ky+kqe sin o/Lo). (6)

In general, as will be demonstrated later, transitory behaviour is possible whereby the slab
position moves and & and e vary. On the other hand, a constant-state condition, defined as a
state where all quantities are independent of time, is also possible. It is helpful to investigate
this special case first. Assume that a constant state exists and let & = h,, I'= F,. Since
the net balance must vanish it is also necessary that ¢ = o in Equation (5) is we assume that
the balance gradient is antisymmetric with respect to x = 0. Equilibrium considerations
through Equations (6) and (1) then give

Vo = 2(p sin afky)™ hy"*!. (7)

Another relationship between h, and I, is obtained by considering the actual constant-
state profile of a glacier. For this purpose we resort to a more conventional model of Nye
(1959) and assume that plane sections normal to the slope remain plane and normal; i.e.
shear deformation vanishes except at the base where there is a velocity discontinuity. If we
furthermore assume that the particle velocity is uniform and equal to I,
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x

I , ke ;

ho(x) = —— f S dx = ——— [(L,[2)?—x?] sin « (8)
pF’OI / 2pV,

where for lack of data we have assumed a linear relation for the balance gradient 8w (weight

per unit time and length)

8w = kex sin «, ke > 0. (9)
Therefore, the average thickness of the glacier in the constant state condition is
he = kel sin af12pV,. (10)

We take h, to be the average thickness of the reservoir region.*
From Equations (7) and (10) we obtain

ke[,[z sin e | V/(n+2) ko nftn+2)
- [y
24p p SN e
p kel 2 sin o 24p Vint2)[psin o | 7/ +2) -
e ;
¢ 12p keL,?sin o ko .

A unique constant-state condition for the slab has thus been defined.
When the slab is displaced, ¢ # o, its mass rate of change is determined by integration
of Equation (g). Thus,

W = keLe sin a. (13)
The final relationship necessary in studying the transitory behaviour is the kinematic relation-
ship (Fig. 1).
Vi—V = dejdt. (14)

Substitution of Equations (13), (7), (6) and (1) into Equation (14) gives the basic governing
equation for the slab thickness

dzh 2(p sin a)®hynt1 2(psin o) PAnT | ke sin «

dez kon " (ky+ ke sin afL,)"

(15)

p
To achieve a convenient dimensionless form of Equation (15) we define variable u by
h = hy+h,, h, = uh,. (16)
In addition, the dimensionless time s is defined by
s = [2hoMke (sin a)2t1pn—t [k n]4¢ (r7)
so that Equation (15) becomes
n
%: I:I—(I+u)"+'/(l+y%) ] (18)
where the single dimensionless parameter
y = sin o Lk, [2+/3 Lok, (19)

is obtained after substituting for 4, from Equation (11) and for ¢ from Equation (13) where
W = pLyh. Other quantities of interest, such as slab position ¢/L.; and the ratio of particle
velocities I'/17; are easily expressed in terms of u. Thus,

oL, = (1/2v/3) du/ds, (20)

V[Vo = (1-+u)m+1/(1 4y dufds)n. (21)
Furthermore, substitution from Equation (11) into Equation (17) enables us to compute
real time in terms of the physical parameters and s; thus

5§ = +/2 [(sin )2t nf ntt foqn/2pk n]t/tnt2)g (22)

* For L, & L, the approximation to Equation (10) is accurate; for Ly € Ly, hy T kelL,? sin x/8p V.
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In general, Equation (18) does not possess closed-form solutions. Qualitative behaviour
for |u| €1 is ecasily discussed in terms of a linearized approximation. Expansion of
(1-+u)n*1/(1 4y du/ds)” in a Taylor series results in the linearization

d2u/ds?— ny duf/ds+ (n+1)u = o. (23)
In case n2y? < 4(n+ 1) all solutions may be expressed in terms of

[exp (nys/2) cos {1/2(4(n+ 1) —n2y2)is}, exp (nys/2) sin {1/2(4(n+ 1) —n2y?)is}]. (24)

Solutions corresponding to y = o are periodic whereas for y > o there is an exponential
growth superimposed upon the periodic behaviour;* subsequent discussion applies to y = o.
Note that any solution must satisfy the inequality & = o; from (16) this implies that u = —1.
The mathematical result is that the condition ¥ = — 1, corresponding to complete melting,
will occur within a finite time. Physically, the slab has moved sufficiently far down the slope
that it “melts”” before returning. The solution should be interpreted as ceasing to exist from
this moment. Once the reservoir region ceases to exist, another active reservoir region comes
into existence and the same procedure is repeated. This discussion of course applies only to
the linear solution which has limited application; later numerical studies of the non-linear
equation demonstrate a different qualitative behaviour whereby in a finite time the speed of
the slab may become unbounded (the slab moves off the slope before melting takes place).

If the initial conditions u(0) = —U, U > o, du/ds(o) = o are applied, Equation (24)
gives

u(s) = — U exp (nys/2) cos [1/2(4n+ 1) —n2y?)¥s]. (25)

(Initial conditions of this type, which correspond to the reservoir region initially in the
constant-state position but thinner than k,, will be applied in the numerical study of Equation
(18).) Quantities ¢ and I" behave in much the same manner as Equation (25). Negative
speeds I can result, but are not possible in the non-linear model since T = o and Equations
(1) and (3) imply that I = o.

The point u =0, ¢ =0 (or u = o, du/ds = 0), which represents the constant-state
condition, is an isolated critical point in the terminology used in the study of non-linear
differential equations. The functions u = o0, du/ds = o clearly are a solution of Equation
(18)—the constant-state solution. What we have shown in the linearized analysis is that the
critical point is unstable. That is, any small change from the constant-state condition results
in unstable behaviour—an exponential growth of the solution.

NON-LINEAR BEHAVIOUR—NUMERICAL STUDIES

In the following examples applied to the numerical solution of Equation (18) n = g is
used throughout as a generally accepted value.t Figure 2 illustrates a type of behaviour which
culminates in slab melting. The initial conditions u(0) = —0.15, e(0) = o correspond to the
reservoir region initially in the constant state position but 15%, thinner than the constant-state
thickness 4,; consequently, the slab initially moves up the slope. As it does so, the particle
speed 1" (down the slope) increases slowly. Eventually, I” increases to the extent that e
reaches a maximum; by Equation (14) this occurs when V[V, = 1. As the slab moves down
the slope I” increases more rapidly but does not reach a relative maximum until after e
returns to zero. The period from ¢ = o through emax and back to ¢ = o will be called the
accumulation half-cycle.

* The exponential growth also applies to cases where n2y? = 4(n+1). Later we show that actual glaciers
seem to correspond to n?y? << 4(n-+1).
+ Mellor and Testa (196g[a]) regard n= 1.8 as a better value at low stress levels such as exist on a glacier.
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Fig. 2. Typical slab history covresponding to a point wior = - o.15. y = o.3 in the mell region of Figure 4 which resulls
in complete melting, after being displaced down-slope a distance one-quarter of the glacier length. The maximum speed
VIV is only 3.33; the maximum increase in thickness is 25°,. The action has a resemblance to a kinematic wave but is

not stmilar to a surge.

The ensuing half-cycle, if it is completed (which does not occur in this example) is roughly
the reverse of the accumulation half-cycle as far as ¢ and u are concerned and will be called
the ablation half-cycle. The speed I does not observe this rough anti-symmetry property and
continues to increase rapidly, reaching the maximum value I'/T, = 3.33 whene/L, — —o.225;
after this the speed drops rapidly to zero at which time complete melting takes place. Reversal
of the direction of slab motion occurs when I'/I'; = 1. The great majority of melting takes
place when the slab is positioned in the range —o0.375 < ¢/L, <= —o0.25 corresponding to
an elapsed time As 2 1.0 compared to the total elapsed time As = 3.0. Hence, during this
last third of the elapsed time, the slab has been significantly displaced from the constant-state
position; provided L,/L, < § it is entirely removed from the original reservoir region. There-
fore, we might consider that for s > 2.0 another slab begins life in the original reservoir
region and the process is repeated.

This first example is qualitatively similar to the linear results in terms of expression (24).
The period As = 3.0 (Fig. 2) compares with As = 3.22 of expression (24). The most notice-
able changes are that the elapsed time for the accumulation half-cycle has become twice that
of the ablation half-cycle, and that there is evidence of a further increase of slab speed during
downward motion.

Henceforth, we shall arbitrarily designate I'/17, = 2.0 as the boundary between low and
high speed. The corresponding time duration of low (high) speed will be denoted by
Asp(Asy). The parameter Asy/Asy, will, in later examples, be a meaningful parameter for
comparison with actual surges.

Figure 3 employs the same initial conditions as Figure 2 with a different parameter value,
y = 0.4 instead of 0.3. The behaviour of the two examples is virtually identical for s < 1.5.
For s > 1.5 the second example exhibits a rapidly increasing speed culminating in instability.
The slab can be regarded as moving off the slope before complete melting can take place.
Many of the qualitative features of a surge are met by such behaviour. First and most obvious

https://doi.org/10.3189/50022143000013721 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000013721

440 JOURNAL OF GLACIOLOGY

is the high speed. (We shall later address the problem of rationalizing infinite speeds. At the
present time this should be considered as a product of the degree of simplification incorporated
in the model, but something which can be remedied by a slightly more sophisticated model.)
The second attribute of a real surge is the gradual thickening of the reservoir region during the
accumulation half-cycle until it reaches a maximum thickness uy, 309, greater than that of
constant state, before the ablation half-cycle begins. Values of uy on this order agree with
data of Robin and Weertman (1973) for Muldrow Glacier and Finsterwalderbreen. The
third comparison is that the material of the reservoir region is discharged to the lower region
of the glacier over a relatively short time interval. For this example Asg/Asy = 0.33. This
value should be closer to 0.05 for a surge, illustrating that the model, or at least this example,
develops high speeds relatively slowly.

122
2
22 10580
R
@
12 1
= 2.0 {0.25 {0.25
i
=
lighs) : 40
1.0 40 4-0.25
0.5 4 4 -0.50
0 L 1 1 L _0_25J -0.75%
0.5 1.0 1.5 20 s
Fig. 3. Typical slab history corresponding to a point u(0) = —0.15. y = 0.4 in the instability region of Figure 4. Here,

the speed of the slab becomes unbounded before complete meltmg takz: place. The slab moves down beyond the original glacier
region. The maximum increase in thickness is 30%,.

With these two prototype responses in mind, we will now consider the question of whether
the type of response can be determined if the initial conditions and parameters y and » are
known—without having to resort to a numerical solution for each particular case. Also
important is whether the unstable response corresponds to parameter values associated with
actual surge-type glaciers, Extensive numerical studies enable us to answer these questions
in the following paragraphs.

For fixed y > 0.145 the slab will behave as follows when subject to the initial conditions
u(o) = —U, e(0) = o where 0 < U << 1: if U is sufficiently small the slab will undergo at
least one cycle without melting or becoming unstable; at the end of the first cycle, s = 5,
and the new initial conditions are u(s;) = —U, < — U, e(s;) = 0. At the end of the second
cycle either complete melting has occurred or else we arrive at a state U(s,) = —U, < —U,,
and so on. Eventually, either complete melting takes place during a cycle or else the slab
enters a cycle in which instability occurs.
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The transition between the behaviour illustrated by Figures 2 and g is abrupt. Curve
asc in Figure 4 represents the boundary between the two types of behaviour as reflected in the
first cycle of response. Although analytically there is a continuous dependence of solutions
upon the parameters (o) and y, the dependence shows up as an abrupt change when dealing
with numerical solutions. The transition appears as a discontinuity to within better than two-
figure accuracy in moving across ABc. We shall term this curve the *‘surge boundary” and the
regions which it separates the ‘“melt region” and the “instability region”. Note that for
y << 0.145 all slabs melt eventually after sufficient oscillation. We shall return later to this
diagram in relating the model to a surge theory.

A MELT LINE
B 1.0 T T T T
n=3
-08F e(0) =0 b
-0.6r INSTABILITY REGION 7
s
i
-0.4r .
MELT \"™. SURGE
_0.2 } REGION - / REGION A
W
1 1 // / 77_7 C
0 0.2 0.4 0.6 08 1.0
i
Fig. 4. Corresponding to the initial condition ¢(v) 0. the qualitative behaviour of a single cyele of slab motion is conveniently

represented in the u(o). y plane. Below ABC, the “surge boundary™, speeds are bounded and melting may occur. Above
the surge boundary speeds become unbounded. Conditions interior to CBED resull in @ maximum slab thickening less than 40",
in excess of h.

Table I lists values of various parameters for a variety of solutions in the instability region.
Values of Asg/Asy, are generally high compared to actual surges but approach reasonable
levels for y on the order unity. The elapsed time As is fairly constant; hereafter we shall adopt
the value As = 2.0 as a uniform measure for all ¥ < 1.0. (Note that the linear solution in
Equation (25) for n = 3 indicates a dependence of As upon y where As -+ 0 as y > 3.)

TasLe I. CRITICAL PARAMETERS FOR SOLUTIONS IN THE INSTABILITY REGION OF FIGURE 4

As is total elapsed dimensionless time; Asy, (Asy) is the elapsed time during which V)V, = 2, (< 2);
(e/Ly)m, (¢/L1)m are the maximum and minimum slab displacements ratios, respectively; 10ouy is the maximumn
percentage increase in glacier thickness compared with A,.

u(o) = —o.025 u(o) = —o0.05
y 0.6 0.8 1.0 1.1 0.5 0.6 0.7 0.8 0.9
Asp/Asy, 0.18 0.12 0.11 0.097 0.25 0,20 0.16 0.14 0.13
As 2.37 2.13 2.20 2.27 2.27 2.07 2.01 2.01 2.05
(e/Ly)m 0.036  0.057 0.096  o0.123 0.056  0.067 0.079 0.096  o.120
(e/Li)m —o0.45 —0.33 0.27 —0.23 0.54 0.41 0.38 —o044 —o.29
um 0.11 0.20 0.37 0.50 0.15 0.20 0.25 0.33 0.42
u(o) = —o.10 u(o) = —o.15 u(o) = —o0.30
¥ 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.25 0.3 0.4 0.5
AsufAst, 0.8 0.26  o.21 0.18 0.34 0.29 0.2 0.17 0.57  0.41 0.36 0.29
As 2.19 1.98  1.92 1.92 2.00 1.94 1.92 1.89 2.21 2.00 1.92 1.91
(e/Ly)m 0.088 0.10  0.11 0.13 0.12  0.14 0.16 0.7 0.18  0.19  o0.21 0.23
(e/Ly)m —0.68 —o0.51 —0.44 —0.40 067 —o0.56 —o0.46 —o0.37 1.1 —0.0 —0.60 - 0.39
um 0.22 0.27 034 0.42 0.30  0.32 0.45  0.54 0.38 042 0.50  0.59
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For y = 0.145 we have noted qualitative agreement between model behaviour during the
final unstable eycle and surge behaviour. It seems reasonable that we should insist that if the
model is to represent a surge, it must undergo instability during the initial cycle. This is
because we have assumed that the slab motion is independent of constraints imposed by the
remainder of the glacier. This assumption is certainly questionable for a multi-cycled situation
where the quantitative accuracy in rendering initial conditions for ensuing cycles is important;
on the other hand, quantitative accuracy should not be so important during a single instability
cycle. Thus, the model might adequately describe the thickening of the reservoir during an
initial slow upward movement of the slab followed by the unstable downward motion. A
continued quasi-cyclic behaviour on the other hand, would scem to require a refined analysis
outside the scope of the model. We therefore restrict the labelling of instability in the response
of the model to the instability region of Figure 4, where it occurs during the initial cycle.

In order to conform to a surge there must be limits imposed on the maximum thickness
uym of the reservoir. * If we arbitrarily impose an upper limit of uyy = 1.4 the unstable response
region is further restricted to lic in EBcpE (Fig. 4) which we term the surge region. Curve
ED is obtained from data such as shown in Table I. Figure 4 indicates that, for large values
of y close to unity, the initial conditions u(0), e(0) must tend to a small perturbation from the
constant-state condition. The surge region is bounded at the left point £ by y = 0.25.

QL'ANTI'I‘AT!\'E MODEL PREDICTIONS

We shall attempt here to evaluate the ability of the model to represent actual surges.
At this time any such study is subject to a deficiency of data. There is insufficient temperature
data on surging glaciers with which to test the third fundamental assumption. Most data is
at the ten-meter depth and the model requires the distribution of temperature through the
thickness. Balance data is available for determining ke but the author knows of none for
surging glaciers. Moreover, balance data must be collected over many years to be useful.
Reliable data on bedrock profiles is also scarce.

Quantitative information on model behaviour is almost entirely described by the values of
y from Equation (19) and Af from Equation (22), where At is real time corresponding to As.
In order for the model to exhibit instability, it is necessary that values of y greater than o.25
be exhibited, in accordance with Figure 4. Values of A¢ corresponding to surge glaciers have
been tabulated by Meier and Post (1969) and are typically on the order of 20 to 40 years with
the active phase, corresponding roughly to our Asg, being on the order of two to three years.

Tables IT and III evaluate y and At for ranges of the parameters which include all types
of surging glaciers: first, large glaciers of very small slope such as Bering Glacier, Chugach
Range where L, & 200 km, « & 1°; second, large glaciers of moderate slope such as Muldrow
Glacier, Alaska Range where L, = 63km, « = 3.5°; third, moderately large glaciers of
increased slope such as Middle Fork Glacier, Wrangell Range where L, * 14 km, « = 5°;
fourth, a glacier such as Tyeen Glacier, Fairweather Range where L, x 7km, « ~ 18%;
and finally, extremely small glaciers of steep slope such as the outlet glacier on the south side
of Tenas Tikke Glacier, Alsek Range where L, =~ 2 km, « = 25°.f Various ranges of
ko k' = k,/L, and ke have been chosen which will, hopefully, bracket the correct values.

* Values of uy increase rapidly with y. For example, the case u(o) = —0.025, ¢(0) = 0, y = 3 results in a
maximum value uy = 43 before sudden instability sets in. Lacking accurate data it is difficult to estimate the
value h, for a given glacier. It could be, for example, that large values uy could occur, i.e. perhaps surging
glaciers satisly the condition k 3 h, except during an active surge phase. We are tacitly assuming the opposite
and that values of uym should be below 1.4.

+ Temperature and balance data for Rusty and Trapridge Glaciers is currently insufficient for our purpeses.
More data for these glaciers are expected.

% In this model the length L, of outlet glaciers should be increased beyond the actual length in order to correct
for the influence of another glacier.
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ko values of [14, 19, 24, 29] Mgf a‘/m correspond. respectively, to mean temperatures 0y of [—1,
“C. k" (kgfai/m?) values correspond to moderate temperature gradients as exemplified in the text

MASS-INSTABILITY THEORY OF GLACIER SURGE

TaBLE 1I. VALUES OF y FOR FIVE DIFFERENT GLACIER TYPES

443
3 —6, —g]
and are

consistent with fy such that glacier temperature does not exceed 0°C. Where values of y are not supplied the

temperature would exceed 0°C. Values of 3 =

14
19
24
29

.‘klr
kpi

Ly = 2 km, o = 25°

I7:5

0.31
0.23
0.18
0.15

24

0.42
0.31
0.24
0.20

ko
14
19

29

0.25 have corresponding states in surge region (Fig. 4).

Ly = wkm, &= 18 L = 14km, 2 = 5°
305 37 17.5 24 30.5 37 17.5 24 30.5 3%
— = 078 — 0.44 = -
0.39 - 0.58 o079 - 0.32 0ds — -
0.31 0.38 0.46 063 0.80 0.26 035 045 —
0.26  0.31 0.38 o052 066 0.80 0.21  0.29 0.37 0.45
L = 63km, = 3.5 Ly — 200km, x = 1
ki 11 17.5 24 30.5 I 17.5 24
0.87 - - _
0bg4 1.0 - 058 —
051 o081 1.1 0.46  0.74
042 0.67 o0.92 1.2 0.38 061 0.84

TaBLE I1I. SURGE CYCLE TIME IN YEARS FOR FIVE DIFFERENT GLACIER TYPES

Range of ke (kgf/a m?) corresponds to high accumulation-rate gradients. As reported by Meier and Post

(1969) times for prototype glaciers are: Tenas Tikke Glacier ¢. 20 +

Glacier ?, Muldrow Glacier ¢. 50+ 10, Bering Glacier ¢. 30 -
given by Post (1960) for Muldrow Glacier and is estimated for other glaciers.

Tenas Tikke Glacier
Ly = 2km, a = 25°

41
49

63

14
19
24
29

20

13
16
19
21

L,
30 40 5
10 8 30
12 9 36
13 11 Jil ¢
15 12 46
Muldrow Glacier
Li=63km, » = 3.5
5 10 20 30
77 44 25 18
93 53 31 22
107 61 35 25
rg 69 39 28

1. Tyeen Glacier ¢. 20+ 1, Middle Fork

15. Slope « of bedrock in accumulation region is

Tyeen Glacier

7 km, « 18 &
10 20 30 40 5
17 10 2 6 116
ar 12 9 7 139
2 14 10 8 160
20 15 1 4] 179
Bering Glacier

L, — 200km, x 1
40 5 10 20 30
15 = =
18 267 154 88 64
20 307 177 102 73
23 345 198 114 B2

Middle Fork Glacier

14km, x 5
10 20 3(] 40
66 38 28 e
8o 46 33 26
92 53 38 g0
103 329 43 34
40
51
5
b5

The manner of definition of & in Equation (g) implies that it is independent of « and should
depend only upon climate. Accumulation data computed for four glaciers in widely different
locations give:

ke =

ke
ke

9 kgf/m?a = 88 N/m2a for Blue Glacier, Washington, U.S.A. (LaChapelle, 1965) ;
= g kgffm?a = 88 N/m*a for Nigardsbreen, Norway (Paterson, 1960, p- 36);

20 kgf/m? a — 196 N/m? a for South Cascade Glacier, Washington, U.S.A. (Meier
and Tanghborn, 1965);

ke = 4 kgflm?a = 39 N/m?a for Hintereisferner, Otztal Alps (Hoinkes and Rudolph,
1962).

The five prototype glaciers cited carlier appear to be situated in areas of high precipitation
(Post, 1969). This should be indicative of high accumulation gradients. In terms of yearly
water equivalent the data are: Chugach Range (Bering), 2-4 m/a; Alaska Range (Muldrow),
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1—-4 m/a; Wrangell Range (Middle Fork), 0.5-1 m/a; Fairweather Range (Tyeen), 2-4 m/a;
and the Alsek Range (Tenas Tikke), 1-2 m/a. These figures would support values in the
range 10 < ke << 40 kgf/m? a (= 392 N/m? a).

The coefficient k, in Equation (4) is determined by the effective or mean temperature
f(0) at the section x = o, the equilibrium line of the model. Using data of Mellor and Testa

(1969[b])* we have obtained:
k, = [14 000, 19 000, 24 000, 29 coo] kgf a’/m

= [0.14, 0.19, 0.24, 0.28 MN a!/m]

corresponding to [—1, —3, —6, —g]°C, respectively.

The coefficient k;' = k,/L, in Equation (4) is independent of slope and dependent only
upon climate, i.e. the temperature gradient. We present various examples in Table IV where
Az represents the change in elevation of the glacier, fr, (6p) the effective temperature at
the top (and bottom).

TaBLE IV. VALUES OF THE COEFFICIENT k" = k;/Lo IN EQUATION (4)
FOR VARIOUS ELEVATION CHANGES AND TEMPERATURES

Az O fp ki

km C °C kgf at/m? N al/m?

1 —5 -1 16 157

0.5 —2 [¢] 13 127

0.5 5 =L 32 314

1.5 —18 —2 37.2 365

1 -6 0 28 275

Table I1 presents values of y calculated for a range of k, corresponding to the mid-slope
temperature range —1°C > 6y > —9°C and for the range

11 kgfal/m? = 108 N a}/m? < k," < 37 kgfal/m? = 363 N a*/m?

where the values are compatible with temperature constraints, i.e. such that g is not greater
than 0°C,} and with temperature gradients similar to the above examples. The restriction
that y > o0.25 is satisfied for reasonable temperature gradients, and we conclude that the
surge region of Figure 4 is attainabte.

Table IIT presents the period in years between surges as predicted by the model. With
the possible exception of the case L = 200 km, « = 1° the cycle times are very much in the
range of the observed times.

CONCLUSIONS

It has been commonly assumed that a surge is possible only if most of the base is temperate.
This is because, in a glacier where sliding does occur, the contribution to velocity due to
sliding overwhelms the contribution due to shear flow. This development shows that even if
sliding is not present the model exhibits the characteristics of a surge, albeit the model goes too
far and exhibits instability. This is an exaggeration which a second-order model would
hopefully correct. In our opinion a more refined model would exhibit bounded velocities while
retaining the surge characteristics of the present model.

There are several factors which would tend to limit slab speeds to bounded values without
unduly increasing the complexity of the model. First, as speeds increase the down-slope
temperature gradient will be reduced as colder material is carried downward. Second, the

* We have attempted to convert their compression data to pure shear.
t Temperatures greater than 0°C will occur in the model if the slab moves below the original glacier region.
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effective temperature #(x) cannot increase above 0°C (see footnote on p. 444); the assumed
linear variation in k(x) given by Equation (4) cannot continue indefinitely down-slope and
must have a lower bound. Third, it is usual for « to decrease down-slope. (An analysis based
upon a circular profile base would be appropriate and possible.)

There are additional factors tending to limit slab speeds which would add to the complexi-
ties of the model. The inclusion of inertia forces is an obvious example. The inclusion of
constraints exerted upon the slab by the remainder of the glacier is another.

Equation (22) indicates the dependence of cycle period At upon the parameters &y, ke, L,
and «. However, these parameters are not independent. For a given climate and geothermal
conditions k,, ke and L, should be determined by «. It is curious that all the values of the
cycle period tabulated by Meier and Post (1969) fall in the range 20 to 60 years, indicating a
very weak dependence upon «. This seems unlikely. There must exist glaciers with very long
cycle periods which have not been noted. These could, for example, be cold glaciers with
large k,.*

As noted previously, the model does not apply to strictly temperate glaciers. The basic
idea of the model, however, could be applied to what we shall term a cold-hot—cold, c.h.c.,
glacier such as Trapridge Glacier, which is temperate in a central region and cold at its
upper and lower elevations. In a c.h.c. glacier the upper cold region could act as a reservoir
region during the accumulation half-cycle. During the ablation half-cycle the mass of the
reservoir region would be dumped onto the temperate middle region and instability could
result. In this connection we repeat that sliding is not excluded by the model. Equation (3)
could be replaced or modified by a basal sliding law which is, mathematically, very similar.

MS. received 14 May 1974 and in revised form 21 October 1975
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