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Abstract

We analyse a scattering problem of electromagnetic waves by a bounded chiral
conductive obstacle, which is surrounded by a dielectric, via the quasi-stationary
approximation for the Maxwell equations. We prove the reciprocity relations for
incident plane and spherical electric waves upon the scatterer. Mixed reciprocity
relations have also been proved for a plane wave and a spherical wave. In the case
of spherical waves, the point sources are located either inside or outside the scatterer.
These relations are used to study the inverse scattering problems.

2010 Mathematics subject classification: primary 35Q60; secondary 78A45.
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1. Introduction

In this work, we prove reciprocity relations that connect the far-field patterns in the
case of two incident plane waves, and the scattered fields in the case of two spherical
waves. The two incident plane waves have different directions of propagations and
polarizations. The two spherical waves emanate from two different point sources
at any locations, outside and inside the scatterer, or a combination of both. We
consider a scatterer with a dielectric layer and a core filled with chiral material. Chiral
media exhibit optical activity, meaning that chiral materials cannot be brought into
congruence under rotation with their mirror images [10].

The conductive transmission problem is a generalization of the classical
transmission boundary problem. Angell and Kirsch [1] and Hettlich [8] analysed
its well-posedness. Athanasiadis and Stratis [4] studied the solvability of a chiral
conductive obstacle in an achiral environment. Athanasiadis et al. [3] proved scattering
relations for incident plane waves upon a chiral scatterer in an achiral environment. All
the above-mentioned papers discussed this scattering problem in quasi-static form.
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The case of point-source waves in electromagnetism was discussed by Athanasiadis
et al. [2]. Athanasiadis and Tsitsas [5, 13] studied reciprocity and scattering relations
for a multilayered chiral scatterer with interior dipole excitation and an achiral scatterer
with a conductive core, respectively. These relations are used in the study of the
inverse scattering problems. In particular, Colton and Kress [6] used the reciprocity
relation for plane waves for the definition of the adjoint of the far-field operator, and
proved that the far-field operator is normal. Potthast [12] proved the mixed reciprocity
relation, which is a combination of a plane wave and a spherical wave, and is the
basis for the inverse scattering method of point sources and multipoles. Liu et al. [11]
used mixed reciprocity relations to prove the uniqueness of the solution of an inverse
scattering problem in acoustics, while Kirsch and Kleefeld [9] studied the solvability
of the inverse conductive scattering problem via the factorization method in acoustics.
Applications of this kind of scattering problem can be found in radar, antennas
and medicine production. In particular, Flapan’s work [7] is very representative,
considering its applications in chemistry.

In Section 2 we proceed with the formulation of the quasi-stationary conductive
transmission problem for a dielectric with a chiral core in its interior. In Section 3 we
state and prove reciprocity relations for two incident plane waves, and in Section 4
we establish the corresponding reciprocity relations for spherical waves. Finally, in
Section 5 we prove mixed reciprocity relations, while in Section 6 we state some
concluding remarks.

2. Formulation

Let D be a bounded three-dimensional obstacle with a C2-boundary S0, which will
be referred to as the scatterer. The scatterer D consists of two layers D1, Dc, which are
divided by a C2-surface S1, that is, D = D̄1 ∪ Dc.

The interior layer Dc is filled with a homogeneous isotropic chiral medium with
electric permittivity ε, magnetic permeability µ, conductivity σ and chirality measure
β, such that µσβ is small. The exterior D0 = R3 \ D̄ of the scatterer is assumed to be
simply connected, and is occupied by an infinite isotropic homogeneous medium with
corresponding physical parameters ε0, µ and σ0, while the layer D1 is described by ε1,
µ and σ1.

We further assume that the surfaces S0, S1 of the scatterer D (see Figure 1)
are covered by thin layers with very high conductivity, such that the integrated
conductivity τ0(r), with r ∈ S0 and τ(r), with r ∈ S1 remain finite [1]. The problem is
formulated in the quasi-stationary form [4]. We refer to [1] and the references therein
for details about the physical problem and its derivation. Let (E j, H j) be the total
electromagnetic fields in D j, j = 0, 1, while the corresponding field in Dc is denoted
by (E, H). Chirality measure is introduced via the Drude–Born–Fedorov constitutive
relations [10]

D = ε(E + β∇ × E), B = µ(H + β∇ ×H),
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Figure 1. Scatterer D with layer D1 and core Dc.

where D and B are the electric and the magnetic flux density vectors, respectively.
Considering the quasi-stationary approximation for the Maxwell equations in D j
and Dc, we get the symmetrized system [4]

∇ × E j − ik jH j = 0, ∇ ×H j + ik jE j = 0 in D j, (2.1)
∇ × E − ikH = λE, ∇ ×H + ikE = λH in Dc, (2.2)

where k2
j = iωµσ j, with k j being the wave number in D j, and

k2 =
iωµσ

(1 − εµω2β2)2 , λ =
εµω2β

1 − εµω2β2 .

Note that k is not a wave number in Dc but a shorthand notation. The total exterior
field (E0, H0) is the superposition of the incident field (Ei, Hi), which is either a plane
wave or a spherical wave, and the scattered field (Es, Hs) with

E0 = Ei + Es, H0 = Hi + Hs. (2.3)

The equations (2.3) are valid in R3 for plane waves and in R3, apart from the locations
of the point sources, for spherical waves. The scattered field should attenuate away
from the scatterer satisfying the Silver–Müller radiation condition

lim
r→∞

(r × ∇ × Es + ik0rEs) = 0 (2.4)

uniformly in all directions r̂ = r/r ∈ S 2, where S 2 is the unit sphere and r = |r|. In
what follows, for a vector u we will denote by u = |u| the measure of u and û = u/u
the corresponding vector unit.

In order to prove various reciprocity relations for electromagnetic scattering by a
conductive obstacle, we consider the decoupling of electric and magnetic fields in the
system (2.1)–(2.2) by eliminating the magnetic field. Thus, the equation system turns
into

∇ × ∇ × E j − k2
j E

j = 0 in D j, (2.5)

∇ × ∇ × E − 2λ∇ × E − (k2 − λ2)E = 0 in Dc (2.6)
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for j = 0, 1. The conductive transmission conditions which were formulated by
Athanasiadis and Stratis [4] and Angell and Kirsch [1] take the form

n̂ × E0 = n̂ × E1 on S0, (2.7)
n̂ × ∇ × E0 = n̂ × ∇ × E1 + iµτ0ωn̂ × E1 on S0, (2.8)

n̂ × E1 = n̂ × E on S1, (2.9)

n̂ × ∇ × E1 = n̂ × ∇ × E − λn̂ × E + i
λτ

ωεβ
(n̂ × E) × n̂ on S1, (2.10)

where n̂ is the unit outward normal vector on each surface. The electric far-field pattern
E∞ is closely related to the asymptotic behaviour of the scattered electric field Es,
as it is the coefficient of the zeroth-order spherical Hankel function of the first kind,
h(x) = eix/ix, and

Es(r) = h(kr)E∞(r̂) + O
( 1
r2

)
, r→∞. (2.11)

The electric far-field pattern E∞ is given by

E∞(r̂) =
ik0

4π
(Ĩ − r̂r̂) ·

∫
S

[n̂′ × (∇×Es(r′)) + ik0r̂ × (n̂′ ×Es(r′))]e−ik0 r̂·r′ds(r′), (2.12)

where Ĩ = x̂1x̂1 + x̂2x̂2 + x̂3x̂3 is the identity dyadic and n̂′ = n̂(r′). Equation (2.12) is
also valid for the scattered electric field replaced by the total electric field. Multiplying
with a constant vector q̂ for which q̂ · r̂ = 0,

q̂ · E∞(r̂) =
ik0

4π

∫
S

[−(∇ × Es(r′)) · (n̂′ × q̂e−ik0 r̂·r′)

+ (n̂′ × Es(r′)) · (∇ × (q̂e−ik0 r̂·r′)] ds(r′). (2.13)

In what follows, we will employ the Twersky notation [2] for two vector functions

{u, v}S =

∫
S

[(n̂ × u) · (∇ × v) − (n̂ × v) · (∇ × u)] ds. (2.14)

3. Plane waves

Let
Ei(r; d̂, p̂) = p̂eik0d̂·r, Hi(r; d̂, p̂) = (d̂ × p̂)eik0d̂·r (3.1)

be an incident time-harmonic electromagnetic plane wave. The real unit vectors
d̂ and p̂ describe the directions of propagation and polarization, respectively, and
are connected: d̂ · p̂ = 0. In the sequel, we will denote the electric scattered
field, the total field and the far-field pattern by writing Es(r; d̂, p̂), Et(r; d̂, p̂) and
E∞(r; d̂, p̂), respectively, indicating the dependence on the incident direction d̂ and
the polarization p̂.
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Theorem 3.1. Let Ei
1 = Ei(r′; d̂, p̂), Ei

2 = Ei(r′; r̂, q̂) be two plane electric waves
incident upon the scatterer D. For the corresponding far-field patterns, the following
reciprocity relation holds:

p̂ · E∞(d̂; r̂, q̂) = q̂ · E∞(−r̂;−d̂, p̂). (3.2)

Proof. Let Es
1, Es

2 and E0
1, E0

2 be the corresponding scattered and total exterior fields.
In view of bilinearity of the form (2.14) and relation (2.3), we take

{E0
1, E0

2}S0 = {Ei
1, Ei

2}S0 + {Ei
1, Es

2}S0 + {Es
1, Ei

2}S0 + {Es
1, Es

2}S0 .

From equations (2.5) and (2.6), the conductive transmission conditions (2.7)–(2.10),
the relation {E0

1, E0
2}S 0 = {E1

1, E1
2}S 0 and using Green’s second vector theorem, we take

{E0
1, E0

2}S0 = 0. The incident plane waves are regular solutions of (2.5) for j = 0; thus,
{Ei

1, Ei
2}S0 = 0. For the scattered fields, we consider a sphere SR centred at the origin

with radius R large enough to include the scatterer D in its interior. The fields Es
1, Es

2
are regular solutions of (2.5) for j = 0 in the region DR between the sphere and the
scatterer. We apply the divergence theorem over the surface S0 to get

{Es
1, Es

2}S0 = {Es
1, Es

2}SR .

Letting R→∞, we pass to the radiation zone; therefore, we can use the asymptotic
form (2.11) to get {Es

1, Es
2}SR = 0. Finally, from (2.13) and (2.14), we have for the

remaining terms

{Ei
1, Es

2}S0 = −
4π
ik0

p̂ · E∞(d̂; r̂, q̂), {Es
1, Ei

2}S0 =
4π
ik0

q̂ · E∞(−r̂;−d̂, p̂).

Combining all the above, we deduce (3.2). �

4. Spherical waves

Next we consider an incident spherical electromagnetic wave due to a source
located at a point with vector position a with respect to the origin. This incident field
was given by Athanasiadis et al. [2] as

Ei
a(r; p̂) =

ae−ik ja

ik j
∇ ×

(eik j |r−a|

|r − a|
â × p̂

)
,

Hi
a(r; p̂) =

1
ik j

(ε j

µ

)1/2
∇ × Ei

a(r; p̂),
(4.1)

where p̂ is a constant vector for which p̂ · â = 0 and k j the wave number of the region
where the point source is located a ∈ D j, j = 0, 1. This incident field is generated by a
magnetic dipole with dipole moment â × p̂. The total spherical electric wave again is
the superposition of incident and scattered fields that satisfies

E0
a(r; p̂) = Ei

a(r; p̂) + Es
a(r; p̂), r ∈ D0 \ {a}, (4.2)
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where Es
a(r; p̂) is the scattered field satisfying (2.4). Note that in the case of spherical

waves, the radiation condition (2.4), apart from the scattered field, is satisfied by the
incident and total fields as well. The asymptotic behaviour of the incident and scattered
fields is given similarly to (2.11) by

Ei
a(r; p̂) = h(kr)Ei,∞

a (r̂; p̂) + O
( 1
r2

)
r→∞, (4.3)

Es
a(r; p̂) = h(kr)E∞a (r̂; p̂) + O

( 1
r2

)
r→∞, (4.4)

E0
a(r; p̂) = h(kr)E0,∞

a (r̂; p̂) + O
( 1
r2

)
r→∞,

where Ei,∞
a (r̂; p̂) = ikae−ika(1+r̂·â)(r̂ × (â × p̂)) is the far-field pattern of the point-source

incident wave and E∞a (r̂) and E0,∞
a (r̂) are the far-field patterns of the corresponding

scattered and total fields, respectively. We proceed with a reciprocity theorem for the
total spherical waves similar to Theorem 3.1.

Theorem 4.1. Let Ei
a(r; p̂), Ei

b(r; q̂) be two spherical waves due to two point sources
a and b with polarization constant unit vectors p̂ and q̂, respectively. Then, for the
scattering problem (2.3)–(2.10), we have the following result.

(i) If a, b ∈ D j for j = 0, 1, then

h(k ja)(b̂ × q̂) · (∇ × E j
a(b; p̂)) = h(k jb)(â × p̂) · (∇ × E j

b(a; q̂)). (4.5)

(ii) If a ∈ D0 and b ∈ D1, then

k2
0h(k0a)(b̂ × q̂) · (∇ × E1

a(b; p̂)) = k2
1h(k1b)(â × p̂) · (∇ × E0

b(a; q̂)). (4.6)

Proof. (i) We consider two small spheres in D0, SRa = {r ∈ R3 : |a − r| = Ra}, SRb = {r ∈
R3 | |b − r| = Rb} centred at a and b with radii Ra and Rb, respectively. A large sphere
SR of radius R centred at the origin contains the scatterer and the two small spheres.
Let DR be the space which is surrounded by the surfaces of the spheres SR, SRa , SRb

and the surface S0. We apply the vector version of the second Green’s theorem in DR

for the functions E0
a, E0

b, which are regular solutions of (2.5),

{E0
a, E0

b}SR = {E0
a, E0

b}S0 + {E0
a, E0

b}SRa
+ {E0

a, E0
b}SRb

. (4.7)

For the left-hand-side term, we have {E0
a, E0

b}SR = 0 due to relation (4.2) and due
to the asymptotic forms (4.3), (4.4). For the first term in the right-hand side, we
have {E0

a, E0
b}S0 = {E1

a, E1
b}S0 due to (2.7), (2.8). Then we apply the second Green’s

theorem [2] in D1 and Dc, successively taking into account that these fields are regular
solutions of (2.5), (2.6) and due to the boundary conditions (2.9), (2.10), we have
{E1

a, E1
b}S0 = {E1

a, E1
b}S1 = 0. For the term {E0

a, E0
b}SRa

, we have the following analysis:

{E0
a, E0

b}SRa
= {Ei

a, E0
b}SRa

+ {Es
a, E0

b}SRa
. (4.8)
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The functions of the integral {Es
a, E0

b}SRa
are regular solutions of (2.5) in the domain of

the sphere SRa and by applying the second Green’s theorem the term equals zero. For
{Ei

a, E0
b}SRa

,

{Ei
a, E0

b}SRa
= ae−ik0a

∫
SRa

n̂ · ∇ × [(â × p̂) · (∇h(k0Ra))E0
b(r; q̂)] ds

− ae−ik0a
∫

SRa

n̂ · ∇h(k0Ra))[(∇ × E0
b(r; q̂)) · (â × p̂)] ds

+ k2ae−ik0a
∫

SRa

n̂ · [E0
b(r; q̂) × h(k0Ra)(â × p̂)] ds. (4.9)

We apply Stokes’ theorem on the first integral on the right-hand side of equation (4.9),
and therefore it vanishes. Then we apply the mean value theorem on the other two
integrals in (4.9) and, letting Ra → 0,

lim
Ra→0
{Ei

a, E0
b}SRa

= −h(k0a)(â × p̂) · (∇ × E0
b(a; q̂)) (4.10)

Following the same procedure for {E0
a,E0

b}SRb
,

lim
Rb→0
{E0

a, E0
b}SRb

= {E0
a, Ei

b}SRb
= h(k0b)(b̂ × q̂) · (∇ × E0

a(b; p̂)). (4.11)

Combining (4.7)–(4.11) yields (4.5). For a, b ∈ D1, we follow a similar procedure.
(ii) First we apply the second Green’s theorem in D1 excluding the domain of the

sphere SRb ,

{E1
a, E1

b}∂D1 = {E1
a, E1

b}S0 − {E
1
a, E1

b}S1 = {E1
a, E1

b}SRb
. (4.12)

We analyse the last term on the right-hand side of (4.12), taking into account that
E1

b = Ei
b + Es

b and

{E1
a, E1

b}SRb
= {E1

a, Ei
b}SRb

+ {E1
a, Es

b}SRb
.

The fields E1
a, Es

b are regular solutions in the interior of SRb , {E1
a, Es

b}SRb
= 0, and we

conclude that

{E1
a, E1

b}SRb
= {E1

a, Ei
b}SRb

=
4iπb
k1

e−ik1b(∇ × E1
a(b; p̂)) · (b̂ × q̂). (4.13)

We also obtain the following analysis for (4.12) by applying the transmission
conditions (2.5) and considering that these functions are regular solutions in D0
and D1,

{E1
a, E1

b}S0 = {E0
a, E0

b}S0 = {Ei
a, E0

b}S0 + {Es
a, E0

b}S0 ,

where

{Ei
a, E0

b}S0 = −{Ei
a, E0

b}SRa
=

4iπa
k0

e−ik0a(∇ × E0
b(a; q̂)) · (â × p̂). (4.14)

Applying Green’s vector theorem [2] in DR and passing to the radiation zone, we get
{Es

a, E0
b}S0 = 0. Hence, equations (4.13) and (4.14) lead to (4.6). �
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5. Plane and spherical waves

Next we consider an incident time-harmonic electric plane wave of the form (3.1)
and a spherical incident electric wave of the form (4.1) with polarization q̂. We note
that the spherical wave reduces to a plane wave with opposite direction of propagation
once the point source goes to infinity, that is,

lim
a→∞

Ei
a(r; p̂) = Ei(r;−â, p̂),

and this holds for the corresponding total, scattering and far-field pattern fields as well.
The following mixed reciprocity relation is valid.

Theorem 5.1. Let Ei
a(r; p̂), â ∈ D0 be an incident spherical electric wave and

Ei(r;−b̂, q̂) be an incident plane electric wave. Then

p̂ · (E0,∞
b (â; q̂)) =

k0

k1
be−ik1b(b̂ × q̂) · (∇ × E1(b;−â, p̂)). (5.1)

Proof. Working as in the proof of Theorem 4.1,

{E1(·; −â, p̂), E1
b(·; q̂)}∂D1 = {E1(·; −â, p̂), Ei

b(·; q̂)}∂D1 + {E1(·; −â, p̂), Es
b(·; q̂)}∂D1

= {E1(·; −â, p̂), Ei
b(·; q̂)}SRb

=
4πbi
k1

e−ik1b(∇ × E1(b; −â, p̂)) · (b̂ × q̂). (5.2)

Moreover, taking into account equation (2.13),

{E1(·; −â, p̂), E1
b(·; q̂)}∂D1 = {E1(·; −â, p̂), E1

b(·; q̂)}S0

= {E0(·; −â, p̂), E0
b(·; q̂)}S0

= {Ei(·; −â, p̂), E0
b(·; q̂)}S0

=
4πi
k0

p̂ · (E0,∞
b (â; q̂)). (5.3)

Combining equations (5.2) and (5.3), we obtain (5.1). �

6. Conclusions

We have considered a scattering problem of electromagnetic waves by a chiral
conductive obstacle, which is surrounded by a dielectric, in the quasi-static form. If
λ = 0, equation (2.2) is reduced to achiral form, and our study covers corresponding
results for the achiral case [2, 13]. We note that reciprocity relations are independent
of the integrated conductivities, τ0 and τ [2]. The mixed reciprocity relation in
Theorem 5.1 can be used in the study of uniqueness of the inverse scattering problem,
as it was applied by Liu et al. [11] for acoustic waves. Finally, our present results can
be extended to a more complex scattering problem described by a multilayer scatterer
with n layers and a chiral core [5].
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