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1. Introduction

We are concerned here with question: to what extent can the structure of a group
G be recaptured from information about the structure of its group of automorphisms
Aut G? For example, one might try to find all groups which have some specific group as
their (full) automorphism group, a point of view adopted by Iyer in a recent paper [5].
Nothing is known about this question in general except the result of Nagrebeckii [7]
that there are only finitely many finite groups with a given group as automorphism
group.

Less ambitiously one can simply enquire whether a given group G is isomorphic with
the full automorphism group of at least one group. If the answer is positive, we shall say
that G is an automorphism group. Several classes of non-automorphism groups are
known, for instance all nilpotent torsion groups of infinite exponent and all infinite
Cernikov groups [10]. Further examples will be given below.

Our main result, Theorem 1, describes the structure of a group G such that AutG is
finite and AutcG, the subgroup of central automorphisms, is semisimple. An explicit
construction for such groups is given, the principal constituent being a certain class of
central extensions which are akin to stem extensions in the sense that the torsion-
subgroup of the centre is contained in the derived subgroup.

A group G with the above properties will usually be infinite, and may involve torsion-
free abelian groups of complex type. However, it is not hard to see that if H = Aut G is
finite and all its composition factors are non-abelian, then G is finite. Moreover, on the
basis of Theorem 1 the possibilities for G may be described in terms of the internal
structure of H. All that is required is a sufficient knowledge of the outer automorphism
groups and the Schur multiplicators of the normal subgroups of H.

These results can be applied with advantage to finite (non-abelian) simple groups;
they yield necessary and sufficient conditions for such groups to be automorphism
groups (Theorem 4). It turns out that with a single exception the known finite simple
groups which are automorphism groups are either complete or of the type PSL(n,2).
The exception is the Suzuki group S = Sz(8) of order 29,120, which is the automorphism
group of a proper covering group of order 58,240, and in fact of no other group.

Also discussed are the non-trivial covering groups of the known finite simple groups.
It turns out that these are never automorphism groups (Theorem 5).
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Finally Theorem 1 is used to determine all the groups whose automorphism group is
a finite symmetric or alternating group (Theorems 6 and 7). The finite groups among
these have been classified by Miller [6] and Iyer [5]. The most interesting case is
undoubtedly S4, which is the automorphism group of uncountably many infinite non-
abelian groups.

2. Groups whose central automorphism group is semisimple

Before stating Theorem 1 we must show how to construct the groups appearing in
the classification.

Construction of the groups G(Q,F,e). Let Q be a finite group with trivial centre and
let F be a torsion-free abelian group. We shall require that Ext (Qab,F) contain an
element e with the property

Here Qab = Q/Q' and AutF acts on Ext(Qab,F) in the natural way. We shall see in
Lemma 1 that a non-trivial F of this type can always be found provided that Qab is not
an elementary abelian 2-group.

Writing q for \Qab\, we decompose the Schur multiplicator M(Q) into its q and q'-
components

) = M(Q)q®M{Q\..

Let n:M{Q)-*M(Q)q. be the natural projection. Now put

A = F®M{Q\.

and regard this as a trivial Q-module. We deduce from the Universal Coefficients
Theorem that

H2(Q, A) ~ Ext (Qab, F) © Horn (M(Q), M{Q)q),

which enables us to identify

with an element of H2(Q,A). Now choose a central extension A >—>G—»Q with
cohomology class A. Our interest centres on the group

G = G(Q,F,e).

Since Q has trivial centre, the centre of G is (the image of) A. Thus Inn G^Q. Also the
torsion-subgroup of the centre is contained in G' because n is surjective.

Notice that if Q is perfect, e = 0 and F = l: in this case G = Q, the unique stem cover or
full covering group of Q.
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Theorem 1. Let G be a group such that Aut G is finite and Autc G is semisimple. Then

where Q,F and £ are as specified in the construction, K^M(Q)q' and D is an elementary
abelian 2-group whose order is not 4. Furthermore, F is divisible by \M(Q)q.:K\, and if D
^ 1, then |ga 6 | and \M(Q)q.:K\ are odd and F is divisible by 2.

There is a converse to this result.

Theorem 2. Let G = (G(Q,F,e)/K)xD where Q,F,e,K,D are as in Theorem 1. Then
AutcG^AutD, which is simple or trivial, and

Aut G^(NAMQ(K) n StAutQ(eAutf)) x AutD,

which is finite. Moreover, these isomorphisms arise from the obvious induced mappings.

Here eAutF denotes the AutF-orbit to which e belongs, while StAulQ(eAutF) is the
stabiliser of that orbit in Aut Q.

Proof of Theorem 1. Assume that AutG is finite and that Autc G s C A u t G (Inn G) is
semisimple. Write C for Z(G), the centre of G, and put Q = G/C ^ Inn G. Then Q is finite
and has trivial centre. By a theorem of Nagrebeckii ([7] or [8]) the torsion-subgroup T
of C is finite, and we may write

C = FxT

where F is torsion-free. The theorem will be established in a series of steps.

(a) If N is a characteristic subgroup of G contained in C, then CAvtG(N)nCAulG(G/N)=l
and Horn ((G/N)ttb,N) = 0.

For CAutG(N)nCAMG(G/N) is normal in AutG and is contained in AutcG. It is also
isomorphic with the abelian group Horn ((G/N)ab, N): now apply the semisimplicity of
Autc G to obtain the result.

Take N in (a) to be successively C and G' nC = G' n T—note that G' is finite by
Schur's Theorem. We obtain

(b) Horn(£>„,,, T) = 0 = H o m ( G ^ G ' n T). Thus q = \Qab\ and \T\ are relatively prime.

Now let £ = | G ' n T | ; then t and q are relatively prime. This fact together with the
obvious exact sequence F> >(G/T)ab—»Qab indicates that F/F' is an image of (G/T)ab

and hence of Gab. Using (b) we derive the following statement.

(c) / / ( denotes |G 'n T\, then F = F.

The exact sequence T/G'nT> >(G/F)ab—»Qab shows that T/G'nT is an image of
Gab. Consequently Hom(T/G' nT,G'nT) = 0 and we can state

(d) \G' n T\ and \T:G'n T\ are relatively prime.
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It is therefore possible to write T = (G' nT)xD for some D. This may be used to
produce a direct decomposition of G.

(e) G = G1xD where D is a finite abelian group; the torsion-subgroup of Z(G^) equals
G' n T = G ' 1 n T

Observe that G'C = (G'F)xD and |G:G'C| = |gflf,| is relatively prime to \D\. This is well-
known to imply that G splits over D, so we can write G = GYxD. Since C=Z{G)
= Z(G1)xD, we have T=TYxD where Tx is the torsion-subgroup of Z{Gl). Now G'
= G\; hence G' n T ^ 7 .̂ Finally Tt = 7̂  n((G' n T) x D) = G' n 7 = 0 ^ n T

(f) 77ie subgroups Gl and D are characteristic in G. Thus Aut G^AutGt x AutD
Autc G = Autc Gt x Aut D.

In the first place D is characteristic in T, and hence in G, since |D| and |T:X)| are
relatively prime. Applying (a) with N = D, we conclude that Hom^Gj),,,,, D) = 0, which
implies that Gx is characteristic in G.

(g) D is an elementary abelian 2-group whose order is not 4. If DJ=l, then q = \Qab\ and
17\ | are odd, and F = F2.

We see from (f) that AutD is semisimple. Since the automorphism x ^ x " 1 belongs to
the centre of AutD, it must be trivial and D is an elementary abelian 2-group; clearly
|D|^=4. NOW suppose that D=£l. Then q is odd because (q, |T|) = 1. Also \Tt\ is odd since
(|7i|,|£)|)=l. Finally, it is easy to see that F/F2 is an image of G/D; since
Hom((G/D)ai,,D) = 0, it follows that F = F2.

Because of (e) and (f) we shall assume as a matter of convenience that D = 1 and G
= G1; so T=G'nC.

Let A denote the cohomology class of the central extension C>—>G—^»Q. Now
there is a splitting

H\Q, C) * Ext (Qab, F) © Horn (M(Q), T)

which is natural in this case because (|Qafc|,|T|)= 1. We can therefore make the
identification

where ee Ext (Qab,F) and 5 e Horn (M(Q), T). Notice that 8 is surjective since Imc)
= G ' n C = 7:

If ye Aut C and KeAutQ, a necessary and sufficient condition for there to be an
automorphism of G which induces y and K is that

Ay, = AK* (1)

(see [9], Lemma 2.2). Now T is characteristic in C, as is F since it is divisible by \T\.
Therefore y may be represented by a pair(<p, r) where <pe AutF and r e Aut T. Then (1) is
equivalent to the two conditions

E(p^ = E/C* a n d <5T = 5K*. (2)
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The conditions for y=(q>, T) to be induced by a central automorphism of G are
obtained by setting K = \ in (2). But <5T = <5 implies that T = 1 because 8 is surjective.
Therefore these conditions become T = 1 and 'eCAutF(e). Consequently the assignment
oo-»(jp determines an epimorphism from Autc G to C A m f (e); indeed this is an isomorphism
since Horn (Qab,C) = 0.

It follows that CAutF(£) is a finite semisimple group. However, by Lemma 6 of [10] this
group has exponent dividing 12, so it is soluble. Therefore CAl)tF(e) must be trivial and
we have established
(h) Autc G ^ C A u t f ( E ) = 1 .

It is now possible to identify the group G.

(i) G =- G(Q, F, e)/K where K = (Ker 8) n M(Q)q,.

Let 5 denote the restriction of 8:M{Q)->T to M{Q)q.. This is still surjective because
M(Gj)45^Ker(5 by (b). Now use \©8~:A = F®M(Q\,^>C to form the push-out diagram

The cohomology class of the lower extension is

(e © 7t)(l © <5)* = a © 7icF= e © (5 = A.

(Recall that n is the natural projection from M{Q) to M(Q)q). Consequently the lower
extension is equivalent to C>—> G—-» Q. Since Ker 9 = (Ker 8) n M(g),. = K, we have
G^G(Q,F,E)/K and T^M(Q)q,/K.

Proof of Theorem 2. Let Gt denote the group G(Q,F,s)/K; then G = GtxD. Also C
= Z(G) = (A/K)xD since Z(Q)=l. The hypotheses on Qafc, F and D imply that
Hom(G1,D) = 0 = Hom(D,Z(G1)), from which it follows that Gt and D are characteristic
in G. Therefore Au tG^AutCj x AutZ) and A u ^ G ^ A u ^ G i x AutD, both isomorphisms
arising from the natural induced mappings. Henceforth we shall assume that D = 1 and
Gi = G.

As in step (h) of the preceding proof it may be shown that Autc G ^ C A I U F ( E ) . Therefore
AutcG = l and the canonical homomorphism AutG->AutQ is injective. It remains to
determine the image.

Consider the conditions (2) for y=(<p, r ) eAutC and /ceAutg to be induced by an
automorphism of G; here of course q>e Aut F, xe Aut T and T= M(Q)q/K. The condition
e(pJf = eK* is equivalent to K being in StAulQ(£Amf). The second condition 8Z = 8K* = K^8
implies that K normalises Ker£. In this instance 8 is the composite of the projection
n:M(Q)->M(Q)q. and the canonical homomorphism M(Q)q-*M(Q)q/K; thus Ker5
= M(Q)q(BK and K normalises K. Conversely, if KeNAulQ(K), then K normalises Ker8
and, since 8 is surjective, we may define t e A u t T by the rule (x8y=(xK^)8; this is well-
defined by choice of K.
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The preceding considerations demonstrate that /ceAutg lifts to G precisely when K
belongs to NAutQ(K)nStAutQ(£AlltF); this, then, is the image sought. The proof of the
theorem is now complete.

Lemma 1. Let Q be a finite group with trivial centre. Then there exists an infinite
group G(Q, F, s) if and only if Qab is not an elementary abelian 2-group.

Proof. In the first place, should Qab be an elementary abelian 2-group, the
automorphism x^x'1 of F will operate trivially on E\t(Qab, F). The condition CAutF(e)
= 1 must then force F to be trivial. Conversely assume that Qab has exponent e>2. It
was shown in [9] (proof of Theorem 6.1) that there is a torsion-free abelian group F
with an element / such that CAulF(fFe)= 1. Writing 2ai> — Dr Ze. where e{

divides ei+l and ek = e, we have 1=1>2 k

Ext (Qab,F)* Dr (F/Fe>).
1=1,2 *

Denote by e the element of Ext(Qab,F) that corresponds to (fFe\fFe2,...JFek). Then
CAutF(e) = CAuti?(/F

e) = l. We may therefore employ this F and e to construct an infinite
group G(Q, F, E).

Finite semisimple groups as automorphism groups

By combining Theorems 1 and 2 we are able to give a criterion for a finite semisimple
group H to be an automorphism group: there must exist Q<iH, K^M(Q),
F, e e Ext (Qab, F) and D as in Theorem 1 such that H is isomorphic with
(StAute(e

AutF) n NAMQ(K)) x Aut D.
If there are no normal subgroups whose abelianisation has exponent 3 or more, then

by Lemma 1 the group F must be 1 and we are left with the purely internal condition
H^NAalQ(K)x Aut D.

Here is an illustration of how these techniques may be used in an explicit case.

Lemma 2. Let S be a finite (non-abelian) simple group with cyclic multiplicator. Then
there is a group G such that Aut G ̂  S1> Z2 if and only if S is complete. Moreover in this
case G^GtxD where \D\^2 and either (i) G^^SxS/K where K is a subgroup of
M(S)@M(S) invariant under the involution (a,b)\-^(b,a) and \M(S)®M(S):K\ is odd if D
± 1, or (ii) Gt zittljK where |M(SO>Z2):K| is odd.

Proof. Let G be a group satisfying AutG^S<\)Z2; then it is clear that G cannot be
abelian. Put C = Z(G) and Q = G/C. There are two possibilities to consider: Q ~ S x S and

Suppose first that Q~SxS. Then AutQ=;(AutS)<bZ2, Qab = l and
M(Q)^M(S)®M(S). By Theorems 1 and 2 we have G^{Q/K)xD where \D\^2 and
\M(Q):K\ is odd if Df\. Also AutG^NAulQ(K). Let aeAutS; then (a,a)eAutQ maps
each element of M(Q) to a power since M(S) is cyclic. Hence (a.,a)eNAulQ(K)~S<hZ2,
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from which it follows that a e l n n S . Hence S is complete and
Thus K is left invariant by (a,b)\-^{b,a).

Now assume that Q^S<bZ2. Then |Qa6| = 2 and in fact M{Q)^M{S). Applying
Theorem 1 again and Lemma 1, we obtain AutG^(Q/K)xD where |£>|^2 and
|M(Q):/C| is odd. Also AutG^NA u l G( /Q = AutQ~(AutS)<\jZ2. So once again S is
complete.

Conversely Theorem 2 shows that in both cases

3. Completely reducible automorphism groups

Theorem 1 assumes a much simpler form if the group Aut G is completely reducible.

Theorem 3. Let H be a finite completely reducible group. Then there is a group G
satisfying Aut G^H if and only if there are direct decompositions HozQx PSL(r,2) and
Gcz(Q/K)xD where Q is a finite completely reducible group, K is a subgroup of M(Q)
with the property NOmQ(K)=l and D is an elementary abelian 2-group of order 2r=£4,
with the additional stipulation that \M(Q):K\ be odd ifD±\.

Proof. Assume that A u t G ^ H and write Q = G/Z(G). Then Q is also completely
reducible and Qab = \. Theorem 1 shows that G?±(Q/K)xD and Theorem 2 that
Aut G^NAulQ(K) x AulD: here K^M(Q), D is elementary abelian of order 2r=/=4 and
|M(g):/C| is odd if D± 1. Now CAu(Q(Inn<2)= 1 since Z(Q) = 1. However Inng is a direct
factor of the group NAutQ(K) by a well-known property of completely reducible groups.
Hence NAvtQ(K) = lnnQ and NOmQ(K) = l.

The converse follows from Theorem 2 since Inn Q ^ Q.

Theorem 3 takes a particularly satisfying form for simple groups.

Theorem 4. Let S be a finite (non-abelian) simple group. Then there is a group G
satisfying Aut G^S if and only if either

(a) G is an elementary abelian 2-group of order 2' > 4 and S a; PSL(r, 2)

or

(b) there is a subgroup K of M{S) such that NOulS(K)=l and G^S/K or (S/K)xZ2

where in the second case \M(S):K\ is odd.

The question arises: for which finite simple groups S does M(S) have a subgroup K
such that

N O u , s (K)=l? (3)

Of course, if S is complete, this is automatic for any K. However, it seems to be
difficult to fulfil (3) if S is incomplete. Certainly M(S) cannot be cyclic in this case, which
eliminates the sporadic groups, the alternating groups and the groups of Lie type with
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the following exceptions:

A2(4), Z>4(2), 2A5(2), 2E6(2), M3(3), 2B2(8)

and

(For the multiplicators of the known finite simple groups see [3]).
However, a detailed check* of these groups reveals only one which has the property

in question, the Suzuki group

If we denote this group by S, then

) ~ Z 2 © Z 2 and

here OutS permutes the three subgroups of M(S) that have order 2. This information
can easily be read off from results of Alperin and Gorenstein [1]. Hence there are three
candidates for K, but it is not difficult to show that they give rise to isomorphic groups.

Corollary. Let S be a finite simple group of known type. Then there is a group G
satisfying Aut GczS if and only if one of the following is true:

(a) S c~ PSL(r, 2), r > 2, and G is an elementary abelian 2-group of order 2r.
(b) S is complete and G a; S/K or (S/K) x Z2 where K is any subgroup of M(S) and in the

second case \M(S):K\ is odd.
(c) S^Sz(8) and G^S/K where K is a subgroup of M{S) with order 2.

4. Covering groups of simple groups

If S is a finite simple group and K is a proper subgroup of M(S), then S/K will be
called a non-trivial covering group of S.

Theorem 5. / / S is a finite simple group of known type, no non-trivial covering group
of S can be an automorphism group.

Proof. Suppose that G is a group satisfying Aut G ct S/K where K < M(S) = Z{§). It is
well-known that S is perfect ([11]), so AutG is perfect. From this it follows that every
proper normal subgroup of S/K is contained in Z(S/K) = M(S)/K. Hence either InnG
= Aut G or Inn G^Z(Aut G). Let C denote the centre of G.

If Inn G = Aut G, then G/C is perfect. Consequently G/C has trivial centre and M(S)
= K, a contradiction. It follows that InnG^Z(AutG) and AutG = AutcG. Clearly G is
nilpotent of class at most 2.

*Here I am much indebted to R. L. Griess.
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In what follows it is necessary to know that the multiplicators of the known finite
simple groups are cyclic with certain exceptions in which for either p = 2 or p = 3 the p-
components have rank 2 and the p'-components are cyclic.

Consider first the case where G is abelian. Write G = F xT where F is torsion-free and
T is finite. Then Aut F is finite and hence soluble by a theorem of Hallett and Hirsch
[4]. Since AutF is an image of Aut G, we deduce that AutF=l and F = l , so that G is
finite. Evidently we may assume that G is a p-group.

If G is elementary, then Aut G ̂  GL(n, p), which is perfect and non-trivial only if p=2
and n>2, when it is simple. But this would force K to equal M(S). Hence G is not
elementary and there is a decompositon G = A x B in which B is homocyclic of exponent
pe>p while Ap' ' = 1. Now Horn (G/Gp, Gp) is isomorphic with a normal abelian
subgroup of Aut G and hence with a factor of M(S). Therefore the product of the ranks
of G/Gp and G" is at most 2, which shows that A and B are cyclic. But it is easy to see
that Aut G cannot be perfect in this case.

Now suppose that G is not abelian. Then G/C is not cyclic and so M(S) cannot be
cyclic. Hence for p = 2 or 3 the p-component of M(S) has rank 2 and the p'-component
is cyclic. The group Horn (G/C, C) is isomorphic with a normal abelian subgroup of
AutG and hence with a factor of M(S). This means that the p'-component of G/C is
cyclic and hence trivial, so that G/C is a non-cyclic p-group. In addition, if T is the
torsion-subgroup of C, then Tp is cyclic.

Let q be a prime other than p. It is easy to see that Tq is a direct factor of G, say G
= TqxU. Suppose that Tq is not cyclic. Now Horn((G/Tq)ab, Tq) is isomorphic with a
normal abelian q-subgroup of Aut G and so of M(S)/K. Since M(S)q is cyclic, (G/Tq)ab

must be divisible by q. This implies that U is characteristic in G and Aut G
= Aut Tq x Aut U. However S/K is obviously indecomposable. Therefore | l / |^2 and G is
abelian.

The preceding argument permits us to assume that T is cyclic. Because AutG is
perfect it will then operate trivially on T.

Next G is nilpotent and AutG is finite. By Corollary 5.4 of [9] it follows that
Aut (C/T) is finite; therefore Aut (C/T) is soluble. But Aut G is perfect, so it must operate
trivially on C/T, as well as on T. Since Aut G = Aut,. G, we deduce that Aut G is nilpotent,
which gives the contradiction AutG = l.

5. Alternating and symmetric groups

The alternating group An is very rarely an automorphism group.

Theorem 6. There is a group G satisfying Aut G^An if and only if either n ̂  2 and
|G|^2 or « = 8 and G is elementary abelian group of order 16.

Proof. Assume that Aut G^An. When n^3 , the situation is clear; let «>3. If G is
abelian, it will have to be an elementary abelian 2-group, of order 2r say, since An has
trivial centre; then PSL(r, 2) ~ An, which occurs only if r = 4 and n = 8 ([2]).

Now assume that G is not abelian. Since An is nev .' complete, it follows from the
Corollary that « = 4. Let C = Z(G) and Q = G/C. If Q J a 4-group, 2H2(Q,G) = 0 and

EMS B
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inversion in C extends to a central automorphism of G ([9], Lemma 2.2). But AutcG
= Inn G in this case. Hence C is an elementary abelian 2-group. Examination of the
order of Hom(<2, C) shows that |C| = 2 and |G| = 8, which is impossible.

Finally, if Q^A4, it is easy to verify with the aid of Lemma 2.2 of [9] that an outer
automorphism of Q can be paired with inversion in C to produce an outer
automorphism of G, again a contradiction.

For the symmetric group Sn the situation is considerably more complicated. To
describe the infinite groups whose automorphism group is S4 we shall specialise the
construction of Section 2.

Let Q = A4, then Qab^Z3 and M(Q)aZ2. If F is a torsion-free abelian group,
Ext (Qab,F)~F/F3. Suppose that F/F3 contains an element e such that

Then we shall write with a slight abuse of notation

G(F,e) = G(Q,F,e).

There are in fact uncountably many non-isomorphic groups G(F, s) ([9], Theorem 6.1).

Theorem 7. There is a group G with the property Aut G^Sn if and only if one of the
following is true.

(i) n = l and\G\^2.
(ii) n = 2 and G^Z3, Z4, Z6 or a torsion-free abelian group whose only non-trivial

automorphism is x^x'1.
(iii) « = 3 and G ^ Z 2 0 Z 2 or S3.
(iv) n = 4, G is finite and G^A4, A4 x Z2, S4, Q8 or A4 = SL(2,3).
(v) n = 4, G is infinite and G^G{F,e), G(F,s)/l2 or (G(F, e)/Z2) x Z2 where in the first

and third cases F = F2.
(vi) n§5 , n^6or 7 and G^An, An x Z2, Sn or An.

(vii) n = l and G~A1, A7xZ2, S7, An, X7/Z2, ^7/Z3 or (A7/Z2)xZ2.

Notice the corollaries: S6 is not an automorphism group; S2 and S4 are the only finite
symmetric groups that are the automorphism groups of infinite groups.

Proof of Theorem 7. The first two statements are elementary and we omit the proof.
Assume from now on that n > 2. If G is abelian, it is an elementary abelian 2-group, of
order 2r say, and Sn^PSL(r,2), which can only happen if r = 2 and n = 3. Assume
henceforth that G is not abelian. Writing C for Z(G) and Q for G/C, we have Q^An or
Sn with the additional possibility that Q is a 4-group if n = 4.

Suppose that Q^Stt, so that InnG = AutG and AutcG = l. Thus Theorem 1 applies.
Since |6flJ>| = 2, the group G is finite. Also M(Q) = 0 if n = 3 and M(Q)^Z2 otherwise. It
follows that G^Q and Sn~Aut G^Autg. This tells us that n^6. It also disposes of the
case n = 3. Assume therefore that n ̂  4 and Q £ Sn.
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Now let n = 4. If Q is a 4-group, then, as in the previous proof, |G| = 8, which can only
mean that G^QS. U Q~A^ then G^G(F,s), G(F,E)/Z2 or (G(F,s)/Z2)xZ2 by Theorem
1: notice that StAul(?(f:

AulF) = AutQ in this case. When F = l , we obtain the finite groups
/ 1 4 , /I4, / 4 4 X 0-2-

If n^.5, then Q^An and Qa6 is trivial. Hence G is finite. Also |M(Q)| = 2, unless n = 6
or 7 when |M(g)| = 6. By Theorem 1 we have G~{Q/K)xD where |D|^2. Allowing for
the various subgroups of M(Q), we obtain the result.
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