
The Journal of Agricultural
Science

cambridge.org/ags

Climate Change and
Agriculture Research Paper

Cite this article: Timilsina AP, Baigorria GA,
Wilhite D, Shulski M, Heeren D, Romero C,
Fensterseifer CA (2023). Soybean response
under climatic scenarios with changed mean
and variability under rainfed and irrigated
conditions in major soybean-growing states of
the USA. The Journal of Agricultural Science
161, 157–174. https://doi.org/10.1017/
S0021859623000011

Received: 24 February 2022
Revised: 11 October 2022
Accepted: 28 October 2022
First published online: 9 January 2023

Keywords:
Climate change; crop models; downscaling;
representative concentration pathway;
scenarios

Author for correspondence:
A. P. Timilsina,
E-mail: timilsinaamit87@huskers.unl.edu

© The Author(s), 2023. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution
and reproduction, provided the original article
is properly cited.

Soybean response under climatic scenarios
with changed mean and variability under
rainfed and irrigated conditions in major
soybean-growing states of the USA

A. P. Timilsina1 , G. A. Baigorria1,2, D. Wilhite3, M. Shulski4, D. Heeren5,

C. Romero6 and C. A. Fensterseifer7

1School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA; 2Department of Agronomy &
Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA; 3National Drought Mitigation Center, University of
Nebraska-Lincoln, Lincoln, NE, USA; 4Nebraska State Climate Office, School of Natural Resources, University of
Nebraska-Lincoln, Lincoln, NE, USA; 5Department of Biological Systems Engineering, University of
Nebraska-Lincoln, Lincoln, NE, USA; 6Next Season Systems, LLC, Lincoln, NE 68506, USA and 7AgexTec Rua do
Bosque, 495, room 14, Bairro Universitário, Ijuí, RS, Brazil

Abstract

Climate change has an impact on soybean production in the USA, necessitating thorough
impact studies across broad geographic areas and extended periods to develop appropriate
coping strategies. This study investigates the simulated response of soybean in ten major soy-
bean-growing states of the USA under Climate Model Intercomparison Project Phase 5 based
on multiple global climate models, two representative concentration pathways [RCP8.5 and
RCP4.5] under rainfed and irrigated conditions for 2013–2039, 2043–2069, 2063–2099. The
future climate series was developed using Agricultural Model Intercomparison and
Improvement Project protocol by applying mean and variability, and CROPGRO-soybean
model was explored for soybean simulation under 400 ppm CO2 level and a set of manage-
ment. Under future climate, intense changes in temperature, precipitation amount and vari-
ability are anticipated under RCP8.5 than RCP4.5. As a result, a shorter life cycle, more
evapotranspiration, lower grain production, higher water consumption and water productivity
were expected under RCP8.5 than RCP4.5 scenarios. A higher reduction in grain yield and
water productivity is expected under rainfed than irrigated conditions and intensity increases
with advancement towards end of the century. Irrigation tends to decrease adverse climate
change effects; however, the marginal economy for irrigation water must be assessed. Since
the northern states under study are likely to experience increased grain yields or lower negative
impacts, these areas could be the major production zones for soybean production in the future
if only climate change is taken into account. Before reaching a convincing conclusion,
different adaptation strategies must be thoroughly investigated.

Introduction

Soybean is an important crop in the USA, accounts for nearly 90% of country’s oilseed pro-
duction (ERS, 2022). The changing of climate is an imminent threat to soybean production in
the USA (Jin et al., 2017) and the effects of climate change are being felt across the country
(Zhang et al., 2015; Ballew et al., 2019). Since 1979, the temperature has gone up by 0.18–
0.31°C per decade, with the largest impact on warming occurring in the last few decades
(EPA, 2022a). Extremely high temperatures are happening more often (Liu and Basso,
2020; EPA, 2022b) and are expected to happen more in the future (Zhou et al., 2021). Also,
different parts of the USA will warm up at different rates (Almazroui et al., 2021). In addition,
the average annual precipitation in the USA has increased; yet the regional distribution of pre-
cipitation has varied across the country (Rastogi et al., 2020; EPA, 2022b). In some locations,
precipitation variability has contributed to the occurrence of drought (Pascale et al., 2021).
Moreover, it is anticipated that the frequency of intense precipitation will rise in several regions
of the USA (Lopez-Cantu et al., 2020; Rastogi et al., 2020), including the Midwest with chan-
ged wetting and drying patterns in different seasons (Dollan et al., 2022).

Elevated temperatures beyond optimum level adversely affect crop physiology in both their
vegetative and reproductive phases, leading to a decrease in the crop yield (Lamaoui et al.,
2018; Moore et al., 2021). Furthermore, rising temperatures cause increased evapotranspir-
ation, which increases demand for water and, ultimately, causes water stress (Lobell et al.,
2013; Jumrani and Bhatia, 2018; Ogunkanmi et al., 2022). Therefore, more agricultural land
will be exposed to water stress situations as a result of extreme heat events (Turral et al.,
2011). The USA is also at a higher risk of yield reduction due to water stress (Leng and
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Hall, 2019), which adversely impact on leaf morphology (Dong
et al., 2019; Wu et al., 2022) and crop physiology (Zhou et al.,
2022). Further, temperature plays an important role in modifying
the intensity risk of yield loss driven by drought events (Luan
et al., 2021), which will become a major threat to soybean in
the future (Jin et al., 2017; Hamed et al., 2021). Therefore, the
soybean yield loss is higher under warm and dry conditions
(Dietzel et al., 2016; Gray et al., 2016; Luan et al., 2021).

Irrigation is seen as one of the potential mitigation options
against heat and water stress (Luan et al., 2021). Zhang et al.
(2015) reported that irrigation can compensate for around
two-thirds of the yield loss caused by severe heat in soybeans
under rainfed management in the Central USA. However, it
necessitates more groundwater, the amount of which depends
on the distribution and total amount of precipitation received
by the area. The regions with reduced precipitation amounts do
not get enough precipitation to recharge the groundwater, and
regions with heavy precipitation favours higher runoff and less
ground recharge (Trenberth, 2011). In both cases, availability of
irrigation water is reduced. Moreover, higher runoff is also linked
with loss of soil as well as soil nutrients (Dietzel et al., 2016). The
soybean productions will therefore be affected in the future by the
shift in temperature and precipitation patterns (Zhou et al., 2021),
necessitating the adoption of appropriate strategies (Jin et al.,
2017).

Thorough knowledge of climate patterns and their interaction
with production systems under various resource levels is required
to develop effective mitigation and adaptation measures. Global
climate models (GCMs) are useful tools for enhancing our under-
standing of climate (Pachauri and Reisinger, 2008; Bhattacharya
et al., 2020; Terando et al., 2020), anticipated alteration in the cli-
matic parameter’s mean, variability and extremes (Kharin et al.,
2007). These models are widely used in climate impact assessment
studies (Ramirez-Villegas et al., 2013). As each model is built on
different assumptions, boundary and resolutions (Pachauri and
Reisinger, 2008), the future projection of every model can vary
considerably and provides a different future climatic series. It is
equally important to use multimodel and their ensembles to
determine uncertainties caused by the source of projections
(IPCC, 2014). The multimodel approach helps to provide better,
more plausible and valid conclusions that will help in the devel-
opment of appropriate adaptation strategies (Gohari et al.,
2013) than the use of the single model.

Research has already reported the impact of climate change on
soybean in the USA (Mourtzinis et al., 2015; Seifert and Lobell,
2015; Yu et al., 2021). In the Midwest, Zhou et al. (2021) found
that between 1981 and 2018, interannual variability in soybean
yield was 40% due to climate fluctuation. Several research studies
have explored crop models (Jones et al., 2003; Bao et al., 2015;
Kasampalis et al., 2018; Hoogenboom et al., 2019; Quansah
et al., 2020; Ma et al., 2021; Wajid et al., 2021; Araghi et al.,
2022) to simulate crop response to future climate using GCMs
and representative concentration pathways (RCPs) (Ma et al.,
2021; Snyder et al., 2021). But there is little focus on taking
into account the change in variability signal from GCMs
(Anapalli et al., 2016; Schleussner et al., 2018), though climatic
variability is also an essential factor to consider for impact studies
(Mearns et al., 1997; Semenov and Barrow, 1997; Kraaijenbrink,
2013). Under future climate, the soybean yield is expected to
decline, primarily due to drought and heat stress (Jin et al.,
2017; Snyder et al., 2021). The negative influence of drought
and heat stress could be partially minimized through irrigation

(Elliott et al., 2014; Paul et al., 2020; Ma et al., 2021); however,
it is essential to explore the additional water demand to know
the economics of water use in the backdrop of growing competi-
tion with other water user sectors. For this, more studies are
needed to explore crop performance under varying water regimes
(Ting et al., 2021). However, there is still lack of studies that have
explored soybean performance along with water demand for
irrigation purposes under the change in mean and variability of
climatic variables at higher spatial resolution and at different
future periods which is essential to plan for water-efficient adap-
tive management strategies. Hence, this study was conducted to
contribute towards addressing those research gaps.

The current study aims were: (1) to investigate soybean yield
under future climate series generated following AgMIP protocol
using CMIP5-based GCMs based on two RCPs for the near
term (2013–2039), mid-term (2043–2069) and long-term
(2073–2099) under rainfed and irrigated conditions; (2) quantify
the possible impacts of future climate on soybean seasonal length,
evapotranspiration, irrigation water demand, soybean yield and
water productivity. The outputs are expected to be helpful for
policy makers to make effective water and other soybean manage-
ment practices for selected locations.

Materials and methods

Study area

Ten major soybean-growing states (Fig. 1) were selected based on
the larger production area to include diverse and extensive crop-
growing environments. The subunits of the study area were coun-
ties of the respective states. The soil data were obtained from the
Next Season System LLC under a special agreement. These data
were created based on the Soil Survey Geographic Database
(SSURGO) following methodology by Romero et al. (2012) in
Decision Support System for Agrotechnology Transfer (DSSAT)
format (Jones et al., 2003; Hoogenboom et al., 2019), which
describes the physical, chemical and hydraulic properties of strati-
fied vertical layers of soil. Therefore, these soil input values carry
valuable information to simulate root growth and development
along with soil water balance and irrigation water needs. Soil
water balance from the first day of the year to the start of crop
simulation at planting serves as initial soil water for plant growth.
Table 1 shows the number of locations used in the simulation.
These locations represent the different soybean-growing areas.

Climate data and future climatic scenarios

Observed climate series
The Serially Completed Dataset (You et al., 2015) for 30 years
(1984–2010) for maximum temperature, minimum temperature
and precipitation was gathered from High Plains Regional
Climate Center (HPRCC) across weather stations of each state
(Table 1). Solar radiation (daily insolation incident on a horizon-
tal surface [MJ/m2/day]) data were obtained from the
NASA-POWER agro-climatology dataset with a 1° × 1° resolution
which was available starting only from July 1983. Therefore, the
climate data from 1984 to 2010 (hereafter Observed Climate
Series (BCS)) were used for crop simulation.

CMIP5 global climate models
This study uses eight different GCMs from CMIP5, which were
selected to include models from different centres and had decadal
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as well as long-term future projections. Supplementary Table 1
lists the number of ensemble members for each model and their
other characteristics which are derived from IPCC data distribu-
tion centre (https://www.ipcc-data.org/sim/gcm_monthly/AR5/
Reference-Archive.html). CMIP5 includes coupled model decadal
predictions for both the recent past and the future (Taylor et al.,
2012) as the output of decadal prediction experiment. The dec-
adal1980 and decadal2005 experiment outputs were generated
by initializing the experiment in the years 1980 and 2005 span-
ning a 30-year duration from 1981 to 2010 and 2006 to 2035,
respectively. For each model, at least three ensembles from the
decadal experiments were employed. Long-term projections
based on two RCPs, RCP8.5 and RCP4.5, were included in this
study. These projections span from the year 2006 to 2100, and
even up to the year 2300 in the case of some models. However,
only projections from 2006 to 2099 were considered in this
research. Each model has at least one ensemble member for all
variables under study.

Downscaling GCMs output
In this work, the GCM projection signal at each weather station
was captured using the delta change approach of statistical

downscaling. The signal was extracted as the delta for the near-
surface monthly mean, maximum and minimum temperatures
and as a ratio or factor for change in precipitation amount
(Kraainjenbrink, 2013), a monthly fraction for the number of
wet days, and the standard deviation of maximum and minimum
temperatures.

At first, the monthly mean across all of the ensembles of dec-
adal1980 predictions of each model was calculated for the period
of 1981–2010 for each variable (maximum temperature, min-
imum temperature, precipitation amount). Wet day’s fraction
for a particular month was calculated as the ratio of the number
of wet days to the number of days in the month. A day with more
than 1 mm precipitation in the model output was considered a
wet day since the model predicts more wet days for a lower thresh-
old of precipitation because of lower spatial resolution or due to
drizzle problem (Polade et al., 2014). Similar steps were followed
to calculate the mean/or ratio of each variable using decadal2005
predictions and future climate scenarios forced by either RCP4.5
or RCP8.5 for the period 2006–2035. Subsequently, each ensem-
ble of future climate projections forced by either RCP8.5 or
RCP4.5 of the respective model was divided into nine decadal
time scales (2010–2019, 2020–2029, 2030–2039, 2040–2049,

Fig. 1. Soybean-producing states in the USA under study.

Table 1. Number of locations and weather stations for each state used for soybean simulation over a period of 1984–2010

State Number locations Number of weather stations State Number of locations Number of weather stations

North Dakota 14 606 57 Indiana 11 996 47

Minnesota 16 932 74 Ohio 20 159 84

South Dakota 12 668 70 Nebraska 14 279 89

Iowa 24 468 84 Kansas 13 157 132

Illinois 20 425 75 Missouri 12 264 66
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2050–2059, 2060–2069, 2070–2079, 2080–2089 and 2090–2099)
and a monthly average of each decade for each parameter was cal-
culated. Similar steps were followed to get the monthly standard
deviations for maximum and minimum temperatures.

Calculation of systematic error (E) for each variable
The long-term future projections were based on greenhouse gas
concentration as defined by RCPs, whereas decadal predictions
were based on model runs initialized with actual atmospheric,
oceanic and sea ice states along with external radiative forcing
(Taylor et al., 2012; Gaetani and Mohino, 2013). Therefore, the
effect of initialization (as a systematic error) was needed to be cal-
culated by taking the differences between decadal prediction and
long-term future projections from the same model for a particular
period (2006–2035) (Meehl and Teng, 2014). Systematic error was
calculated as a difference of decadal 2005 prediction and future
climatic scenarios forces by either RCP4.5 or RCP8.5 for the per-
iod of 2006–2035 for monthly mean maximum and minimum
temperature. The ratio was calculated for change in precipitation
amount (Kraainjenbrink, 2013), a monthly fraction for the num-
ber of wet days, and standard deviation of maximum and min-
imum temperature.

Calculation of delta or factor change in each variable
The monthly delta change in maximum and minimum tempera-
ture was calculated for each ensemble of each model as differences
between monthly mean of decadal1980 prediction for a span of
1981–2010 and each decade [nine decadal time scales (2010–
2019, 2020–2029, 2030–2039, 2040–2049, 2050–2059, 2060–
2069, 2070–2079, 2080–2089 and 2090–2099)] of each ensemble
member of models for RCP4.5 or RCP8.5. Similarly, ratio was
taken for other variables.

Calculation of error-corrected delta or factor
The delta or factor change and systematic error values calculated
were then extracted from the native GCM grid-scale to the point
or weather station level. Then, delta change and systematic error
were used to derive corrected delta or factor change for each vari-
able to neutralize the effect of initialization in decadal prediction.
The error corrected delta for maximum and minimum tempera-
ture for each ensemble was computed by taking differences
between delta change and respective systemic error. Similarly,
the ratio was computed for other variables. The corrected factor
for the monthly total precipitation was limited to the maximum
value of three, which denotes the 300% increase in the monthly
total precipitation in future compared to the decadal hindcast,
which is likely in the dry season. Similarly, the corrected factor
for wet day’s fraction was limited within the range of 0.25–10
indicating that the number of wet days in future is 25% and
1000% lower and higher than the wet days in decadal hindcast.

Applying the mean and variability change to historical observed
climate
AgMIP has provided protocols to generate probabilistic future
climate series titled ‘Guide for Running AgMIP Climate
Scenario Generation Tools with R’ (Hudson and Ruane, 2015).
This procedure allows the imposition of mean and variability
change signal from GCM output to observed climate to generate
future climate series. It also considers the change in the number of
rainy days in the future climate series (Ruane et al., 2015). In this
method, the expected future climate value is calculated based on

the observed and expected distribution percentiles corresponding
to the observed climate events (Rosenzweig et al., 2015).

As the future climate signal was downscaled on the decadal
basis, each downscaled signal [near-century (2010–2019, 2020–
2029, 2030–2039), mid-century (2040–2049, 2050–2059, 2060–
2069), late-century (2070–2079, 2080–2089, 2090–2099)] was
applied to baseline observed climate series (BCS). Since each
term contained three decades, the BCS was also divided into
three periods (1984–1990, 1991–2000 and 2001–2010). The cor-
rected delta and factor of the first decade of each term (2010–
2019, 2040–2049, 2070–2079) were applied to first period
(1984–1900) of BCS, second decade of each term (2020–2029,
2050–2059, 2080–2089) to second period (1991–2000) of BCS
and third decade of each term (2030–2039, 2060–2069, 2090–
2099) to third period (2001–2010) of BCS. The historical
observed baseline in the procedure resembles one of the periods
of the BCS to which delta and factor of a respective decade of
each ensemble of each model were applied (Fig. 2).

Crop simulation

CROPGRO-Soybean, embedded under the DSSAT (Jones et al.,
2003; Hoogenboom et al., 2019) suite version 4.6 (Hoogenboom
et al., 2015), was employed to simulate the soybean crop.
Default genetic coefficients included in DSSAT for different
maturity groups were used to simulate different soybean varieties.
The soybean maturity group for each state (Table 2) was selected
based on maps developed by Zhang et al. (2007). The information
on active planting dates in each state was gleaned from the
National Agricultural Statistics Service under the United States
Department of Agriculture (USDA-NASS) based on the hand-
book ‘Field Crops Usual Planting and Harvesting Dates’
(USDA, 2010). The climate and soil regions homogenous map
(Climate-Soil Simulation Unit Maps) for each state was obtained
from Next Season System LLC.

The simulation areas were selected based on the NASS maps of
current cropping areas. The Geospatial Environmental Modeling
(GEM; Baigorria and Romero, 2007) software provided by Next
Seasons Systems LLC was used to automate crop simulations.
The state climate-soil unit map was overlaid on current soybean-
growing area. For each location, the nearest weather station
(Table 1) climate data were used for the simulation. The resulting
map determined the density and region of crop simulation for
each crop. The crop was simulated at each climate-soil unit
using both observed (1984–2010) and future climate for three
periods (2013–2039, 2043–2069, 2073–2099). Since 15 future cli-
mate series were generated under each RCP for each future period,
there were 15 crop simulations of each crop at each climate-soil
unit for the specified future period. Further, crop simulation
runs were made separately under two water regime production
systems (rainfed and irrigated) and two RCPs (RCP4.5 and
RCP8.5). The climate from the nearest weather station of each
soil unit was considered as weather input for crop models.

The carbon dioxide concentration was set at 400 ppm. The sin-
gle planting date was envisaged for each state (Table 2) based on
the most active planting date provided by USDA (2010). The
plant population was set to 34 plants/m2 for both production sys-
tems, which is within the range of recommendation for optimum
plant population in the Midwest, including northern parts of
West North Central. For irrigated condition, water application
was automated through sprinkler irrigation method when the
simulated soil water was depleted below 75% of the total available
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water (i.e. 25% depletion below field capacity) in the soil layer of
30 cm depth. The highest level of irrigation water use efficiency
(one) was considered for sprinkler irrigation method. The soy-
bean crop did not get the additional supply of nitrogen through-
out the growing season. The crops were set to be harvested at
physiological maturity.

Analysis

The crop simulation outputs were summarized based on the pro-
duction system (irrigated and rainfed), RCPs and the three future
periods. Each future period had 27 years. Therefore, the crop
simulation outputs at each location using individual series were
averaged across the 27 years. Then, the output was further com-
piled by taking the mean of averaged values (27 years’ average)

at each location from 15 future series. Results were further sum-
marized by taking mean across all the locations in each county
under each state. The state average was calculated using the rela-
tive changes in the counties of each state. For the baseline period,
crop simulation outputs at each location were averaged across the
27 years. The resulting averaged values were further summarized
by taking the mean across all the locations in respective counties
in each state (Fig. 3).

The final output was conveyed as the relative percentage
change (Eqn (1)) in each term [near-century (2013–2039), mid-
century (2043–2069) and end-century (2073–2099)] compared
to observed simulation at the county level. Each production sys-
tem’s (rainfed and irrigated) baseline simulation was used to cal-
culate the relative percentage change in variables under the
respective production system in the future.

Relative change (%) = (Simfut-Simobs)
Simobs

× 100 (1)

where, Simfuture = simulated value for future period for a county
and Simobs = simulated value for baseline period for a county.

Similarly, water productivity was computed under both irrigated
and rainfed conditions. Usually, water productivity is calculated in
terms of either evapotranspiration or irrigated water applied to the
field. Water productivity was estimated based on the total seasonal
evapotranspiration (Bezerra, 2012) following Eqn (2).

Water productivity [WPET] = GY (kg/ha)
ET (mm/ha)

(2)

where, WPET, water productivity in terms of crop evapotranspir-
ation; GY, crop grain yield (kg/ha); ET, seasonal evapotranspiration
(mm/ha).

Table 2. List of the most active planting dates of soybean

State Sowing date Maturity group

Iowa 20th May II

Illinois 25th May III

Minnesota 20th May 0

North Dakota 24th May 0

Indiana 23rd May III

Nebraska 21st May II

South Dakota 28th May I

Ohio 16th May III

Missouri 3rd June IV

Kansas 2nd June III

Fig. 2. Flow chart to generate the future climate series using global climate models signal and observed climate series.
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Further, future water requirement for irrigation in each state
was computed based on the change in water demand, baseline
simulated water requirement and the total area of cultivated
land for each crop. The water requirement was expressed in
terms of millions m3 for each state. Finally, maps were developed
for a number of variables including seasonal length, grain yield,
evapotranspiration and water productivity in future period for
effective visual comparison. The values depicted in the map
represent relative changes in the simulated variables at state levels.
The maps for baseline simulation were based on actual values for
both irrigated and rainfed production systems whereas the relative
percentage change was used to represent the change in crop
growth and other parameters in the future period (2013–2039,
2043–2069, 2073–2099) compared to baseline simulation. The
counties with no simulation were shown in white colour on
each map.

Results

Soybean simulations under future periods were presented as the
relative percentage change in various parameters compared to
the observed simulation. The results were compared across two
RCPs and three future periods under both irrigated and rainfed
conditions. Since this study focused on water requirements and
crop grain yield, selective response variables including seasonal
length, seasonal evapotranspiration, additional irrigation water
requirements and crop grain yield were evaluated and discussed.
Furthermore, each variable was presented through maps to
make a visual comparison. The observed climatic variables and
simulated soybean parameters during the soybean-growing sea-
son are presented in Tables 3 and 4.

Relative change in climatic variables

Since the relative changes in climatic variables under rainfed and
irrigated conditions are identical, changes under rainfed condi-
tions are used to analyse the patterns of change in temperature
and precipitation. Under RCP8.5, the positive relative changes
in maximum and minimum temperature are greater than under
RCP4.5, and the magnitude of these changes increases as time
progresses. In addition, relative changes in maximum temperature
are greater than minimum temperature across all time periods,
states and RCPs (Figs 4(a) and (b)). The average increase in rela-
tive changes in maximum and minimum temperature across all
the states is up to 10.2 (2.6°C) and 19.3 (2.6°C) under RCP4.5
and 19.8 (5.1°C) and 36.7 (4.9°C) under RCP8.5, respectively, at
end-century period. The relative changes are more pronounced
in northern states than southern states (Fig. 5 (a) and 5 (b)); how-
ever, the actual changes in seasonal temperature are expected to
vary little. North Dakota is likely to experience highest relative
changes in maximum and minimum temperature compared to
other states under both scenarios along with maximum average
seasonal maximum and minimum temperature changes of 5.2°C.

Total seasonal precipitation is projected to follow a similar
trend to temperature, but the relative changes are negative,

Fig. 3. Flow chart to summarize the crop simulation output from soil unit to state level.

Table 3. Observed seasonal average of the climatic parameters over a period of
1984–2010 under rainfed and irrigated soybean

State

Maximum
temperature

(°C)

Minimum
temperature

(°C)

Seasonal total
precipitation

(mm)

North Dakota 23.8 10.7 248

Minnesota 23.8 12.5 351

South Dakota 25.6 12.8 256

Iowa 25.1 13.8 408

Illinois 26.3 14.9 364

Indiana 25.5 14.5 394

Ohio 25.1 13.7 403

Nebraska 26.5 13.5 307

Kansas 28.4 15.7 322

Missouri 26.7 15.1 408
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implying a drop in seasonal precipitation across all scenarios and
periods. As years progress, the changes are likely to become more
pronounced. The northern states are likely to experience higher
relative change in seasonal precipitation amount compared to
southern states. The highest change in seasonal precipitation is
expected up to 25 mm in Nebraska under RCP4.5 and 45 mm
in Iowa under RCP8.5 at end-century period (Fig. 4(c)).

Relative change in seasonal length

The soybean life cycle is expected to be shortened in the future
under both RCPs. The relative changes increase with advance-
ment towards the end of the century under both rainfed and irri-
gated conditions. The impact on the simulated seasonal length is
expected to be higher under RCP8.5 than RCP4.5. Under rainfed
conditions, the reductions are up to 8.7 days (Minnesota and
North Dakota) under RCP4.5 and up to 14 days (North
Dakota) under RCP8.5. Similarly, under irrigated conditions,
life cycle will be reduced up to 8.1 and 11.7 days (Minnesota)
under RCP4.5 and RCP8.5 at the end of the century. For every
time slice, the predicted changes are greater under the water-
limited growing environment than in the irrigated condition. In
North Dakota and Minnesota, soybean simulated with maturity
group 0 is expected to experience higher reduction. Lower change
in predicted seasonal length was found in southern states simu-
lated with higher maturity groups. Contrast to the trend obtained
for other states, the result shows positive predictive changes in
seasonal length in the end-century period under RCP8.5 in
most of the regions of Kansas and southern parts of Missouri
and Illinois. However, based on county averages, only Kansas
under RCP8.5, in both rainfed and irrigated conditions, is pre-
dicted to have 2 days longer life cycle by the end-century period.
It is also evident that the reduction in soybean life cycle is
expected to be higher in northern parts within each state, espe-
cially in Iowa, Illinois, Indiana and Ohio for the mid- and end-
century periods (Fig. 6).

Relative change in evapotranspiration

The change in evapotranspiration shows a different trend in three
time slices under rainfed and irrigated conditions. In rainfed

condition, under both RCPs, evapotranspiration is predicted to
decrease in all states at the first time slice. In other time slices,
only North Dakota, Minnesota, South Dakota and Nebraska
under both RCPs, as well as Indiana under RCP4.5, will experi-
ence reduced evapotranspiration. As the century progresses, the
other states (Iowa, Illinois, Indiana, Kansas and Missouri) are
expected to see an increase in evapotranspiration. Under irrigated
conditions, excluding Minnesota at initial time slice, evapotrans-
piration loss of water will grow and become more intense as the
century advanced under both RCPs (Fig. 7). Moreover, change
in evapotranspiration will be more in Illinois (47.3 mm) followed
by Kansas (46.9 mm) and Missouri (46.0 mm) under RCP8.5 and
Kansas (18.7 mm), Illinois (17.5 mm) and Missouri (17.1 mm)
(3.9) under RCP4.5 at the late century compared to the early-
century period. Further, the result also shows the trend that the
southern states are expected to experience the higher change in
evapotranspiration demand than the northern states (Fig. 7). In
both production systems, the change in evapotranspiration was
found to be greater in most situations under RCP8.5 than
under RCP4.5 (Fig. 7).

Additional water requirement

The additional water requirement was calculated for the state as if
all the area would be brought under the irrigated condition. The
precipitation amount is likely to change under both scenarios in
future (Fig. 8). Under both representative concentration routes,
soybean production will require more extra water in the future
(Table 5). The water demand is higher under RCP8.5 than
under RCP4.5. The water demand under the two RCPs will be
wider in the third phase compared to the first and the second
phase (Table 5). As the 21st century progresses, the requirement
for water will increase for soybean production in all states
(Fig. 9). On average, over ten states, the water demand under
RCP8.5 will be 23.8, 179.9 and 765.8 million m3 higher than
RCP4.5 in three time slices, respectively.

Relative change in grain yield

The rainfed soybean was found to have a negative response in
crop yield compared to the irrigated condition across both

Table 4. Simulated observed parameters of soybean over a period of 1984–2010

State

Seasonal length (days)
Evapotranspiration

(mm/ha) Grain yield (kg/ha)
Water productivity

(kg/mm/ha) Irrigation water
requirement (mm)

Rainfed Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed Irrigated

North Dakota 110 113 343 383 2080 3074 6.0 8.0 121

Minnesota 108 109 360 376 2902 3309 8.1 8.8 59

South Dakota 104 109 343 399 2229 3597 6.4 9.0 133

Iowa 114 115 415 438 3323 3921 8.0 9.0 85

Illinois 115 117 427 451 3393 4025 7.9 8.9 108

Indiana 117 119 423 445 3454 4052 8.2 9.1 89

Ohio 127 129 436 465 3300 4123 7.6 8.9 92

Nebraska 111 114 391 446 2724 4002 6.9 9.0 141

Kansas 105 109 382 447 2529 4021 6.6 9.0 157

Missouri 117 120 427 460 3115 3996 7.3 8.7 117
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Fig. 4. Change in seasonal (a) maximum temperature (°C), (b) minimum temperature (°C) and (c) total precipitation (mm) compared to observed (1984–2010) in
rainfed condition.
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RCPs and time slices (Fig. 10). The predicted decrease in grain
yield is likely to be more intensified with the advancement
towards the end-century period. Similarly, the magnitude of the
reduction is expected to be higher in RCP8.5 compared to
RCP4.5 under each production system (Fig. 10). Under rainfed
conditions, except for North Dakota and Minnesota, all states
are likely to reduce the grain yield in all three time slices.
Under rainfed conditions, the average loss across the ten states
under RCP8.5 at the end-century period will be around 871 kg/
ha (Supplementary Table 2). Minnesota will not lose yield at
the first time slice under both RCPs under rainfed conditions.
It will also be benefitted under the irrigated condition, except
under RCP8.5. In North Dakota, grain yield is likely to increase
in both rainfed and irrigated conditions except in the end-century
period under RCP8.5. South Dakota will only experience a
decrease in yield under irrigated condition with the RCP8.5 scen-
ario at the mid- and end-century periods. The remaining states
are anticipated to have a drop in grain yields, which will intensify
as the century progresses (Fig. 10). Kansas, Missouri, Nebraska
and Illinois are among the states likely to lose greater grain yields

in the future. Kansas is predicted to have the largest decrease in
yield (1126 kg/ha) under RCP8.5 by the end of the century, fol-
lowed by Nebraska (760 kg/ha), Missouri (679 kg/ha) and
Illinois (644 kg/ha) under irrigated condition (Fig. 10).
However, the ranking based on the decrease in simulated yield
will be Illinois (1154 kg/ha) followed by Nebraska and Kansas
(1062 kg/ha) and Missouri (1059 kg/ha) under rainfed conditions
and RCP8.5 scenario (Supplementary Table 2). Under irrigated
conditions, the North Dakota might witness an increase in
grain yield up to 492 kg/ha under the second time slice with
both RCPs and under the third time slice with RCP4.5.

Relative change in water productivity

Water productivity is considered as the ratio of grain yield to
evapotranspiration. Hence, higher water productivity represents
a higher grain yield per unit loss of water through evapotranspir-
ation. The rainfed soybean is likely to experience a higher
decrease in water productivity in each term when compared to
the irrigated soybean. It is also evident that water productivity

Fig. 5. Change in seasonal (a) maximum temperature, and (b) minimum temperature (%) in rainfed condition under RCP4.5 and RCP8.5.
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is likely to increase in some northern parts (Fig. 11) of the study
area. Under the irrigated condition, North Dakota, Minnesota
(except end-century under RCP8.5) and South Dakota (in early-
century) are found to experience positive relative overall changes,
whereas the rainfed soybean might experience an increase in
water productivity only in North Dakota (except in the end-
century under RCP8.5) and Minnesota (only in the early-century)
(Supplementary Table 3). Kansas is likely to have the lowest
water productivity. Other states with lower water productivity
are Nebraska, Missouri and Illinois. The decrease in water
productivity is higher under RCP8.5 than under RCP4.5,
especially in the mid- and end-century periods. The
predictive reduction was found to be more than doubled in the
end-century period under RCP8.5 when compared to RCP4.5.
The changes in water productivity are expected to be higher in
the southern parts than in the northern parts of most of the states
(Fig. 11).

Discussion

Heat and water stress are growing climatic threats to soybean pro-
duction (Jin et al., 2017). It is estimated that about one-third vari-
ation in soybean yield in the USA could be attributed to the

precipitation and temperature variations (Vogel et al., 2019) and
average soybean yield gain in the USA was suppressed by 30%
than that realized yield gain by producers over 1994–2013 due
to the combined precipitation and temperature variations, worth
US$11 billion (Mourtzinis et al., 2015). The information-intensive
technological development may help to reduce the harmful conse-
quences of climate change on soybean production (Burchfield
et al., 2020), demanding a range of climate change-related impact
studies on soybean. Many impact studies are based on change in
mean (Mearns et al., 1997; Anapalli et al., 2016; Schleussner
et al., 2018); however, changes in mean are not only accountable
for crop performance but variation in climatic parameters on tem-
poral (Gornall et al., 2010; Strzepek and Boehlert, 2010; Leng et al.,
2016; Shortridge, 2019, Odey et al., 2022) and spatial scale (White
et al., 2011; Bandara et al., 2020). So, crop–environment relation-
ships are better understood when they are studied over a larger
area, for longer periods of time and with mutimodel approach
for using GCMs to reflect a broader range of possible future devel-
opment possibilities (Woznicki et al., 2015). Therefore, we studied
the soybean performance under three time scales, two RCPs-based
scenarios and two water regime conditions over the ten major
soybean-growing states of the USA. A total of 160 964 locations
were used in simulations using CROPGRO-Soybean for evaluating

Fig. 6. Relative change in seasonal length (%) in rainfed and irrigated conditions under RCP4.5 and RCP8.5.
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Fig. 7. Relative change in evapotranspiration (%) in rainfed and irrigated conditions under RCP4.5 and RCP8.5.

Fig. 8. Change in total seasonal precipitation (%) in under RCP4.5 and RCP8.5.
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the seasonal length, evapotranspiration, water demand, yield and
water productivity.

In soybean, photoperiod primarily stimulates the transition
from vegetative to reproductive phase (Borthwick and Parker,
1938). Similarly, the temperature determines the rate at which a
crop develops (Hatfield and Prueger, 2015). Besides temperature,
water stress is also responsible for determining the soybean life-
cycle. The water stress during flower induction and flowering
results in shorter flowering period (Sionit and Kramer, 1977).
Based on this study, a shorter soybean life cycle could be expected
as the 21st century progressed with increased temperatures and
decreased precipitation. Under both rainfed and irrigated envir-
onments, the relative change in life cycle length under RCP8.5
is greater than under RCP4.5 under each time slice because of
comparatively higher temperature and reduced precipitation
under RCP8.5. Further, a shortened life cycle in a water-stressed
rainfed condition might be related to water stress compared to
irrigation condition. Bao et al. (2015) also predicted a decrease
in soybean life cycle by 1.8 and 2.3 days by 2025 and 2050,
respectively, under water-limited and irrigated condition in the

southeastern USA. The northern states like North Dakota and
Minnesota are expected to experience up to 14 and 13 days
under rain fed and 11.6 and 11.7 days average reduction in life
cycle under irrigated conditions with RCP8.5 scenarios, respect-
ively, at the end of the century. Cultivars with different maturity
groups might be responsible for this regional heterogeneity.
Earlier maturity cultivars, which are modelled for northern states,
are less responsive to day duration (Boote et al., 2001).
Temperature and water stress are therefore more responsible for
crop growth and development. Later maturity groups, on the
other hand, are more sensitive to day duration, which may have
resulted in a smaller relative shift in predicted crop seasonal
length in southern states with higher maturity groups.
Furthermore, as observed by Choi et al. (2016) in South Korea
for Sinpaldalkong and Daewonkong cultivars under field condi-
tions, the supra-optimum temperature may have slowed the
reproductive phase to extend the seasonal duration in portions
of Kansas and southern parts of Missouri and Illinois.

Evapotranspiration is the total of soil water evaporation and
transpiration by plant surfaces (Liu and Basso, 2020;

Fig. 9. Relative change in irrigation volume (%) in irrigated condition under RCP4.5 and RCP8.5.

Table 5. Additional water requirement (millions m3) per cropping season for each state

State 2013–2039 2043–2069 2073–2099

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

North Dakota 273 328 565 666 631 1273

Minnesota 153 218 384 532 417 1220

South Dakota 210 252 396 519 476 1104

Iowa 293 393 567 897 733 2013

Illinois 489 522 791 1194 1077 2504

Indiana 253 238 408 566 567 1181

Ohio 233 207 377 463 493 922

Nebraska 261 270 452 620 631 1357

Kansas 208 182 283 403 414 871

Missouri 246 247 335 497 461 1113
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Varmaghani et al., 2021). Total evapotranspiration from soybean
production will rise as the 21st century advanced in irrigated con-
ditions under both RCPs with increased temperature. Northern
states are likely to have lower seasonal evapotranspiration,
which could be attributed to the shorter expected life cycle of soy-
bean and decreased precipitation. Precipitation and length of the
season are expected to drop less in southern states like Missouri
and Kansas. Because of this, the volume of water evapotranspiring
was likely to be larger at the end-century period under RCP8.5.
The higher relative changes under RCP8.5 as compared to
RCP4.5 might be attributable to a greater increase in temperature
and a drop in seasonal precipitation. Irrigated fields are likely to
lose more water under expected future climate compared to
water constrained fields.

Given the predicted temperature and precipitation patterns in
the various parts of the country, the quantity of irrigation water
may vary significantly. As the 21st century progresses, irrigation
water demand will increase soybean production in all states. On
average, over ten states, the water demand under RCP8.5 will be
23.8, 179.9 and 765.8 millions m3 per season higher than
RCP4.5 in three time slices, respectively. A greater rate of evapo-
transpiration and lower anticipated seasonal precipitation might
be responsible for this trend.

With management practices (planting density, spacing, sowing
dates, fertilizer doses) specified for this study, yield losses will be

substantially higher by the end of the century, averaging across
ten states 310 and 1154 kg/ha under RCP4.5 and RCP8.5 for
the end-of-century period under rainfed conditions, respectively.
Due to limited temperature-driven growth in North Dakota and
Minnesota at present, the elevated temperatures in future might
help for proper early growth and development of the crops,
which might lead to an increase in the yield. In other states,
yield loss will be higher as we further advance into the future.
The yield loss in RCP8.5 is expected to be greater than under
RCP4.5 in areas having negative consequences of future climate;
increased temperature, lowered precipitation and their variation
over time. The combined effects of increased heat and water stress
may have resulted in a greater relative drop in grain production
under rainfed conditions compared to irrigated conditions.
Ohashi et al. (2006) also reported a 30% lower biomass yield
from water stressed soybean when compared to the biomass
yield from well-watered soybean.

Water productivity will follow a similar trajectory in the future
as grain yield. Comparatively, higher temperatures under RCP8.5
may have resulted in decreased water productivity compared to
RCP4.5, and the same rationale may account for higher relative
changes in southern sections of most states than northern parts.
In North Dakota and Minnesota, increase in water productivity
could be attributed to the temperature increment impact on the
grain yield. The greater decline in grain yield under rainfed

Fig. 10. Relative change in grain yield (%) in rainfed and irrigated conditions under RCP4.5 and RCP8.5.
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conditions might have resulted in lower water productivity. Kang
et al. (2009) also reported that soil evaporation and plant transpir-
ation would be affected due to climate change’s impact on soil
water balance, which could shorten crop seasonal length impact-
ing water productivity.

In the USA, irrigation has been regarded as a viable strategy to
lessen the impact of climatic unpredictability on agricultural pro-
duction (Kukal and Irmak, 2020). From this study, the increasing
irrigation water demand indicates the anticipated precipitation
will not be sufficient to support the soybean production in
study areas in the future. Moreover, irrigation can be taken as pos-
sible coping strategies against future climate change. However, as
diverse sectors strive to reduce the threat of water shortages in the
face of rising climatic variation, water resource management will
become increasingly more essential (Cherkauer et al., 2021). In
addition, the cost of production is likely to increase with add-
itional water removal requirement (Fischer et al., 2007). This
study shows slight shift in soybean production zone towards
north. Cho and McCarl (2017) also suggested a shift in crop pro-
duction zones in the USA in response to change in temperature
and precipitation for the 1970–2010 period. They also projected

the majority of the crops to shift towards north and east in the
future under RCP4.5 and RCP8.5 pathways.

There were noticeable changes in climate in the USA after the
baseline period (1984–2010) considered in this study. In recent
years (2010–2019), weather and climate-related disasters with at
least $1 billion in damage costs have increased in the USA, with
drought being one of the causes of significant disasters (Smith,
2020). Moreover, the recent normal years (2091–2020) were
warmer than the years in preceding decades, and the rate of tem-
perature change is not uniform across the USA (Lindsey, 2021).
The years 2012 and 2016 were among the warmest years across
the USA (EPA, 2022a). Similarly, wet and dry patterns have
changed in different parts of the contiguous USA (Lindsey,
2021). The drought in 2012 hit about 90% of soybean produc-
tion areas till late July, the cause by 2952–2690 kg per hectare
and a 113–104 billion reduction in soybean productivity and
production, respectively, in the USA (Rippey, 2015). The mid-
western region experienced significant soybean yield loss and
which soared the global soybean price (Zhang et al., 2018).
This picture clearly shows that the future climate will pose a
noticeable threat to soybean production in the USA. In this

Fig. 11. Relative change in water productivity (%) in rainfed and irrigated conditions under RCP4.5 and RCP8.5.
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backdrop, the current study will help track the soybean yield in
relation to the future climate.

Limitation of study

This study was carried out with a set of management techniques
such as single planting date and a set of row spacing. Various
management methods need to be investigated to determine the
best adaption strategies for diverse soybean-producing zones.
Strategies such as different durational varieties (Meng et al.,
2016), shift in planting dates (Kumar et al., 2008; Bowling
et al., 2020), crop rotation (Marini et al., 2020), tillage practices
(Liu and Basso, 2020) and fertilizer use (Manna et al., 2013;
Afroz et al., 2021) are being adopted in various regions of the
world needs to be explored as adaptation strategies to climate
change. The atmospheric carbon dioxide level was kept constant
during simulation runs, despite the fact that CO2 levels are pre-
dicted to have a significant influence, particularly on C3 crops
(Bernacchi et al., 2007; Jin et al., 2017). Moreover, the simulation
did not take into account insect and disease dynamics. However,
the changing temperature will alter the insect population
(Kollberg et al., 2015), growth rate (Kiritani, 2013), diseases
appearance and severity (Bebber et al., 2013) and thereby their
impact on the crops. Therefore, it is also necessary to take into
account the indirect effects of insects and diseases (Gornall
et al., 2010; Raza et al., 2015; Taylor et al., 2018; Skendžić et al.,
2021). Therefore, the use of the sophisticated model which con-
siders the insect pest dynamics will help further to reach in
valid conclusion. Climate change implications on global agricul-
tural production cannot be reliably predicted because of the
uncertainty of how high CO2 impacts crop physiology and prod-
uctivity (Gornall et al., 2010, Gray et al., 2016, Jin et al., 2017),
high variability in enclosed chambers and free-air carbon dioxide
enrichment studies (Long et al., 2006), large regional differences
in crop responses to CO2 (McGrath and Lobell, 2013) and uncer-
tainty in potential impact of weed species on crops (Ziska et al.,
2005; Hatfield et al., 2011; Vilà et al., 2021). So, the biological
plausibility of estimates should be strengthened by a more thor-
ough various model intercomparison (White et al., 2011) in
diverse environmental conditions. Moreover, the advancement
in the breeding programme to ensure yield stability under stress
conditions determines the impact of climate change on soybean
production (Valliyodan et al., 2017).

Conclusion

The soybean yield is expected to decline more under rainfed than
irrigated conditions in most soybean-growing areas under study,
which will harm farmers’ resource use efficiency and profitability
as the yield is already lower under rainfed than irrigated condi-
tions. Supplemental irrigation water does not seem to optimize
crop yield and water productivity; however, it could help to min-
imize the negative impact of future climate on crop performance,
while marginal economic irrigation could become a concern in
the future. Moreover, northern states under study are expected
to enhance yield or have less impact on the future climate and
could be key production zones for soybean production in the
future, considering climate change as the principal factor.
Furthermore, the greater impact on soybean under ‘business as
usual’ scenarios signifies the necessity for stringent mitigation
and adaptation policies.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0021859623000011.
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