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The maximal subgroups of E7(2)

John Ballantyne, Chris Bates and Peter Rowley

Abstract

Here we determine up to conjugacy all the maximal subgroups of the finite exceptional group
of Lie-type E7(2).

Supplementary materials are available with this article.
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1. Introduction

Interest in maximal subgroups of finite simple groups can be traced back to the dawn of group
theory, in the guise of primitive permutation groups. The letter Galois wrote to Chevallier [19]
on May 29, 1832, the evening before the fatal duel, which includes statements on the minimal
(non-trivial) permutation degrees of L2(p), p a prime, is one such example. Later Dickson [17]
in 1901 determined all the subgroups of L2(q) (q a power of a prime), while those for L3(q) were
similarly classified by Mitchell [36] in 1911 (for q odd) and Hartley [22] in 1925 (for q even).
As the work on the finite simple groups, which would ultimately lead to their classification,
gathered pace so too did investigations into the maximal subgroups of the simple groups.
For many of the sporadic groups machine calculations figure prominently; at the moment all
maximal subgroups of the sporadic groups, apart from those of the Monster, are known. Not
surprisingly, there is still much to be learnt about the maximal subgroups of the simple groups
of Lie-type. This area has been the subject of intense investigation by numerous authors over
the last sixty years. The approaches used have been wide and diverse, ranging from exploiting
certain multilinear forms associated with the groups [2, 3, 15], through the theory of linear
algebraic groups [30, 33], to a mixture of both theoretical and computational work [24, 37].
Among the many milestones we mention Aschbacher [4], who introduced the Aschbacher classes
for the classical groups, and the recent work by Liebeck, Saxl and Seitz amongst others on the
maximal subgroups of exceptional algebraic and finite groups of Lie-type. This latter body of
work forms the starting point for our work here, so we summarise this as Theorem 2.1 in our
next section. Our interest here is in the exceptional group of Lie-type E7(2); for the state of
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play with the other exceptional groups see [39, Chapter 4] and references therein. The main
result of this paper is as follows (notation will be discussed later in this section).

Theorem 1.1. Let H be a maximal subgroup of E7(2). Then H has one of the following
shapes:

21+32 : Ω+
12(2) [247] : (Sym(3)× L6(2))

[253] : (Sym(3)× L3(2)× L4(2)) [250] : (L3(2)× L5(2))

[242] : (Sym(3)× Ω+
10(2)) 227 : E6(2)

[242] : L7(2) Sym(3)× Ω+
12(2)

E6(2) : 2 3.2E6(2).Sym(3)

U8(2) : 2 L8(2) : 2

3.(U3(2)× U6(2)).Sym(3) (L3(2)× L6(2)) : 2

(L2(8)× 3D4(2)) : 3 (Sym(3)3 × Ω+
8 (2)).Sym(3)

L2(128) : 7 U3(3) : 2× Sp6(2)

37.(2× Sp6(2)).

Furthermore, maximal subgroups of each shape above exist in E7(2), and these maximal
subgroups are determined uniquely up to conjugacy.

We shall use Sym(n), respectively Alt(n), to denote the symmetric group, respectively
alternating group, of degree n. Also Ω±n (q) will stand for the simple projective orthogonal
group of either plus type or minus type, Spn(q) for the symplectic groups and Dih(m) for
the dihedral group of order m. Apart from these exceptions, our notation for group structures
follows the Atlas [14]. Moreover the Atlas will be a significant source for information on
many of the groups we encounter. For general group theoretic notation see either [1] or [21],
and we use the symbol ∼ to indicate that two groups have the same shape.

We now give an indication of the strategy and methods used to prove Theorem 1.1, as well
as the layout of the paper. We shall see that, as a consequence of Theorem 2.1, to prove
Theorem 1.1 there is a finite list (see List 1) of groups for which we must determine whether
or not they are maximal in E7(2). As it turns out, only one group, up to conjugacy in E7(2),
arising from this list is in fact maximal in E7(2). Section 3 is devoted to assembling an extensive
catalogue of information concerning the involutions and semisimple elements of E7(2). This
data is used in a variety of ways, such as for example in Lemma 4.2, to demonstrate that
L2(64), Sp4(8), L4(8) and Sp6(8) cannot be subgroups of E7(2), while Lemma 3.6, used in
Lemma 4.21 to eliminate H being a maximal subgroup with Soc(H) ∼= L4(4), gives us an Ω−8 (2)
subgroup of E7(2) within which we can work. The 56-dimensional irreducible F2-module for
E7(2) is used at almost every turn in our analysis, either for computational attacks or in
considering the possible restrictions for subgroups of E7(2) upon this module. Use of Brauer
characters will be seen to be a potent weapon for either eliminating certain possible subgroups
of E7(2) (for example see Lemmas 4.3 and 5.2) or in pinpointing those cases needing further
investigation. Thus Appendix A contains a large number of (partial) Brauer character tables
(with each irreducible Brauer character labelled by χi for some i) while §§ 4 and 5 are where
we consider, respectively, those possible maximal subgroups H where Soc(H) ∈ Lie(2), the
Lie-type groups of characteristic 2, and Soc(H) /∈ Lie(2).

For those cases when H is a possible maximal subgroup of E7(2) with Soc(H) being
isomorphic to a small simple group such as L3(2) or L2(8), their elimination is a protracted
campaign involving a mainly computational approach. For the former case this is played out
in Lemmas 4.13–4.19. The latter case is dealt with in Lemma 4.20 and also makes heavy use of
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facts about normalisers of cyclic subgroups of order 7 given in § 4.2. As a further comment, we
note that the method in [7] for finding (computationally) generators for centralisers of strongly
real elements is used extensively.

Where extensive computation has been employed, we have provided downloadable data files
which document these computations (available as online supplementary material from the
publisher’s website). Names of specific files associated to a particular result are given at
the beginning of the relevant proof.

Finally, we would like to thank the referee, whose comments and suggestions have greatly
improved this paper.

2. Preliminary results

The first theorem of this section, already mentioned in the previous section, summarises the
work of a variety of authors in [25–29, 31–33] and [38]. For Theorem 2.1, G denotes an
adjoint simple algebraic exceptional group of Lie-type over Fq and σ is a standard Frobenius
homomorphism of G.

Theorem 2.1. Let H be a maximal subgroup of the finite exceptional group Gσ over Fq,
q = pa where p is a prime. Then one of the following holds:

(i) H = Mσ where M is a maximal closed σ-stable subgroup of positive dimension in G;
the possibilities are as follows:

(a) both M and H are parabolic subgroups;

(b) M is a reductive group of maximal rank. The possibilities for M are determined
in [27];

(c) G = E7, p > 2 and H = (22 × Ω+
8 (q).22).Sym(3) or 3D4(q).3;

(d) G = E8, p > 5 and H = PGL2(q)× Sym(5);

(e) M is as in [30, Table 1], and H = Mσ as in [30, Table 3];

(ii) H is of the same type as G;

(iii) H is an exotic local subgroup (see [33]);

(iv) G is of type E8, p > 5 and H ∼ (Alt(5)×Alt(6)).22;

(v) F ∗(H) = H0 is simple, and not in Lie(p): the possibilities for H0 are given up to
isomorphism by [31];

(vi) F ∗(H) = H(q0) is simple and in Lie(p); moreover rk(H(q0)) 6 1
2rk(G), and one of the

following holds:

(a) q0 6 9;

(b) H(q0) ∼= A2(16) or 2A2(16);

(c) q0 6 (2, p − 1)u(G) and H(q0) ∼= A1(q0), 2B2(q0) or 2G2(q0), where the values of
u(G) for each type of exceptional group are as follows:

G G2 F4 E6 E7 E8

u(G) 12 68 124 388 1312

In cases (i)–(iv), H is determined up to Gσ-conjugacy.

For the remainder of this paper, G will denote E7(2) and V its (minimal) 56-dimensional
F2G-module. Thus, from [14],

|G| = 263.311.52.73.11.13.17.19.31.43.73.127.
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Let H be a maximal subgroup of G. In view of Theorem 2.1 and calling on the finite simple
group classification, to prove Theorem 1.1 we must consider the following possibilities.

List 1. (i) F ∗(H) is isomorphic to one of the following groups:

L4(2) L4(4) L4(8)

U4(2) U4(4) U4(8)

Sp6(2) Sp6(4) Sp6(8)

L3(2) L3(4) L3(8)

U3(4) U3(8) Sp4(4)

Sp4(8) G2(4) G2(8)
Sz(8) L2(8).

These groups arise from Theorem 2.1(vi)(a).

(ii) F ∗(H) is isomorphic to L3(16) or U3(16)(these possibilities arise from Theorem 2.1(vi)(b)).

(iii) F ∗(H) is isomorphic to L2(16), L2(32), L2(64), L2(128), L2(256), Sz(32) or Sz(128)
(these possibilities arise from Theorem 2.1(vi)(c)).

(iv) F ∗(H) is isomorphic to one of the following groups:

(a) Alt(n) for n = 5, 6, 7, 8, 9, 10, 11, 12 and 13;

(b) L2(q) for q = 7, 11, 13, 17, 19, 25, 27, 29 and 37;

(c) L3(3), L4(3), U3(3), U4(3), Ω7(3) and G2(3);

(d) M11, M12, J2.

These possibilities arise from Theorem 2.1(v).

When analysing potential subgroups H of G, we shall often show the non-maximality of H
by demonstrating that H must fix a non-zero vector in V . The next four results are used in
this regard.

Proposition 2.2. The vector stabilisers of G on V \{0} have the following shapes:

(i) 227 : E6(2);

(ii) E6(2) : 2;

(iii) 3.2E6(2) : 2;

(iv) 21+32 : Sp10(2);

(v) 226 : F4(2).

Proof. The point-stabilisers of E7(q) (for arbitrary q) in its action on its minimal
56-dimensional module are determined in [26]. In order to obtain the structures given in
the statement of the proposition for the special case where q = 2 we can use information
from [5].

Lemma 2.3. Let p be a prime and let P and Q be non-trivial finite p-groups. Suppose
α : P → Aut(Q) is a group homomorphism. Then CQ(P ) 6= 1.

Proof. See [1, 5.15], for example.

Lemma 2.4. Suppose that S is a non-abelian simple subgroup of G such that Out(S) is
a 2-group. Suppose further that S fixes a non-zero vector in V . Then one of the following
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must hold:
(i) CG(S) 6= 1;

(ii) NG(S) is contained in one of the vector stabilisers described in Lemma 2.2.

Proof. Assume that CG(S) = 1. Then since the automiser NG(S)/CG(S) is a subgroup of
Aut(S) we know that NG(S) embeds in Aut(S). Further, since S is simple we have Z(S) = 1,
and so Inn(S) ∼= S/Z(S) ∼= S. Thus

Out(S) = Aut(S)/Inn(S) ∼= Aut(S)/S

and so NG(S)/S is a 2-group. Since S fixes a non-zero vector in V and NG(S)/S acts on this
subspace we know that NG(S) fixes a non-zero vector in V by Lemma 2.3. Hence NG(S) must
lie in a vector stabiliser as claimed.

The following result allows us to use knowledge of the dimensions of certain cohomology
groups to deduce information regarding the action of a potential subgroup H 6 G on V .

Proposition 2.5. Suppose that S is a finite group, with k a field of characteristic p > 0.
Let W be a finite dimensional kS-module, with V the projective indecomposable module
corresponding to W . Then the number of trivial modules in an S-composition series of
Soc2(V )/Soc(V ) is equal to dim(H1(S,W )).

Proof. See [8].

We conclude this section with a brief description of the construction of E7(2) which we use
for the majority of our computations. Not surprisingly the root system of type E7 will feature
in this construction and at various points in our arguments. So we first set up the labelling of
the E7 Dynkin diagram as follows.

We shall employ the ordering of the positive roots as given in Table 1. This ordering is first
by height and then by lexicographic order with respect to the labelling of the fundamental
roots. Notationally αi will denote the ith root in this ordering system. Also we set α0 := α63,
the highest root in the root system. For 64 6 i 6 126 we then set αi to be the negative of
αi−63.

Following the construction of Chevalley groups over arbitrary fields as described in [12],
we first produce generators for E8(2) acting on its 248-dimensional adjoint module V248 (with
respect to a Chevalley basis). These generators correspond to roots from the root system of type
E8. We now use the fact that E7(2) is a subgroup of E8(2) (see [39], for example). Taking the
canonical subgroup E7(2) which corresponds to the first seven nodes of the E8 Dynkin diagram,
we use the implementation of Parker’s Meataxe in Magma [10] to decompose V248 as an
E7(2)-module. The minimal 56-dimensional module for E7(2) appears as an E7(2)-submodule
of V248, while the irreducible 132-dimensional module, which we denote V132, appears as
a composition factor of V248. It is now straightforward to map our canonical root element
generators to those for the 56- and 132-dimensional representations of E7(2).
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Table 1. Ordering of the root system of type E7.

α1 (1 0 0 0 0 0 0)

α2 (0 1 0 0 0 0 0)

α3 (0 0 1 0 0 0 0)

α4 (0 0 0 1 0 0 0)

α5 (0 0 0 0 1 0 0)

α6 (0 0 0 0 0 1 0)

α7 (0 0 0 0 0 0 1)

α8 (1 0 1 0 0 0 0)

α9 (0 1 0 1 0 0 0)

α10 (0 0 1 1 0 0 0)

α11 (0 0 0 1 1 0 0)

α12 (0 0 0 0 1 1 0)

α13 (0 0 0 0 0 1 1)

α14 (1 0 1 1 0 0 0)

α15 (0 1 1 1 0 0 0)

α16 (0 1 0 1 1 0 0)

α17 (0 0 1 1 1 0 0)

α18 (0 0 0 1 1 1 0)

α19 (0 0 0 0 1 1 1)

α20 (1 1 1 1 0 0 0)

α21 (1 0 1 1 1 0 0)

α22 (0 1 1 1 1 0 0)

α23 (0 1 0 1 1 1 0)

α24 (0 0 1 1 1 1 0)

α25 (0 0 0 1 1 1 1)

α26 (1 1 1 1 1 0 0)

α27 (1 0 1 1 1 1 0)

α28 (0 1 1 2 1 0 0)

α29 (0 1 1 1 1 1 0)

α30 (0 1 0 1 1 1 1)

α31 (0 0 1 1 1 1 1)

α32 (1 1 1 2 1 0 0)

α33 (1 1 1 1 1 1 0)

α34 (1 0 1 1 1 1 1)

α35 (0 1 1 2 1 1 0)

α36 (0 1 1 1 1 1 1)

α37 (1 1 2 2 1 0 0)

α38 (1 1 1 2 1 1 0)

α39 (1 1 1 1 1 1 1)

α40 (0 1 1 2 2 1 0)

α41 (0 1 1 2 1 1 1)

α42 (1 1 2 2 1 1 0)

α43 (1 1 1 2 2 1 0)

α44 (1 1 1 2 1 1 1)

α45 (0 1 1 2 2 1 1)

α46 (1 1 2 2 2 1 0)

α47 (1 1 2 2 1 1 1)

α48 (1 1 1 2 2 1 1)

α49 (0 1 1 2 2 2 1)

α50 (1 1 2 3 2 1 0)

α51 (1 1 2 2 2 1 1)

α52 (1 1 1 2 2 2 1)

α53 (1 2 2 3 2 1 0)

α54 (1 1 2 3 2 1 1)

α55 (1 1 2 2 2 2 1)

α56 (1 2 2 3 2 1 1)

α57 (1 1 2 3 2 2 1)

α58 (1 2 2 3 2 2 1)

α59 (1 1 2 3 3 2 1)

α60 (1 2 2 3 3 2 1)

α61 (1 2 2 4 3 2 1)

α62 (1 2 3 4 3 2 1)

α63 = α0 (2 2 3 4 3 2 1)

3. Involutions and semisimple elements

3.1. Involutions in G

The following result is found in [5], and gives information on the G-conjugacy of involutions.

Theorem 3.1. Each involution in G = E7(2) is conjugate to one of the following:
(i) t1 = xα0

(1);

(ii) t2 = xα59
(1)xα58

(1);

(iii) t3 = xα53(1)xα55(1)xα54(1);

(iv) t4 = xα48
(1)xα47

(1)xα49
(1);

(v) t5 = xα53
(1)xα49

(1)xα47
(1)xα48

(1).
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Proof. See [5, 16.1], using the fact that α0 = r27, α59 = r21, α58 = r23, α53 = r48, α55 = r18,
α54 = r19, α48 = r13, α47 = r14 and α49 = r15 (rj as defined in [5]).

Let Pi denote the maximal parabolic subgroup of G obtained by the removal of the ith node
from the Dynkin diagram. Also we use Qi to denote the maximal normal unipotent subgroup
of Pi, and Li its Levi complement.

Theorem 3.2. The maximal parabolic subgroups containing the centralisers of the
involutions of G are as follows:

(i) CG(t1) 6 P1;

(ii) CG(t2) 6 P6;

(iii) CG(t3) 6 P3;

(iv) CG(t4) 6 P7;

(v) CG(t5) 6 P2, P7.

Proof. See [5, 16.20].

Theorem 3.3. For t an involution of G, let U denote the maximal normal unipotent
subgroup of CG(t). The possible structures of CG(t) are as follows:

(i) CG(t1) = Q1L1 = P1. Moreover, Q1 is an extraspecial 2-group and so Q1/Z(Q1) has the
structure of an orthogonal space, upon which L1

∼= Ω+
12(2) acts irreducibly;

(ii) CG(t2) = UL, where U = Q6 and L ∼= Sp8(2)× Sym(3);

(iii) CG(t3) = UL, where U = CQ3
(t3) 6 Q3 and L ∼= Sym(3)× Sp6(2) 6 L3;

(iv) CG(t4) = UL, where U = Q7 and F4(2) ∼= L 6 L7;

(v) CG(t5) = UL, where U 6 Q2Q7 and Sp6(2) ∼= L 6 L2 ∩ L7
∼= L6(2).

Proof. See [5, 16.20].

In accordance with the Atlas [14] convention of largest centralisers having precedence, we
label the t1–t5 G-conjugacy classes by, respectively, 2A, 2B, 2D, 2C and 2E.

Lemma 3.4. Let t be an involution in the classes 2A, 2B, 2C, 2D or 2E of G. Then the
rank of 1 + t on the module V is 12, 20, 24, 28 or 28, respectively.

Proof. Firstly let us take the subgroup

L = 〈x±α0(1), x±α1(1), x±α3(1), x±α4(1), x±α5(1), x±α6(1), x±α7(1)〉 ∼= L8(2),

as the structure of involutions in the linear groups is well known. Now using the Meataxe
we know that as an L-module we have V ∼= Λ2(V8) ⊕ Λ2(V8)∗, where V8 denotes the natural
8-dimensional module for L8(2) in characteristic 2 and Λ2(V8) denotes its exterior square. Let
t be an involution of L8(2) with one Jordan block of size 2 and six Jordan blocks of size 1
on V8. Now t is centralised by an L6(2) in L and so must be a 2A-element since no other
involution is centralised by an element of order 31. Now such an involution has six Jordan
blocks when represented on both Λ2(V8) and Λ2(V8)∗ and hence the rank of 1 + t is 12. Let
s be an involution of L8(2) with two Jordan blocks of size 2 and four Jordan blocks of size 1
on V8. The element s is centralised by an Alt(8)× Sym(3) in L and so using [14] we see that
it must be a 2B-element. This involution has ten Jordan blocks when represented on both
Λ2(V8) and Λ2(V8)∗, and hence the rank of 1 + s is 20.
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Now we take a non-diagonal involution r in NG(7B) ∼ (7 : 2× 3D4(2)) : 3 (see § 4.2) which
inverts the 7B element (that is an involution in the dihedral group 7 : 2). Since r centralises
an element of order 13 it must be a 2C-element, just by consideration of the centraliser orders.
We find that dim(CV (r)) = 28 and the rank of 1 + r is 28. Now from [24] we know there is an
involution v in E6(2) whose centraliser contains Sym(3)×L3(2) and for which 1 + v has rank
12 on the minimal E6(2)-module V27. Now as an E6(2)-module we have V = 1⊕ 1⊕V27⊕V ∗27,
and so on V we see that the rank of 1+v is 24. This differs from the ranks so far accounted for
and so the corresponding involution v in G is either in 2D or 2E. However, Sp6(2) contains no
subgroups Sym(3)×L3(2) and so v must be in the class 2D. Finally we need to find the rank
of a 2E-involution. For this we turn to the 56-dimensional matrix representation of G over F2.
We take a 2E-involution u as described in [5] and find dim(CV (t4)) = 28. Thus 1 +u has rank
28 and we are done.

3.2. Semisimple classes

In preparation for the proof of Theorem 1.1, we require information on the structure of
centralisers of semisimple elements of E7(2). Frank Lübeck has produced a parametrization
of the conjugacy classes of E7(2), which is stored at [34]. It is well known that there are 128
conjugacy classes of semisimple elements in E7(2), and [34] gives the orders and structural
information of the centralisers of such elements. In this section we determine the number
of conjugacy classes of elements of each odd order appearing in E7(2), and write down the
structure of each centraliser in the detail we require for later calculations. The results are
recorded in Table 2. We also record, in Tables 3 and 4 respectively, the Brauer character

Table 2. Semisimple classes of E7(2).

x CG(x) |CG(x)|

3A 3.2E6(2).3 236.311.52.72.11.13.17.19

3B 3× Ω+
12(2) 230.39.52.72.11.17.31

3C 3× U7(2) 221.39.5.7.11.43

3D 3× Ω−10(2)× Sym(3) 221.38.52.7.11.17

3E 3.(U3(2)× U6(2)).3 218.310.5.7.11

5A 5× Ω−8 (2)× Sym(3) 213.35.52.7.17

7A 7× L6(2) 215.34.5.73.31

7B 7× 3D4(2) 212.34.73.13

7C 7× L3(2)× L2(8) 26.33.73

9A 9× 3D4(2) 212.36.72.13

9B 9× U5(2) 210.37.5.11

9C 9× U3(8) 29.36.7.19

9D 9× U4(2)× Sym(3) 27.37.5

9E 9× L2(8)× Sym(3) 24.35.7

9F [33].2.3.[22].[33].2 24.37

11A 11× 31+2 : 2.Alt(4) 23.34.11

13A 13× L2(8) 23.32.7.13

15A 15× Ω−8 (2) 212.35.52.7.17

15B 15×Alt(8)× Sym(3) 27.34.52.7

15C 15×Alt(8)× 3 26.34.52.7

15D 15×Alt(5)× (Sym(3))2 24.34.52

15E 5× 31+2
+ : 2.Alt(4)× Sym(3) 24.35.5

15F 15×Alt(5)× Sym(3)× 3 23.34.52
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Table 2. (Continued).

x CG(x) |CG(x)|

15G 5× 31+2
+ : 2.Alt(4)× 3 23.35.5

17AB 17×Alt(5)× Sym(3) 23.32.5.17

19A 19× 9 32.19

21A 21.L3(4).3 26.34.5.72

21B 21×Alt(8) 26.33.5.72

21CD 21× L2(8) 23.33.72

21E 63× L3(2) 23.33.72

21F 7× 31+2.
+ 2.Alt(4) 23.34.7

21G 21×Alt(5)× Sym(3) 23.33.5.7

21H 7× 3× 9 33.7

31ABC 31× L3(2) 23.3.7.31

33AB 11× 31+2 : 2.Alt(4) 23.34.11

33CDEFGH 11× 31+2 : 2 2.33.11

33I 11× 31+2 33.11

35A 35× 3× Sym(3) 2.32.5.7

39A 117 32.13

43ABC 43× 3 3.43

45AB 5× 9× Sym(3) 2.33.5

51AB 51×Alt(5) 22.32.5.17

51CD 51× Sym(3) 2.32.17

51EF 51× 3 32.17

57AB 19× 9 32.19

63ABC 63× L3(2) 23.33.72

63D 63× 7 32.72

63EFG 63× Sym(3) 2.33.7

63HIJ 63× 3 33.7

73ABCD 73 73

85ABCD 85× Sym(3) 2.3.5.17

91ABC 91 91

93ABC 93 93

99AB 99 32.11

105AB 35× 3× Sym(3) 2.32.5.7

105CDE 35× 3× 3 32.5.7

117ABC 117 32.13

127ABCDEFGHI 127 127

129ABCDEF 129 3.43

171ABCDEF 171 32.19

217ABCDEF 217 7.31

255ABCD 255 3.5.17

values and fixed-space dimensions of certain semisimple elements of G for both the 56- and
132-dimensional modules for G, as these values will be referenced in later proofs.

Lemma 3.5. There are five classes of elements of order 3 in G, with centralisers as in Table 2.

Proof. See [29], for example.
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Lemma 3.6. There is one G-conjugacy class of elements of order 5 in G. Any element in this
class has centraliser 5× Ω−8 (2)× Sym(3).

Proof. The subgroup E6(2) contains a full Sylow 5-subgroup of G (see [14]). This is an
elementary abelian group of order 52. Further, since E6(2) contains a unique class of elements
of order 5 we must have one class in G. The structure of the centraliser follows from [18]
and [24].

It is clear that to find the G-conjugacy classes of elements g of order pq in G (where (p, q) = 1)
we need to determine the CG(gp)-classes of elements of order p.

Table 3. Brauer character values of certain semisimple classes of G.

X χ56(g) χ132(g)

3A −25 51

3B 20 33

3C −7 6

3D 2 6

3E 2 −3

5A 6 7

7A 14 20

7B −7 13

7C 0 −1

9A −1 6

9B −10 18

9C −1 −3

9D 8 9

9E 2 0

9F −1 0

11A 1 0

Table 4. Dimensions of CV (g) for certain semisimple elements.

X CV56(g) CV132(g)

3A 2 78

3B 32 66

3C 14 48

3D 20 48

3E 20 42

5A 16 32

7A 20 36

7B 2 30

7C 8 18

9A 0 30

9B 0 26

9C 0 24

9D 12 20

9E 8 14

9F 6 14

11A 6 12
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Lemma 3.7. There are seven classes of elements of order 15 in G, with centralisers as in
Table 2. Furthermore the fifth powers of elements from these classes lie in the following classes
of G.

x 15A 15B 15C 15D 15E 15F 15G

x5 3B 3D 3A 3B 3E 3D 3C

Proof. Any element of order 15 in G must cube to an element in 5A, since this is the unique
class of elements of order 5 in G. By Lemma 3.6 we have CG(5A) ∼= 5×Ω−8 (2)× Sym(3). Now
from [14] we know that Ω−8 (2) has three classes of elements of order 3, and we can deduce
the structure of their centralisers. There is a class 3A with centraliser 3 × Alt(8), a class 3B
with centraliser 3 × Alt(5) × Sym(3) and a class 3C with soluble centraliser 31+2

+ : 2.Alt(4).
Also, there is clearly a unique class of elements of order 3 in Sym(3) and such elements are
self-centralising. Hence we find there are seven classes of elements of order 15 in G, with
centralisers as in the statement of the lemma. The G-conjugacy classes in which the fifth
powers of elements x lie were determined computationally.

Lemma 3.8. There are two classes of elements of order 45 in G, with centralisers as in
Table 2. In both cases the fifteenth power of such an element lies in the class 3E of G.

Proof. As in Lemma 3.7, any element of order 45 in G must power down to a 5A-element.
Again by Lemma 3.6, CG(5A) ∼= 5 × Ω−8 (2) × Sym(3) and from [14] we see that Ω−8 (2) has
a unique class of elements of order 9, and these are self-centralising. Hence there are two
classes of elements of order 45 in G, namely 45A with centraliser of order 2.33.5 and 45B with
centraliser of order 33.5. Furthermore, 9A-elements in Ω−8 (2) cube to 3C-elements in Ω−8 (2)
with centraliser of order 23.34. Hence, from Lemma 3.7 we deduce that the elements in 45A
and 45B both have fifteenth power in 3E of G.

Lemma 3.9. There is a unique class of elements of order 35 in G, with centraliser as in
Table 2. These elements power to 7A-elements in G.

Proof. From [14] we see that Ω−8 (2) has a unique class of elements of order 7 with cyclic
centraliser of order 21. This yields a unique class 35A in G with centraliser 35× 3× Sym(3).
Hence, any element of order 35 in G lies in this class, and upon finding such an element g ∈ G
and calculating dimCV (g), we find that the fifth power of g lies in 7A.

Lemma 3.10. There are five classes of elements of order 105 in G, with centralisers as in
Table 2.

Proof. By Lemma 3.9 any element of order 105 in G cubes to an element in 35A, and
CG(35A) ∼= 35 × 3 × Sym(3). Hence we obtain five classes of elements of order 105:
two classes with centraliser 35 × 3 × Sym(3) corresponding to elements (35A, 3A, 1A) in
CG(35A), two classes with centraliser 35 × 3 × 3 corresponding to elements (35A, 3A, 3A)
in CG(35A), and one class with centraliser 35× 3× 3 corresponding to elements (35A, 1A, 3A)
in CG(35A).

Lemma 3.11. There are four classes of elements of order 85 in G, with centralisers as in
Table 2.

Proof. From [14] we see that Ω−8 (2) has four classes of elements of order 17, all of which
are self-centralising. Using notation from [14], these form a master class and subsequent slave
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classes, 17A, 17B ? 2, 17C ? 3 and 17D ? 6, which immediately yield G-conjugacy classes 85A,
85B ? 2, 85C ? 3 and 85D ? 6, all of which have centraliser of the form 85× Sym(3).

Lemma 3.12. There are four classes of elements of order 255 in G, with centralisers as in
Table 2.

Proof. Any element of order 255 must cube to an 85-element. Using Lemma 3.11 we see that
each class of elements of order 85 in G yield a self-centralising class of elements of order 255,
and so we have 255A, 255B ? 2, 255C ? 3 and 255D ? 6.

Lemma 3.13. There are three classes of elements of order 7 in G, with centralisers as in
Table 2.

Proof. Since |G|7 = 73 and |E6(2)|7 = 73, the subgroup E6(2) contains a full Sylow
7-subgroup of G. From [24] we know that S ∈ Syl7(E6(2)) is elementary abelian of order 73.
There are four classes of elements of order 7 in E6(2), namely 7AB with centraliser 7×3D4(2),
7C with centraliser 7 × L3(2) × L3(2) and 7D with centraliser 72 × L3(2). On the minimal
module V27 for E6(2) we have dimCV27

(7AB) = 0, dimCV27
(7C) = 9 and dimCV27

(7D) = 3.
Now as an E6(2)-module we know that V = 1 ⊕ 1 ⊕ V27 ⊕ V ∗27. Hence these elements in
G have fixed spaces of dimensions 2, 2, 20 and 8 on V for elements in 7A, 7B, 7C and 7D,
respectively. Hence the only possible fusion is between 7A and 7B classes in E6(2). Indeed these
classes fuse under the graph automorphism of E6(2), and since E6(2) : 2 6 G we have
three classes 7A, 7B and 7C in G. The structure of their centralisers follows from [18].

Lemma 3.14. There are eight classes of elements of order 21 in G, with centralisers as in
Table 2.

Proof. Consider first those 21-elements whose cube is a 7A-element. Now

CG(7A) ∼= 7× L6(2)

and L6(2) has three classes of elements of order 3. There is a class 3A with centraliser 3.L3(4).3,
a class 3B with centraliser 3 × Alt(8), and a class 3C with centraliser 3 × Alt(5) × Sym(3).
Each of these yields a corresponding class of elements of order 21 in G. Now 7B-elements in
G have centraliser 7 × 3D4(2), and from [14] we see that 3D4(2) has two classes of elements
of order 3. These are a class 3A with centraliser 3 × L2(8) and a class 3B with centraliser
31+2.
+ 2.Alt(4). Finally, there are 21-elements in G whose cube is in the class 7C. Recall that
CG(7C) ∼= 7 × L3(2) × L2(8). Now L3(2) contains a unique class of elements of order 3, and
these are self-centralising. Further L2(8) also contains a unique class of elements of order 3,
whose centraliser is a cyclic subgroup of order 9. Hence there are three G-conjugacy classes
of elements of order 21 whose cube is in 3C, a class with centraliser 21 × L2(8), a class with
centraliser 63× L3(2) and a class with centraliser 7× 3× 9.

Lemma 3.15. There are ten classes of elements of order 63 in G, with centralisers as in
Table 2.

Proof. Any element of order 63 has ninth power in either 7A, 7B or 7C in G. We begin by
looking at the 7A case. Now CG(7A) ∼= 7×L6(2), and there is a unique class of elements of order
9 in L6(2). These have centraliser of order 32.7 in L6(2), and so we obtain a class of elements
of order 63 with centraliser of shape 63 × 7. In the 7B case we have CG(7B) ∼= 7 × 3D4(2).
Now the group 3D4(2) has three classes 9A, 9B ? 2 and 9C ? 4, all of which have centraliser
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of 63 × Sym(3) in 3D4(2). Thus we obtain three classes of elements of order 63, each with
centraliser of size 2.33.7. Finally, we look at the case where the element of order 63 powers to a
7C-element in G. We know that CG(7C) ∼= 7×L3(2)×L2(8). Now L3(2) contains no elements
of order 9 but does have a unique class of elements of order 3, which are self-centralising. The
group L2(8) has three self-centralising classes of elements of order 9, namely 9A, 9B ? 2 and
9C ? 4. Hence we obtain three classes of elements of order 63 with centraliser 63 × L3(2)
and three class of elements of order 63 with centraliser 63× 3.

Lemma 3.16. There are six classes of elements of order 217 in G. Each class is self-
centralising.

Proof. Examining the orders of the centralisers of elements of order 7 in G we see that only
7A-elements are centralised by elements of order 31. Furthermore, L6(2) has six classes of
elements of order 31 (a master class and its slaves), all of which are self-centralising. Thus
we see immediately that there are six classes of elements of order 217 in G, and these are all
self-centralising.

Lemma 3.17. There is a unique class of elements of order 13 in G, and such elements have
centraliser 13× L2(8).

Proof. Note that E6(2) contains a full Sylow 13-subgroup of G. From [24] we know there is a
single conjugacy class of elements of order 13 in E6(2), and hence a single class 13A of elements
of order 13 in G. Moreover, we can deduce from [18] that these have centraliser 13×L2(8), as
claimed.

Lemma 3.18. There is a unique class of elements of order 39 in G, and such elements have
centraliser 117.

Proof. Any element of order 39 in G must cube to a 13A-element. Using Lemma 3.17 and
the fact that L2(8) contains a unique conjugacy class of elements of order 3 yields a single
class 39A in G, with cyclic centraliser of order 117.

Lemma 3.19. There are three classes of elements of order 91 in G. These are all self-
centralising.

Proof. The seventh power of any element of order 91 in G must lie in the class 13A. Now
Lemma 3.17 and knowledge that L2(8) contains three self-centralising classes of elements of
order 9 yields the result.

Lemma 3.20. There are three classes of elements of order 117 in G.

Proof. Any element of order 117 in G powers down to a 13A-element. Again, using
Lemma 3.17 and the fact that L2(8) contains three classes of elements of order 9 allows
us to deduce that G contains three classes of elements of order 117 in G, all of which are
self-centralising.

Lemma 3.21. There are two classes of elements of order 17 in G. These both have centraliser
17×Alt(5)× Sym(3).

Proof. Using [14] we see that the subgroup E6(2) contains a full Sylow 17-subgroup of
G, and contains two classes of elements of order 17; in fact there is a unique class of cyclic
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subgroups of order 17 in E6(2). Hence there are at most two classes of elements of order 17
in G and the only possibility is that these two classes fuse in G. However, computation of
Brauer character values on V yields 17-elements g1 and g2 with χ(g1) 6= χ(g2), where χ is the
character afforded by the G-module V . Indeed, we find elements g1 and g2 of order 17 in G
with Brauer character values

χ(g1) =−4ξ − 4ξ2 − 6ξ3 − 4ξ4 − 6ξ5 − 6ξ6 − 6ξ7 − 4ξ8 − 4ξ9

−6ξ10 − 6ξ11 − 6ξ12 − 4ξ13 − 6ξ14 − 4ξ15 − 4ξ16

and

χ(g2) =−6ξ − 6ξ2 − 4ξ3 − 6ξ4 − 4ξ5 − 4ξ6 − 4ξ7 − 6ξ8 − 6ξ9

−4ξ10 − 4ξ11 − 4ξ12 − 6ξ13 − 4ξ14 − 6ξ15 − 6ξ16,

where ξ is a primitive seventeenth root of unity. Hence the potential fusion does not occur.
Finally, we see from [18] that any element of order 17 in G has centraliser 17 × Alt(5) ×
Sym(3).

Lemma 3.22. There are six classes of elements of order 51 in G.

Proof. We know that Alt(5) contains a single conjugacy class of elements of order 3, as does
Sym(3). Furthermore, in both these groups the 3-elements are self-centralising. Thus there
are three classes of elements of order 51 which cube to 17A-elements. These have centralisers
51 × Alt(5), 51 × Sym(3) and 51 × 3. Likewise, we get three classes for elements of order 51
which cube to 17B-elements, accounting for the six classes claimed in the statement of the
lemma.

Lemma 3.23. There is a unique class of elements of order 11 in G, and such elements have
centraliser 11× 31+2 : 2.Alt(4).

Proof. Using the Dynkin diagram of type E7, we see that G contains a subgroup Sp10(2).
Such a subgroup contains a full Sylow 11-subgroup of G, and contains a unique conjugacy
class of elements of order 11. Thus there is a unique class 11A in G. From Lemma 3.5 we
have CG(3A) ∼ 3.2E6(2).3. Further, this lemma implies that 3A-elements are conjugate in
G to their inverses, and so we have NG(3A) ∼ 3.2E6(2).Sym(3). From the character table
of 2E6(2).Sym(3) (which is stored in [20] for example) we deduce that NG(3A) contains a
unique class of elements of order 11. Now using Lemma 3.5 again we see that NG(〈z〉) ∼
3.(U3(2)×U6(2)).3 for any element z ∈ 3A. Moreover, using the character table library in [20]
we see that for any 11-element x in NG(〈z〉) we have CNG(〈z〉)(x) ∼ 11 × 31+2 : 2.Alt(4).
Hence CNG(〈z〉)(x) has order 23.34.11, and we know from [18] that this is the order of the full
centraliser in G.

Lemma 3.24. There are nine classes of elements of order 33 and two classes of elements of
order 99 in G.

Proof. From Lemma 3.23 we know that any element of order 33 in G must cube to an
11A-element. Recall that CG(11A) ∼ 11× 31+2 : 2.Alt(4). Now let g be an 11A-element in G
and set K = CG(g). Let C denote the direct factor 31+2 : 2.Alt(4) of K, with C the factor
group C/Z(C). Now C ∼ 32 : 2.Alt(4), and C has five classes of elements of order 3. One of
these lies in the core of C and has centraliser of order 33. This pulls back to C to yield a single
class of elements of order 33 in G with centraliser of order 33.11. There are two classes which
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have centraliser of size 2.32 in C. Each one of these classes pulls back to give three classes of
elements of order 33 in G with centraliser of size 2.33.11 (that is, there are six such classes
in total). Finally, we need to consider pulling back the identity element of C. This yields two
classes of elements of order 33 in G, both with centraliser 11× 31+2 : 2.Alt(4). This accounts
for nine classes of elements of order 33 in G. We now look at the elements of order 99 in G.
Now there are two classes of elements of order 3 in C with centraliser of size 32. These both
pull back to give two classes of elements of order 9 and hence two G-classes of elements of
order 99 in G with centraliser of size 32.11.

Lemma 3.25. There are three classes of elements of order 43 in G. These have centraliser
43× 3.

Proof. We know from Lemma 3.5 that for 3C-elements we have

NG(3C) ∼ (3× U7(2)) : 2.

Now U7(2) contains a full Sylow 43-subgroup of G, and calculations in U7(2) : 2 reveal that
for any element g of order 43 the normaliser NU7(2):2(〈g〉) is a Frobenius group 43 : 14. Hence
we know that there are at most three classes of elements of order 43 in G. That these classes
do not fuse in G is proved by the fact that we can compute three different Brauer character
values for elements of order 43 in G on V , in a similar manner to the proof of Lemma 3.21.
Finally, elements in each of these classes are clearly centralised by a 3C-element and that this
is the full centraliser is apparent from [18].

Lemma 3.26. There are six classes of elements of order 129 in G and all are self-centralising.

Proof. This follows immediately from Lemma 3.25.

Lemma 3.27. There are nine classes of elements of order 127 in G and all are self-centralising.

Proof. We know from [27] that G contains (maximal) subgroups of the form L2(128) : 7.
Now L2(128) : 7 contains elements of order 127, and if g is such an element then 〈g〉 must be a
Sylow 127-subgroup of G. Thus any element of order 127 in G lies in a subgroup L2(128) : 7.
Now any 127-element g ∈ L2(128) : 7 has normaliser 127 : 14 and hence contains 9 classes of
elements of order 127. These do not fuse in G by Brauer character value considerations and
account for all of the non-trivial semisimple classes of G whose centralisers are divisible by
127. That they are self-centralising again follows from [18].

Lemma 3.28. There is a unique class of elements of order 19 in G, and these have centraliser
19× 9.

Proof. From [14] we see that 19 divides |2E6(2)|, and hence

NG(3A) ∼ 3.2E6(2).Sym(3)

contains a full Sylow 19-subgroup of G. The character table of the group 2E6(2).Sym(3) is
in the Gap [20] character table library and we find that NG(3A) contains a unique class of
elements of order 19. Hence we have a single class 19A of elements of order 19 in G. Now an
element of order 19 in NG(3A) has centraliser 9 × 19 and using [18] we see that this is the
order of the full centraliser in G.
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Lemma 3.29. There are two classes of elements of order 57 in G, and these both have
centraliser of order 32.19.

Proof. Any element of order 57 cubes to a 19A-element and CG(19A) ∼= 19 × 9 from
Lemma 3.28. Now a cyclic subgroup of order 9 contains two elements of order 3 which are
non-conjugate since the group is abelian. Hence we obtain two classes of order 57 in G with
centraliser as claimed.

Lemma 3.30. There are six classes of elements of order 171 in G and these are all self-
centralising.

Proof. We argue as in the proof of Lemma 3.29 but taking the six elements of order 9 in the
cyclic subgroup.

Lemma 3.31. There are three classes of elements of order 31 in G. These all have centraliser
31× L3(2).

Proof. Note that Sp10(2) contains a full Sylow 31-subgroup of G. From the character table
of Sp10(2) we know that it contains three classes 31ABC (master and slave classes). The
possibility that these three classes fuse in E7(2) is negated by Brauer character computations,
and the centraliser is found by referring to [18].

Lemma 3.32. There are three classes of elements of order 93 in G. These are all self-
centralising.

Proof. Any element of order 93 cubes into one of the three classes of elements of order 31 in
G. Suppose this class is 31A. Then CG(31A) ∼= 31×L3(2), and since L3(2) has a unique class
of elements of order 3 which are self-centralising, this yields a G-conjugacy class 93A which
is self-centralising. Similarly, we get a class each for the cases 31B and 31C and so a total of
three classes as claimed.

Lemma 3.33. There are four classes of elements of order 73 in G, all of which are self-
centralising.

Proof. Since 73 divides |E6(2)| we have that E6(2) contains a full Sylow 73-subgroup of G.
From the character table of E6(2) we know it contains eight classes of elements of order 73
which are all self-centralising. Since for any E6(2)-subgroup of G the automorphism group
E6(2) : 2 is also contained in G, these fuse to four classes in E7(2). Any further fusion is ruled
out by the computation of Brauer characters. That these elements are self-centralising is seen
by referring to [18].

Lemma 3.34. There are six classes of elements of order 9 in G, with centralisers as in Table 2.
Moreover, elements from classes 9A and 9C cube into the class 3A, while elements from the
remaining classes of elements of order 9 cube into the class 3E.

Proof. There are exactly 128 G-conjugacy classes of semisimple elements, and thus far we
have accounted for 122 such classes. Therefore there are at most six classes of elements of
order 9 in G. We attack this problem computationally, finding six representatives of elements
of order 9 which are non-conjugate in G. We distinguish between elements in differing classes
by comparing the dimensions of their fixed spaces on V or their Brauer character values. In
each case we generate the centraliser by using the method of [7].
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4. Almost simple subgroups in Lie(2)

4.1. Non-existence of certain subgroups

Lemma 4.1. Suppose that H is isomorphic to L2(256), U3(16), Sz(32), Sz(128), U4(4) or
Sp6(4). Then H is not a subgroup of G.

Proof. In each case we apply Lagrange’s theorem to deduce that H cannot be contained
in G.

Lemma 4.2. Suppose that H is isomorphic to L2(64), Sp4(8), L4(8), U4(8) or Sp6(8). Then
H is not a subgroup of G.

Proof. First suppose that H ∼= L2(64). Then H contains an element of order 13, and such an
element has cyclic centraliser of order 65 in H. However, by Lemma 3.17 there is a unique class
of elements of order 13 in G and CG(13A) ∼= 13×L2(8), which does not contain any elements
of order 5. Thus H cannot be contained in G. Now observe that L2(64) ∼= Sp2(64) 6 Sp4(8),
whence Sp4(8) cannot be a subgroup of G. However, Sp4(8) is a subgroup of L4(8) and
Sp6(8), and is also contained in U4(8) (see [39], for example), so these latter three groups
also cannot be contained in G.

Lemma 4.3. Suppose that H is isomorphic to L3(4), U3(4), Sz(8), G2(4) or L3(16). Then
H is not a subgroup of G.

Proof. In each case we find that there is no possible restriction of Brauer characters of H
to V , thus showing that H cannot be a subgroup of G. For the majority of cases this can be
easily demonstrated using the Brauer character table of H, the relevant pieces of which are
contained in Tables A.13, A.18, A.30 and A.32, and the values of the Brauer characters of G
given in Table 3. However if H ∼= L3(16), then we note that H contains a maximal subgroup
which is isomorphic to U3(4). It is now easily seen from the Brauer character table of U3(4)
that such a subgroup cannot be contained in G, and so H 66 G.

4.2. Normalisers of cyclic subgroups of order 7

(Electronic files folder /Cyclic7Normalisers)
In proving a number of results which follow we make use of normalisers of certain cyclic

subgroups of order 7. Here we describe how to construct computationally the normalisers of
subgroups X 6 G, where X = 〈x〉 and x is an element from class 7B or 7C. First we have the
case x ∈ 7C. We first construct the subgroup

H = 〈xα±0
(1), xα±1

(1)〉 × 〈xα±6
(1), xα±7

(1)〉
∼=L3(2)× L3(2)

before finding x ∈ H such that x has order 7 and CV (x) has dimension 8 (such an x projects
non-trivially onto both factors of H). Thus x ∈ 7C, and x is inverted by an involution t which
lies in the Weyl group of G and swaps the root α0 with α1 and the root α6 with α7. Set X = 〈x〉,
and note that [NG(X) : CG(X)] 6 6. To construct NG(X) computationally, we first construct
the normaliser of X in a variety of subgroups generated by fundamental root generators, along
with x±α0 . Adding t to our generating set, this yields a subgroup K 6 NG(X) where

K ∼ ((7× L3(2)) : 2× 7) : 3.

At this stage, to complete the construction of the full normaliser we might look to apply
the method of [7] with the elements x and t. However, experimental evidence suggests that the
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method of [7] is unsuccessful when applied with these elements (or at least very inefficient). We
therefore take an element y of order 7 in K such that CV (y) has dimension 20. Note that y may
be chosen to also be inverted by t, so we may apply [7] with this pair of elements and construct

CG(y) ∼= 7× L6(2).

We now check that

〈K,NCG(y)(X)〉 ∼ ((7× L3(2)) : 2× L2(8)) : 3,

which must be all of NG(X) by order considerations.
For x ∈ 7B the method is very similar. In fact, we find that a direct application of [7] (using

x and the inverting involution t) yields the full normaliser

NG(X) ∼ (7 : 2× 3D4(2)) : 3.

Lemma 4.4. Let X = 〈x〉 be a cyclic group of prime order, with W a finite dimensional
KX-module, where K is some field. Suppose R, S are isomorphic irreducible X-submodules
of W with dimension n, and that X acts transitively on the set of non-zero vectors of R,
respectively S. Set u := r0+s0, where u 6= 0, r0 ∈ R, s0 ∈ S, and set U = 〈u, ux, . . . , uxn−1〉 ⊆
W . Then U is an X-module, and is isomorphic to R (and S).

Proof. When either r0 = 0 or s0 = 0 the result is clear, so assume that this is not the case. If
R = S, then since X acts transitively on the non-zero vectors of R we have r0x

i = u for some i,
and multiplication by xi is an X-module isomorphism between R and U , as required. Suppose
then that R 6= S. If dim(U) < n then in particular uxn−1 =

∑n−2
i=0 kiux

i for some ki ∈ K. Since

both R and S are irreducible we have R∩S = {0}, and so we must have r0x
n−1 =

∑n−2
i=0 kir0x

i,
a contradiction since R is irreducible with dimension n. Thus dim(U) = n. Let θ : R → S
be an X-module isomorphism, which exists by assumption. Since X acts transitively on the
non-zero vectors of S, we must have r0θx

i = s0 for a suitable choice of i, and since θxi : R→ S
is also an X-module isomorphism, without loss of generality we may assume that r0θ = s0.

We now show that U is X-invariant. Clearly it suffices to show that uxn is a linear
combination of {u, ux, . . . , uxn−1}. Using the fact that θ is an X-module isomorphism, we have

uxn = (r0 + s0)xn = r0x
n + s0x

n = r0x
n + r0θx

n = r0x
n + r0x

nθ.

Now, since dim(R) = n we have

r0x
n + r0x

nθ=

n−1∑
i=0

air0x
i +

(n−1∑
i=0

air0x
i

)
θ

=

n−1∑
i=0

air0x
i +

(n−1∑
i=0

air0θx
i

)

=

n−1∑
i=0

air0x
i +

(n−1∑
i=0

ais0x
i

)

=

n−1∑
i=0

ai(r0 + s0)xi

=

n−1∑
i=0

aiux
i.

Thus dim(U) = n, as claimed. We now define a map φ : R→ U by setting (r0x
i)φ := uxi, for

0 6 i 6 n − 1, and extending linearly. It is straightforward to check that φ is an X-module
homomorphism, and the result follows.
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Before stating our next results we note that if X is a cyclic group of order 7 then there are
exactly three isomorphism classes of irreducible X-modules over F2, namely one consisting of
the trivial module, and two isomorphism classes of 3-dimensional modules.

Lemma 4.5. Suppose X = 〈x〉, where x ∈ 7C. As an X-module we have

V = V1 ⊕ V2 ⊕ CV (X)

where V1 =
⊕8

i=1 Ui and V2 =
⊕8

j=1 Ũj . The subspaces Ui lie in one isomorphism class of

irreducible 3-dimensional X-modules, and the subspaces Ũj lie in the other. Denote by Uk the
set of irreducible 3-dimensional X-submodules of V which are contained in Vk, for k = 1, 2.
Then StabNG(X)(V1) = StabNG(X)(V2), and Uk breaks up into 35 orbits under the action of
this subgroup, with lengths as follows.

Orbit length No. of orbits

254 016 6
84 672 4
63 504 4
36 288 2
31 752 2
21 168 4
12 096 3
10 584 1
3 528 2
2 646 1
1 512 1

441 1
378 1
216 1
63 1
9 1

Moreover, representatives for these orbits are included in the accompanying electronic file
/RepsNx7C.

Proof. It is straightforward to check that StabNG(X)(V1) = StabNG(X)(V2), and this
subgroup has index 2 in NG(X), with V t1 = V2, where t is any involution which inverts x.
Since |X| = 7 and any 3-dimensional subspace of V contains exactly 7 non-zero vectors,
X must act transitively on the non-zero vectors of any 3-dimensional X-submodule of V .
Therefore we may apply Lemma 4.4 to see that if 0 6= v ∈ V1, then U = 〈v, vx, vx2〉 ∈ U1.
Moreover, since U is irreducible it is the unique submodule in U1 which contains v. Since there
are 224− 1 non-zero vectors in V1, we deduce that there are (224− 1)/7 = 2 396 745 irreducible
3-dimensional X-submodules of V1 (and similarly of V2). Write S = StabNG(X)(V1). By making
suitable choices of v and constructing the orbits of the corresponding U under the action of S
(using Magma’s Orbit command), we find a complete set of S-orbit representatives for U1,
with lengths as given in the statement of the lemma. Note that since also S = StabNG(X)(V2),
and V2 is NG(X)-conjugate to V1, the S-orbits of U1 will be in one-to-one correspondence with
those of U2.

Lemma 4.6. Suppose X = 〈x〉, where x ∈ 7B. As an X-module we have

V = V1 ⊕ V2 ⊕ CV (X)

https://doi.org/10.1112/S1461157015000030 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000030


342 j. ballantyne, c. bates and p. rowley

where V1 =
⊕9

i=1 Ui and V2 =
⊕9

j=1 Ũj . The subspaces Ui lie in one isomorphism class of

irreducible 3-dimensional X-modules, and the subspaces Ũj lie in the other. Denote by Uk the
set of irreducible 3-dimensional X-submodules of V which are contained in Vk, for k = 1, 2.
Then StabNG(X)(V1) = StabNG(X)(V2), and Uk breaks up into 19 orbits under the action of
this subgroup, with lengths as follows.

Orbit length No. of orbits

3 302 208 2
2 935 296 2
1 257 984 1
1 100 736 2

978 432 2
825 552 1
179 712 1
117 936 1
52 416 2
17 472 2
17 199 1
2 457 1

1 1

Moreover, representatives for these orbits are included in the accompanying electronic file
RepsNx7B.

Proof. We follow the same process as in the proof of Lemma 4.5, noting that in this case V1
and V2 contain (227 − 1)/7 = 19 173 961 irreducible 3-dimensional X-submodules of V .

4.3. Subgroups which fix a vector or hyperplane

Since V is a self-dual G-module, a subgroup H of G fixes a non-zero vector of V if and
only if it fixes a hyperplane of V . Unless otherwise stated, the dimensions (as F2-spaces)
of the cohomology groups referred to in this section were calculated using Magma’s
CohomologicalDimension command. We use Proposition 2.5 throughout this section and
without comment.

Lemma 4.7. Suppose that H 6 G with Soc(H) ∼= Sp4(4). Then H fixes a non-zero vector
of V .

Proof. First suppose that H ∼= Sp4(4). Consulting Table A.27, we see that there are only
two possible F2-character restrictions of H to V , namely

8χ1 + 2χ2 + 2χ5

and
8χ1 + 2χ3 + 2χ4.

We have

dim(H1(Sp4(4), χ2)) = 2,

dim(H1(Sp4(4), χ3)) = 2,

dim(H1(Sp4(4), χ4)) = 0

and
dim(H1(Sp4(4), χ5)) = 0
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(the first two equalities are found in [13]). Thus we see that in both cases H must fix a non-zero
vector of V . Now suppose that H ∼ Sp4(2).2. Then by the above and Lemma 2.4 we have that
H again fixes a non-zero vector of V . Finally we note that there is no possible F2-character
restriction of Aut(Sp4(4)) ∼ Sp4(4).4 to V , and so this group cannot embed in G.

Lemma 4.8. Suppose that H 6 G with Soc(H) ∼= U3(8). Then H fixes a non-zero vector
of V .

Proof. Using Table A.20, the only possible character restriction is 2χ1 + χ3, and it is
immediate in this case that if H ∼= U3(8) then H must fix a vector or hyperplane. Now
let A = Aut(H), and note that

A ∼ U3(8).(Sym(3)× 3).

In view of Lemma 2.4, to complete the proof we must show that any subgroups of A
which contain H as an odd-index subgroup fix a non-zero vector of V . Up to A-conjugacy
there are four such subgroups of A, which we label U3(8) : 31, U3(8) : 32, U3(8).33 and
U3(8).32, following [40]. Portions of the F2-character tables of these groups are given in
Tables A.21–A.24, respectively. For U3(8) : 31 we see that the only possible character
restrictions are sums of two trivial characters and one other character, and so any U3(8) : 31
subgroup must fix a non-zero vector of V , while for U3(8) : 32, U3(8).33 and U3(8).32 we find
there are no possible character restrictions, and so these groups cannot be contained in G.

Lemma 4.9. Suppose that H 6 G with Soc(H) ∼= L3(8). Then H fixes a non-zero vector
of V .

Proof. Suppose first that H ∼= L3(8). Using Table A.14, the only possible character
restrictions of H to V consist of two trivial characters and two characters of degree 27. Duality
considerations mean the pair of 27-dimensional characters must be (χ5, χ6), (χ7, χ8) or (χ9,
χ10). Now for x ∈ H an element of order 7 we have (χ5 + χ6)(x) = 5, (χ7 + χ8)(x) = −9 and
(χ9+χ10)(x) = 12, leading us to deduce that the only possible restriction is 2χ1+χ7+χ8. Since
dim(H1(L3(8), χ7)) = 0 and dim(H1(L3(8), χ8)) = 0, we deduce that H must fix a non-zero
vector of V . A similar method, using Table A.15, proves the result for H ∼ L3(8) : 3.

Lemma 4.10. Suppose H 6 G with Soc(H) ∼= L2(16). Then H fixes a non-zero vector of V .

Proof. First assume that H ∼= L2(16). The information in Table A.4 shows that there are
three possible F2-character restrictions of H to V . These are

8χ1 + 2χ2 + 2χ5,

8χ1 + 2χ3 + 2χ4

and

16χ1 + χ2 + 2χ4.

Since dim(H1(L2(16), χ2)) = 4 and dim(H1(L2(16), χi)) = 0 for i = 3, 4, 5, we see that in all
cases H must fix a non-zero vector of V . Since Aut(L2(16)) ∼ L2(16).4, we may use Lemma 2.4
to show that any group H with Soc(H) ∼= L2(16) must also fix a non-zero vector of V .
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Since Aut(L2(16)) ∼ L2(16).4, we may use Lemma 2.4 to show that any group H with
Soc(H) ∼= L2(16) must also fix a non-zero vector of V .

Lemma 4.11. Suppose H 6 G with H ∼= L2(32). Then H fixes a non-zero vector of V .

Proof. (Electronic files folder /L2(32)) We first use Table A.9 to deduce that there
is only one possible character restriction of H to V , namely 4χ1 + 2χ2 + χ5. We now
consider Soc(VH). The character χ5 corresponds to the Steinberg module and hence is
projective. Consequently, Soc(VH) must contain an irreducible H-module corresponding
to χ5, along with at least one further irreducible H-module corresponding to either χ1

or χ2. If such a module corresponds to χ1 then H must fix a non-zero vector, and
we are done. We therefore suppose that Soc(VH) contains a module W corresponding
to χ2.

Our aim is to consider possible candidate modules for W , and investigate the possibility
that H 6 StabG(W ). We first take the subgroup

L = 〈x±α4
(1), x±α5

(1), x±α6
(1), x±α7

(1)〉 ∼= L5(2)

and find a subgroup X = 〈x〉 of L with order 31. Note that this lies in the unique G-conjugacy
class of subgroups of order 31. We next generate the group

K = (31 : 5× L3(2)) : 2

which contains all the involutions of G which invert x in a single K-conjugacy class. Now
taking t to be such an involution we have that H must contain some G-conjugate of 〈X, t〉, so
without loss of generality we assume 〈X, t〉 6 H.

As an X-module, V decomposes as

VX = CV (X)⊕ V1 ⊕ V t1 ⊕ V2 ⊕ V t2 ⊕ V3 ⊕ V t3 .

Here V1 and V2 are 5-dimensional irreducible X-modules, while V3 =
⊕3

i=1 Ui with the Ui also
5-dimensional irreducible X-modules. Moreover, the isomorphism classes of the irreducible
modules contained in V1, V t1 , V2, V t2 , V3 and V t3 are all pairwise disjoint. By considering the
possible irreducible modules for L2(32) over F2, we see that the irreducible H-module W must
decompose as an X-module as

W = U ⊕ U t,

where U is an irreducible X-module of dimension 5. Thus, using the decomposition of VX
above, we may construct a set of candidate subspaces for W . We find that, up to K-conjugacy,
there are only five possible candidates for W . We denote this set of five subspaces by W.

For each subspace W ∈ W we now wish to consider StabG(W ). Due to the size of G, it is not
possible to simply construct these stabilisers using standard Magma commands. We therefore
proceed as follows. We observe that the centraliser of an involution in L2(32) is an elementary
abelian group of order 32. Hence, if H 6 StabG(W ), we would expect StabG(W ) ∩ CG(t)
to contain such a subgroup. We therefore construct CG(t) using Bray’s method [11], before
finding a set S of Sylow 2-subgroups of CG(t) such that all involutions of CG(t) are contained
in the union of the subgroups from S. Since the subgroups from S are 2-groups they are
unipotent subgroups of G, and for each S ∈ S we may calculate StabS(W ) using the Magma
command UnipotentStabiliser. We then construct the subgroups Q of StabG(W ) which are
generated by the groups StabS(W ), as S runs through S.

The results are as follows. For all but one subspace W ∈ W we find that no elementary
abelian subgroup of order 32 lies in Q, and hence H cannot stabilise W ; while for the remaining
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candidate we find that both Q and X fix a non-zero vector in V . Since an L2(32) is generated
by an element of order 31 and the centraliser of any of its involutions, we deduce that H must
also fix a non-zero vector in V , which completes the proof.

Lemma 4.12. Suppose H 6 G with H ∼= L2(32) : 5. Then H fixes a non-zero vector of V .

Proof. Let H ′ 6 H be isomorphic to L2(32), and let K 6 H be a subgroup of order
5. By Lemma 4.11 there exists a non-zero vector v ∈ V which is fixed by H ′. Let W =
〈vK〉. Then W is a module for H, and consulting Table A.10 we deduce that W is either
irreducible corresponding to the character χ2, or is the trivial module. Now by considering
Brauer character values on elements of order 5 we see that the latter case must hold, and so
H must fix a non-zero vector of V .

Our next set of results is concerned with the case of potential subgroups of G with socle
isomorphic to L3(2). It is possible to show non-maximality of such subgroups by using similar
arguments to those in the proof of Lemma 4.20. However, we require more detailed results for
use in later proofs.

Lemma 4.13. There are two classes of Frobenius group 7C : 3 in G. One of these classes has
elements of order 3 in class 3D, while the other has elements of order 3 in class 3E.

Proof. For z ∈ 7C, we generate N = NG(〈z〉) ∼ ((7 × L3(2)) : 2 × L2(8)) : 3 using the
method of § 4.2. We may now check that within N there are two classes of elements of order
3 which act non-trivially on 〈z〉, which lie in the classes 3D and 3E of G, respectively.

Lemma 4.14. There are two classes of Frobenius group 7B : 3 in G. One of these classes has
elements of order 3 in class 3D, while the other has elements of order 3 in class 3E.

Proof. Let z ∈ 7B in G. As in § 4.2 we generate

NG(〈z〉) ∼ (7 : 2× 3D4(2)) : 3.

From the character table of 3D4(2) : 3 in [14] we see that there are four classes of outer
elements of order 3, with any such element x lying in a distinct 3D4(2) : 3-conjugacy class
from x2. Since x will clearly lie in the same Frobenius group as x2, we deduce that there are at
most two G-conjugacy classes of Frobenius groups 7B : 3. Now computationally we determine
that there are 3-elements in such groups which lie in the G-conjugacy classes 3D and 3E, and
the result follows.

Lemma 4.15. Suppose H 6 G with H ∼= L3(2), where elements of orders 3 and 7 in H fuse
to the classes 3D and 7C of G, respectively. Then H fixes a non-zero vector in V .

Proof. (Electronic files folder /L3(2)) Let 〈z, x〉 ∼= 7C : 3D, where z ∈ 7C and x ∈ 3D. By
Lemma 4.13, we see that up to G-conjugacy, any L3(2) subgroup of G of the form stated in
the lemma must contain 〈z, x〉. We first generate the normaliser

NG(〈x〉) ∼ (3× Ω−10(2)) : 2× Sym(3)

by constructing the normaliser NS(〈x〉) in various small well-known subgroups S 6 G
(primarily those we can easily generate from the root elements), and using the method of [7]
to complete generation of the full normaliser. We now need to consider involutions in NG(〈x〉)
which invert x. From [14] we see that the subgroup Ω−10(2) : 2 has three classes of outer
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involutions. This yields six such classes in N = NG(〈x〉) as given below, when taking into
account the unique class of involutions in the subgroup Sym(3).

x ∈ X Class in G |xN |

(2E, 1) 2B 1 584
(2F, 1) 2D 8 482 320
(2G, 1) 2E 101 787 840

(2E, 2A) 2C 4 752
(2F, 2A) 2E 25 446 960
(2G, 2A) 2E 305 363 520

We wish to consider the subgroups 〈z, x, t〉, where t is an involution lying in one of the classes
given above, and check whether they are isomorphic to L3(2). Note that we need only take
one representative from each orbit of each class under NG(〈z, x〉). The size of many of these
classes prohibits simply running through them directly. Therefore we take a subgroup OP ∼
Ω−10(2) : 2 in its 495-degree permutation representation (see [40]). We then take OM 6 NG(〈x〉)
with OM ∼ Ω−10(2) : 2 as a 56-dimensional matrix group, and construct an isomorphism
φ : OP → OM using standard Magma commands. The motivation for doing this is because
computation and storage is far easier in this permutation group than in the matrix group.
However, the classes 2F and 2G of outer involutions in OP are still too large to easily store.
Now, in this 495-degree permutation representation we find that 2F -elements fix 63 points
and 2G-elements fix 15 points. Hence all outer involutions from these classes fix a point in
Ω = {1, . . . , 495}. From [14] we see that the stabiliser S of a point in this representation has
the form 28 : Ω−8 (2) : 2. This group has 12 classes of involutions, four of which correspond to
outer involutions in Ω−10(2) : 2. Let us label these four classes by 2A, 2B, 2C and 2D, slightly
defying the usual convention. Then we have the following table.

X Class in OP |xS |

2A 2E 272
2B 2F 17 136
2C 2F 342 720
2D 2G 1 028 160

For a given stabiliser these sets are now manageable. To run through, for example, the
2F -involutions in StabOP

(1) we form the set X1 = 2B ∪ 2C of size 359 856. Now we pull

each of these elements r back into the matrix group using φ−1 and check whether 〈z, x, rφ−1〉
is isomorphic to L3(2). (Note that we do not need to consider the two other outer involutions

zrφ
−1

and z2rφ
−1

since they clearly generate the same group as rφ
−1

). We further check

whether 〈z, x, rφ−1

vi〉 ∼= L3(2), for i = 1, 2, 3, where the vi are the three involutions in the
group Sym(3) 6 NG(〈x〉). We then repeat this process for the stabilisers StabOP

(j) for j ∈ Σ,

where Σ is a set of representatives of the orbits of OP ∩NG(〈z, x〉)φ−1

on Ω. This ensures we
have exhausted the 2F -conjugacy class. After completing the process for the classes 2E and 2G,
we find that in total there are eleven NG(〈z, x〉)-orbits of subgroups of G which contain 〈z, x〉
and are isomorphic to L3(2). Subgroups from three of these orbits fix (pointwise) 4-dimensional
subspaces of V , while subgroups from the remaining eight orbits fix 2-dimensional subspaces
of V . Hence the result holds.

Lemma 4.16. There are no subgroups L3(2) whose elements of orders 3 and 7 fuse to 3E
and 7C elements in G, respectively.

Proof. Let 〈z, x〉 ∼= 7C : 3E, where z ∈ 7C and x ∈ 3E. As previously, Lemma 4.13 implies
that, up to G-conjugacy, any L3(2) subgroup of G of the form stated in the lemma must
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contain 〈z, x〉. We proceed as in the proof of Lemma 4.15, by first constructing the normaliser

NG(〈x〉) ∼ 3.(U3(2)× U6(2)).Sym(3).

There are two classes of outer involutions in NG(〈x〉), and these have sizes 684 288 and
43 110 144 and lie in the G-conjugacy classes 2C and 2E, respectively. Now we find the
subgroups U1 = 3.(U3(2)×1).Sym(3) and U2 = 3.(1×U6(2)).Sym(3) of NG(〈x〉) and construct
smaller permutation representations of the latter (the former group is small enough to deal
with directly as a 56-dimensional matrix group). This is done by splitting the module V
(using the Meataxe) to yield a semisimple module with three constituents of dimension 12
and one of dimension 20. Now the induced 12-dimensional matrix group 3.U6(2).Sym(3) has
three orbits on the vectors of this 12-dimensional module, having sizes 1, 2016 and 2079.
The permutation group obtained from the action on the orbit of length 2016 yields a group
U ∼ 3.U6(2).Sym(3) within which we can compute and store the involutions. We find from
the character table stored in GAP [20] that there are two classes of outer involutions in
3.U6(2).Sym(3), of sizes 57 024 and 3 592 512. We now create an isomorphism φ : U → U2.
Thus in a similar way to the proof of Lemma 4.15 we may create the classes of involutions and
pull them back into the 56-dimensional matrix group. Note that elements in the class of size
57 024 do not fix any points of Γ = {1, . . . , 2016} whereas elements in the class of size 3 592 512
fix 32 points on Γ. Thus in the latter case we use the stabiliser method from Lemma 4.15
while in the former case we simply store all the involutions directly. Now, also using
the subgroup U1, we run through all the outer involutions in NG(〈z〉) to deduce that there are
no subgroups of G which contain 〈z, x〉 and are isomorphic to L3(2).

Lemma 4.17. Suppose H 6 G with H ∼= L3(2), where elements of orders 3 and 7 in H fuse
to the classes 3D and 7B of G, respectively. Then H fixes a non-zero vector in V .

Proof. (Electronic files folder /L3(2)) Here we follow the same method as in the proof of
Lemma 4.15. Taking 〈z, x〉 ∼= 7B : 3D, we find five NG(〈z, x〉)-orbits of subgroups which are
isomorphic to L3(2) and contain 〈z, x〉, with each such subgroup fixing a non-zero vector of
V . Using Lemma 4.14, we see the result holds.

Lemma 4.18. There are no subgroups L3(2) whose elements of orders 3 and 7 fuse to 3E
and 7B elements in G, respectively.

Proof. This follows by using a similar technique to that employed in the proof of
Lemma 4.16.

Lemma 4.19. Suppose H 6 G with Soc(H) ∼= L3(2). Then H fixes a non-zero vector of V .

Proof. Let H ∼= L3(2). Using Table A.11, there are only four possible character restrictions
of H to V . These are listed below:

(i) 2χ1 + 9χ2 + 9χ3, and the 7A and 7B elements in H fuse to 7B elements in G;
(ii) 4χ1 + 6χ2 + 6χ3 + 2χ4, and the 7A and 7B elements in H fuse to 7C elements in G;
(iii) 8χ1 + 6χ4, and the 7A and 7B elements in H fuse to 7A elements in G;
(iv) 20χ1 + 6χ2 + 6χ3, and the 7A and 7B elements in H fuse to 7A elements in G.

Note that the character χ4 is the Steinberg character of L3(2), so is projective. Moreover,
the projective indecomposable modules corresponding to χ2 and χ3 are found in [8], and in
particular we have dim(H1(L3(2), χ2)) = 1 and dim(H1(L3(2), χ3)) = 1. We deduce that any
H which appears in cases (iii) or (iv) above must fix a vector or hyperplane of V . If we are in
case (i), then we may apply Lemmas 4.17 and 4.18, while in case (ii) we apply Lemmas 4.15
and 4.16. Since Aut(L3(2)) ∼ L3(2) : 2, the result now follows by Lemma 2.4.
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4.4. Other potential subgroups

Lemma 4.20. Suppose thatH 6 G with Soc(H) ∼= L2(8). ThenH is not a maximal subgroup
of G.

Proof. Write H0 for the subgroup of H which is isomorphic to L2(8). Note that any element
of order 3 in L2(8) is the cube of an element of order 9. By Lemma 3.34, elements of order 9
in G must cube into class 3A or 3E. Using this information, along with Table A.1, we see that
there are the following possible F2-character restrictions of H0 to V :

(i) 2χ2 + χ3 + 3χ4;
(ii) 8χ2 + χ3;

(iii) 4χ3 + 2χ4;
(iv) 2χ1 + 9χ2;
(v) 6χ1 + 3χ2 + χ3 + 2χ4;
(vi) 8χ1 + 6χ3;
(vii) 8χ1 + 4χ2 + 2χ4;

(viii) 12χ1 + 2χ2 + 4χ3.
Moreover, we deduce from the resulting character values that in cases (vi) and (vii) elements
of order 7 in H must lie in the class 7A of G, while in the other cases such elements must lie
in either class 7B or 7C.

Note that the character χ3 of L2(8) (and Aut(L2(8)) ∼ L2(8) : 3) is projective, and so in
case (vi) we immediately have that H must fix a non-zero vector of V . Furthermore we have
dim(H1(L2(8) : 3, χ2)) = 1 (and dim(H1(L2(8), χ2)) = 3), and so in case (viii) H must also
fix a vector or hyperplane. Thus we may proceed on the assumption that elements of order 7
in H0 lie in either class 7B or 7C of G.

Suppose that H does not fix a non-zero vector of V . Let x ∈ H0 be an element of order 7,
and write X = 〈x〉. Let W ⊆ V be a minimal H0-submodule. Thus W must correspond to
either χ2, χ3 or χ4, and we deal with each of these possibilities in turn.

Case A: W corresponds to χ2

By considering the action of L2(8) on its irreducible 6-dimensional F2-module, as an
X-module we must have

W = U ⊕ U∗,

where dim(U) = dim(U∗) = 3 and U∗ is dual to U . Moreover, for any involution t ∈ H which
inverts x we must have U t = U∗. We can produce a set of NG(X)-orbit representatives of
candidate subspaces W using our representatives from Lemmas 4.5 and 4.6. Denote by W the
set of such orbit representatives. For each representative U we must consider spaces of the form
〈U,U t〉, where t is an involution which inverts x. Denote by w an involution from the subgroup
7 : 2 of NG(X). Then any involution which inverts x must take the form wc, where c is an
involution in CG(x) ∩ CG(w). It suffices to consider only representatives of NG(X)-conjugacy
classes of involutions which invert x. Indeed, suppose that t′ = tg, where g ∈ NG(X). Then

U ⊕ U t
′

= U ⊕ Ug
−1tg = (Ug

−1

⊕ Ug
−1t)g,

so U ⊕ U t′ lies in the same NG(X)-orbit as Ug
−1 ⊕ Ug−1t. If x ∈ 7C then there are two such

involution classes in NG(X), and so we find a complete set of NG(X)-orbit representatives of
W consisting of 70 elements. While if x ∈ 7B there are three such involution classes in NG(X),
and we have a complete set of NG(X)-orbit representatives of W consisting of 57 elements.

We now show that for each representative W of the form W ∈ W, StabG(W ) is not
isomorphic to L2(8) or L2(8) : 3. If H is a maximal subgroup of G and H 6 StabG(W )
for some W , it must be the case that H = StabG(W ). For any given involution of
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L2(8) the centraliser of this involution is an elementary abelian group of order 8, while
for L2(8) : 3 the centraliser of an involution has structure 23 : 3. Thus, if H were maximal
in G, we would have |StabG(W ) ∩ CG(t)| = 8 or 24. Using Bray’s method [11] we construct
CG(t), and then find a set S of Sylow 2-subgroups of CG(t) such that all involutions of CG(t)
are contained in S. Of course, S consists of unipotent subgroups of G. For each S ∈ S, we then
calculate StabS(W ) using the Magma command UnipotentStabiliser. In Tables 5 and 6
we list the cardinality of the subgroups Q of StabG(W ) which are generated by the groups
StabS(W ), as S runs through S.

If |Q| < 8 then H 6= StabG(W ), since Q must contain all the involutions of H. Moreover,
if |Q| > 24 then H 6= StabG(W ) also. A glance at Tables 5 and 6 shows this leaves only two
cases, with |Q| = 8 (the cases where |Q| = 12 or 16 are eliminated by Lagrange’s theorem,
since 8 - 12 and 16 - 24). However, further investigation of these cases shows that Q ∼= Z2×Z4,
so Q does not have the required structure. We deduce that there are no candidate subspaces
W , and so H is not a maximal subgroup of G in Case A.

Case B: W corresponds to χ3

Here our method is similar to that for Case A. As an X-module, we have W = W ′⊕CW (X),
where W ′ ∈ W as in Case A. Moreover, NG(X) must preserve this decomposition of W , and t
must act non-trivially on CW (X). Since we already have NG(X)-orbit representatives for W,

Table 5. x ∈ 7B, dim(W ) = 6.

Size of subgroup Q Occurrences

301 989 888 1
8 640 2
6 144 3
2 048 1

96 1
32 2
16 2
12 3
8 2
4 17
2 23

Table 6. x ∈ 7C, dim(W ) = 6.

Size of subgroup Q Occurrences

2 886 218 022 912 1
412 316 860 416 1

49 152 1
32 768 2
16 384 2
8 192 2
6 144 1

192 1
96 1
32 1
12 1
4 13
2 43
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to obtain orbit representatives for potential 8-dimensional modules for H we take all subspaces
of the form 〈W,J〉, where J ⊂ CV (x) has dimension 2 and is stabilised, but not fixed pointwise,
by t. We then follow the same procedure as in Case A. In Tables 7 and 8 we list the sizes of
the subgroups of StabG(W ) we generate by considering unipotent stabilisers, as above. Again
when |Q| = 8 we have that Q is not elementary abelian. Note that for the case x ∈ 7C only
one NG(X)-conjugacy class of involutions acts non-trivially on CW (X).

Case C: W corresponds to χ4

Denote by VH the 56-dimensional module for E7(2), considered as anH-module, and consider
S := Soc(VH). The irreducible summands of S must have dimensions 1, 6, 8 or 12, and
since we have dealt with the first three cases already we may assume the summands of S all
have dimension 12. From the possible character restrictions we now see that we must be in
one of the cases (i), (iii), (v) or (vii). However, the 8-dimensional irreducible F2-module for
L2(8) is the Steinberg module, so it is projective. Hence we may assume that VH contains no
8-dimensional composition factors (since otherwise we would be in Case B). This implies we
are in case (vii). In particular we deduce that S must contain at most two submodules, each
corresponding to χ4. Furthermore, if S were to contain only one summand, then VH would be

Table 7. x ∈ 7B, dim(W ) = 8.

Size of subgroup Q Occurrences

589 824 1
24 576 3
1 152 2

256 1
32 2
16 1
12 4
8 2
4 18
2 23

Table 8. x ∈ 7C, dim(W ) = 8.

Size of subgroup Q Occurrences

12 884 901 888 1
4 294 967 296 3

6 291 456 4
786 432 16
262 144 4
32 768 24
24 576 1
16 384 72

256 24
128 28
96 1
32 1
16 64
12 120
4 719
2 3118
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indecomposable, so would be a quotient of the projective cover of the 12-dimensional module
for L2(8), which has dimension 48, a contradiction. Thus S is the direct sum of two irreducible
modules corresponding to χ4. However V is self-dual, and so the top composition factor of VH
must be isomorphic to S, implying that VH contains at least four 12-dimensional composition
factors. This contradicts the fact that we have the character restriction in case (vii).

Lemma 4.21. Suppose thatH 6 G with Soc(H) ∼= L4(4). ThenH is not a maximal subgroup
of G.

Proof. (Electronic files folder /L4(4)) First suppose that H ∼= L4(4). Using Table A.17, we
see that there are only two possible character restrictions of H to V . These are as follows:

(i) 2χ4 + χ8;
(ii) 2χ4 + χ5 + χ6.

As there are no trivial characters in either of these restrictions such a subgroup certainly
does not fix a vector in V and so does not lie in a vector stabiliser. Thus we cannot
deduce the non-maximality of any L4(4)-subgroup from this analysis; we must carry out some
computational work to achieve this. Firstly we need some results regarding the group L4(4).
Note that this group has a permutation representation of degree 85 in which computations are
straightforward. Now let L ∼= L4(4) and suppose z ∈ L is an element in the L-conjugacy class
5A. Then

CL(z) = 〈z〉 ×K ∼= 5× L2(16)

where K = CL(z)′ ∼= L2(16). From [14] we know that L2(16) only has a single class of
cyclic subgroups of order 5. Let x ∈ K be an arbitrary element of order 5 and consider
CL(x) ∼= 5 × L2(16). We find computationally that there exist involutions in CL(x) which,
together with K, generate the whole group L.

Now G contains a unique class of elements of order 5 (see Table 2) and, by Lemma 3.6, these
have centraliser of the form 5 × Ω−8 (2) × Sym(3). From [14] we see that the only maximal
subgroup of Ω−8 (2) which can contain an L2(16) is the subgroup L2(16) : 2. Hence there is a
unique class of subgroups of the form L2(16) in Ω−8 (2). We can thus fix an element g ∈ G of
order 5 and a subgroup X ∼= L2(16) in CG(g) from which we can generate a representative H
of any G-conjugacy class of subgroups isomorphic to L4(4) using the method described in the
preceding paragraph.

Computationally we generate CG(g) as follows. We take

〈x±α0
(1), x±α1

(1), x±α3
(1)〉 ∼= L4(2)

and choose our 5A-element g from this group. Then we know immediately from the Dynkin
diagram of type E7 that the groups

〈x±α5
(1), x±α6

(1), x±α7
(1)〉 ∼= L4(2)

and
〈x±α2

(1)〉 ∼= Sym(3)

lie in CG(g). We now use the method of [7] to complete the generation of the full centraliser.
Next, within the group CG(g)′′ ∼= Ω−8 (2) we find a representative subgroup L2(16) (by using
the standard generators for L2(16) given in [40]) and take this to be our fixed group X. We
take x ∈ X to be any element of order 5 and generate CG(x) ∼= 5×Ω−8 (2)× Sym(3) using [7].

What now remains is to run through all involutions in CG(x) to determine for which
involutions t we have 〈X, t〉 ∼= L4(4). Now Ω−8 (2) contains three classes of involutions of sizes
1071, 4284 and 64 260 (see [14]). Hence it is easy to see that CG(x) contains seven conjugacy
classes of involutions of sizes 3, 1071, 3213, 4284, 12 852, 64 260 and 192 780. Let us label these
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as Ci, for i ∈ {1, . . . , 7}, respectively. We store these seven classes in Magma and run through
them as detailed above. Note that to check whether a subgroup 〈X, t〉 is isomorphic to L4(4)
we firstly carry out a check on the orders of some random elements. Secondly, we check that
the module V has either three or four composition factors under 〈X, t〉; if not, it cannot be
isomorphic to L4(4) because of our character restriction analysis above. Finally, we check the
order and simplicity of the group to confirm it is isomorphic to L4(4).

The results of this investigation are as follows. The classes C1, C2, C3, C4, C5 and C7 do not
yield any subgroup isomorphic to L4(4). However, in the class C6 there are 2160 involutions t
for which 〈X, t〉 ∼= L4(4). Of these involutions 1080 generate a subgroup L4(4) which appears
on the module V as in case (i) above, and the remaining 1080 generate a subgroup L4(4)
which appears on the module V as in case (ii) above. For all these involutions t we find that
CCG(x)(〈X, t〉) ∼= Sym(3), where the elements of order 3 in these Sym(3) subgroups lie in the
class 3B of G. In particular none of these subgroups L4(4) is maximal in G.

We can now use this information to eliminate the possibility that any automorphism group
of L4(4) is a maximal subgroup of G. Indeed, since CCG(x)(〈X, t〉) = CG(〈X, t〉), we deduce
that any given subgroup H of G which is isomorphic to L4(4) must centralise a unique Sym(3)
subgroup of G, say S, where the elements of order 3 in S lie in the class 3B of G. Now suppose
that g ∈ NG(H). Then H must centralise Sg, whence g ∈ NG(S) by the uniqueness of S. Thus
NG(H) 6 NG(3B), and after consulting Table 2 we deduce that no automorphism group of
L4(4) can be a maximal subgroup of G.

Lemma 4.22. Suppose that H is such that Soc(H) ∼= G2(8). Then H is not a subgroup
of G.

Proof. Again we wish to use character restriction to determine the possible embeddings of H
in G. As the F2-character table of G2(8) is not currently available in the literature, we produce
the portion given in Table A.33, along with the additional values listed below, as follows. We
first construct G2(8) as a permutation group using standard Magma commands, and then
construct its permutation module over F2. By decomposing this module with the Meataxe
it is then possible to produce F2-representations of G2(8) acting on irreducible modules of
dimensions 18, 42 and 108, from which it is straightforward to calculate the necessary Brauer
character values. Consultation with [35] confirms that these are the only non-trivial irreducible
modules for G2(8) of dimension at most 132 which are realisable over F2. For further details
on the 2-modular character table of G2(8) we refer the reader to [6].

Now using Table A.33 we find that the only possible character restriction of H to V is
2χ1 + 3χ2. In particular, this implies that 3A-elements in H must fuse to 3A-elements in G.
We now consider possible F2-character restrictions of H to V132. The Brauer character values
on elements of order 3 for the character χ4 of degree 108 are as follows.

1A 3A 3B
χ4 108 27 0

Using these values, we find that there is only one possible F2-character restriction of H to
V132 whose 3A-elements fuse to 3A-elements in G, namely 6χ1 + 3χ3. However, evaluating this
on the 7A-elements gives a value of 27, a contradiction. Thus G2(8) cannot be a subgroup
of G.

Lemma 4.23. Suppose thatH 6 G with Soc(H) ∼= U4(2). ThenH is not a maximal subgroup
of G.

Proof. (Electronic files folder /U4(2)) Suppose that H ∼= U4(2). Using Table A.25, along
with our knowledge of the cubes of elements of order 9 in G from Lemma 3.34, we see the
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following possible character restrictions of H to V :
(i) 8χ2 + χ3;

(ii) 4χ1 + 4χ2 + 2χ4;

(iii) 12χ1 + 2χ2 + 4χ3.
The fusion from U4(2) to G in these three cases is given below.

U4(2) 3A 3B 3C 3D 5A 9A 9B

(i) 3A 3A 3B 3D/3E 5A 9A/9C 9A/9C
G (ii) 3E 3E 3B 3D/3E 5A 9E 9E

(iii) 3E 3E 3D/3E 3B 5A 9D 9D

We have dim(H1(U4(2), χ2)) = 0, dim(H1(U4(2), χ3)) = 2 and dim(H1(U4(2), χ4)) = 1. In
particular we deduce that if H is as in cases (ii) or (iii) then H must fix a non-zero vector of
V . In these cases, if Aut(H) ∼ U4(2) : 2 is a subgroup of G, then by Lemma 2.4 this subgroup
will also fix a non-zero vector of V .

Therefore we may assume that H is as in case (i). Note that our knowledge of the possible
fusion in this case is only partial and we cannot uniquely determine it for the 3D, 3E, 9A and
9B-elements of U4(2) using only the analysis on the module V . To this end we now calculate
the possible character restrictions of U4(2) to V132 in exactly the same way as above. We get
four cases:

(i) 14χ1 + χ2 + 8χ4;

(ii) 18χ1 + 6χ2 + 8χ3 + χ4;

(iii) 8χ1 + 2χ2 + χ3 + χ5 + χ6;

(iv) 6χ1 + 9χ2 + 2χ3 + 4χ4.
The fusion from U4(2) to G in these cases is tabulated below.

U4(2) 3A 3B 3C 3D 5A 9A 9B

(i) 3A 3A 3B 3D 5A 9A 9A
G (ii) 3E 3E 3C/3D 3B 5A 9D 9D

(iii) 3E 3E 3C/3D 3C/3D 5A 9D 9D
(iv) 3E 3E 3B 3E 5A 9E/9F 9E/9F

Comparison of the two sets of restrictions to the modules V and V132 immediately specifies
the possible fusion uniquely in each case. Furthermore it reveals that case (iii) for V132 cannot
exist.

The case which remains then has the following possible fusion of elements of U4(2) in G.

U4(2) 3A 3B 3C 3D 5A 9A 9B

G 3A 3A 3B 3D 5A 9A 9A

This is represented as 8χ3 + χ2 on V . A subgroup U4(2) can be generated as follows. We take
an element z of order 9 and let x be its cube. Now in the centraliser in U4(2) of x we find an
element y of order 3 which centralises x and is such that 〈x, y〉 ∼= 32. The main point here is
then that the element y normalises the cyclic subgroup 〈z〉. Now there exists t which inverts
y and yields 〈z, y, t〉 ∼= U4(2). Indeed we take z ∈ 9A ∪ 9B and so x = z3 ∈ 3A ∪ 3B. Now
|CU4(2)(x)| = 648 and contains a 3D-element r for which |NU4(2)(〈r〉)| = 108. There are 15
involutions which invert r, composed of six in class 2A and nine in class 2B. In the former
case three of the involutions generate U4(2) whilst in the latter case they all do.

Hence our strategy is as follows. Take a 9A-element z in G and let x = z3. We use the
method of [7] to generate CG(x) ∼ 3.2E6(2).3. Now we take a representative y from each
class of elements of order 3, which fuse to 3D-elements in G, in 3.2E6(2).3 under the action of
CG(z). We generate the normaliser NG(〈y〉) ∼ (3×Ω−10(2)) : 2× Sym(3) and run through the
outer involutions in here to check for generation of U4(2).
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We find from [14] that in E = 2E6(2).3 there are eleven classes of elements of order 3. These
have centraliser orders as follows.

X |CG(x)|
3A 215.38.5.7.11
3B 212.38.52.7
3C 29.310

3D 220.37.5.7.11.17
3E 220.37.5.7.11.17
3F 212.36.72.13
3G 212.36.72.13
3H 211.37.5.11
3I 211.37.5.11
3J 29.36.7.19
3K 29.36.7.19

Note that the structure of the centralisers can be deduced from [14] or from [16]. The classes
3A, 3B and 3C lie in the derived group E′ ∼= 2E6(2) whilst the remaining classes lie outside
E′. Now apart from the central classes (which do not interest us here) every element of order
3 in 3.2E6(2).3 maps to an element of order 3 in the factor group 2E6(2).3. Now we know that
|CG(y)| = 221.38.52.7.11.17 for y ∈ 3D of G and this already eliminates the cases 3C, 3F , 3G,
3J and 3K from above. Furthermore, from [14] we see that CE(3A) ∼= 3 × U6(2) and so this
cannot be a 3D-element in G. However, determination of which of the remaining classes lie
in the 3D class of G is more challenging. Thus, we reverse our point of view and look at the
classes of 3A-elements in CG(3D). Now from [14] we know that Ω−10(2) has classes 3A, 3B, 3C,
3D, 3E and 3F , and hence CG(3D) ∼= 3×Ω−10(2)×Sym(3) has 27 classes of elements of order 3.
Note that the classes in Ω−10(2) can all be distinguished by their centraliser sizes except for the
classes 3B and 3C which fuse under the outer automorphism of Ω−10(2). We now take the group
CG(3D) as a 56-dimensional matrix group over F2 and find the simple subgroup Ω−10(2) on its
standard generators (from [40]). Now we take a copy O ∼= Ω−10(2) on standard generators in
its 495-degree permutation representation and construct an explicit isomorphism. Upon doing
this we find that, for a given x ∈ 3D, there are three CG(x)-conjugacy classes of elements
of order 3 which centralise x. These correspond to the classes (1, 3B, 3A), (1, 3C, 3A) and
(3A, 3A, 1) in CG(x) ∼= 3× Ω−10(2)× Sym(3). We note further that since 3B and 3C-elements
in Ω−10(2) have centraliser of order 210.36.5.11 and 3A-elements in Ω−10(2) have centraliser of
order 212.36.52.7, comparison with the table of elements of order 3 in 2E6(2).3 tells us that the
3D-elements in CG(3A) must factor to 3H, 3I and 3B elements. This now allows us to carry
out the computational analysis. We find that every subgroup U4(2) in G which appears on V
as in case (i) embeds in a subgroup Sp6(2) and hence is non-maximal. Moreover, since Sp6(2)
also contains subgroups which are isomorphic to Aut(U4(2)) ∼ U4(2) : 2, any such subgroups
of G must either be contained in Sp6(2), or centralise an involution of G which lies outside
Sp6(2). In either case U4(2) : 2 is not a maximal subgroup of G.

Lemma 4.24. Suppose that H 6 G with Soc(H) ∼= Sp6(2). Then H is not a maximal
subgroup of G.

Proof. Using Table A.29, there are the following possible character restrictions of H to V :
(i) 12χ1 + 2χ2 + 4χ3;

(ii) 4χ1 + 4χ2 + 2χ4;

(iii) 8χ2 + χ3.
Now

dim(H1(Sp6(2), χ2)) = 1,dim(H1(Sp6(2), χ3)) = 0
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and

dim(H1(Sp6(2), χ4)) = 0.

Therefore in cases (i) and (ii) H must fix a non-zero vector of V . Now consider case (iii). For
this character restriction we have that elements of order 7 in H must lie in the class 7B of G.

From [14] we see that Sp6(2) contains a subgroup L2(8), and so this subgroup L 6 H must
stabilise either a 6-dimensional H-submodule of V corresponding to χ2, or an 8-dimensional
H-submodule of V corresponding to χ3. These are also irreducible L-modules, and we have
previously studied such situations in Lemma 4.20. Taking any involution t in this subgroup
L 6 H, we have that |CH(t)| = 284, and CH(t) contains an elementary abelian subgroup of
order 26. We may now use the information in Tables 5 and 7 from Lemma 4.20. In all cases we
see that the subgroup orders listed in these tables are either not divisible by 26, or do not divide
284. In the former case, since these subgroups contain all the involutions of CG(t)∩StabG(W ),
we deduce that H is not a subgroup of StabG(W ). In the latter case we deduce that H 6=
StabG(W ) and so H is not a maximal subgroup of G.

5. Almost simple subgroups not in Lie(2)

Lemma 5.1. Suppose that H is isomorphic to L2(29) or L2(37). Then H is not a subgroup
of G.

Proof. This follows immediately by Lagrange’s theorem.

The dimensions of the cohomology groups referred to in this section have again been
calculated using Magma’s CohomologicalDimension command.

Lemma 5.2. Suppose that H is isomorphic to L2(19), L2(27), L4(3), U4(3), Ω7(3), G2(3),
Alt(13) or J2. Then H is not a subgroup of G.

Proof. Using Tables A.6, A.16, A.31, A.42 and A.45, along with the fact (which may be
easily verified in Magma) that Ω7(3) has no non-trivial F2-characters of degree at most
56, we see that in all but one case there are no possible character restrictions of H to V .
The outstanding case is where H ∼= L2(27). Here, Table A.8 reveals that the only possible
F2-character restriction of H to V is then 4χ1 + 2χ2. We have dim(H1(L2(27), χ2)) = 2, and
hence any such subgroup must fix a non-zero vector of V . However, inspection of the vector
stabilisers in Proposition 2.2 together with [14] reveals that this is not possible, so H 66 G.

Lemma 5.3. Suppose that H 6 G with Soc(H) ∼= Alt(5). Then H fixes a non-zero vector
of V .

Proof. With Table A.34 to hand we see that the only character restrictions of Alt(5) to V
are

16χ1 + 2χ2 + 8χ3

and

16χ1 + 8χ2 + 2χ3.

The Loewy structure of the projective indecomposable modules for Alt(5) in characteristic 2
can be found in [8]. Using this structure we see that, in particular, dim(H1(Alt(5), χ2)) = 2 and
the character χ3 is projective. Thus H must fix a non-zero vector of V , and the result follows
using Lemma 2.4.
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Lemma 5.4. Suppose that H 6 G with H ∼= Alt(6). Then H fixes a non-zero vector of V .

Proof. Using Table A.35, there are three possible F2-character restrictions ofH to V , namely:
(i) 8χ1 + 2χ2 + 2χ3 + 2χ4;
(ii) 16χ1 + 2χ2 + 8χ3;

(iii) 16χ1 + 8χ2 + 2χ3.

We find that
dim(H1(Alt(6), χ2)) = 1,dim(H1(Alt(6), χ3)) = 1

and
dim(H1(Alt(6), χ4)) = 0.

Therefore in each case we see that H must fix a non-zero vector of V . Since H has index 4 in
Aut(Alt(6)) we apply Lemma 2.4 to deduce the result.

Lemma 5.5. Suppose H 6 G is such that Soc(H) ∼= Alt(7). Then H is not a maximal
subgroup of G.

Proof. (Electronic files folder /Alt(7)) The information in Table A.36 allows the following
four possible character restrictions:

(i) χ2 + χ3 + 8χ4;
(ii) 4χ1 + 2χ4 + 2χ6;

(iii) 4χ1 + 4χ4 + 2χ5;
(iv) 12χ1 + 4χ2 + 4χ3 + 2χ4.

We have that dim(H1(Alt(7), χi)) = 0 for i = 2, 3, 4, while dim(H1(Alt(7), χ5)) =
dim(H1(Alt(7), χ6)) = 1. We therefore see that in cases (ii), (iii) and (iv) above such a subgroup
Alt(7) must fix a vector or hyperplane.

Consider then case (i). The Brauer character values obtained in this case are as follows for
the five non-trivial conjugacy classes of odd order in Alt(7).

3A 3B 5A 7A 7B

20 2 6 −7 −7

Hence we see that the fusion of the classes 3A, 5A, 7A and 7B in Alt(7) to G is 3B, 5A, 7B
and 7B, respectively, with the only ambiguity being whether or not 3B in Alt(7) fuses to 3D
or 3E in G. To resolve this issue we look at the possible F2-representations on the module V132
with the fusion of conjugacy classes as given above. Now if 3B-elements in Alt(7) fuse to 3E
in G then we find the only possible solution is

14χ1 − 3χ2 − 3χ3 − 3χ4 + 10χ5 + χ6

which is a virtual character and hence such subgroups Alt(7) do not exist in G. However, if
3B-elements in Alt(7) fuse to 3D in G then we find a possible solution is

14χ1 + χ4 + 8χ5

and so this is the only fusion pattern we need to check.
Note that both Alt(7) and Sym(7) may be generated by taking a Frobenius subgroup 〈z, x〉 ∼=

7 : 3 and an involution t which inverts x. We may therefore proceed in a similar manner to that
of Lemma 4.17, the only difference being that of course we check whether 〈z, x, t〉 ∼= Alt(7)
or Sym(7), rather than L3(2). We find that there is a single NG(〈z, x〉)-conjugacy class of
involutions which generate an Alt(7) of the type in case (i), and this subgroup Alt(7) is in fact
unique. These involutions are in the G-conjugacy class 2B, and for such an H ∼= Alt(7) we
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find CG(H) ∼ U3(3) : 2. Thus H is not maximal in G. Furthermore, there are 2D-involutions
which generate a group isomorphic to Sym(7). Let H 6 G be such a subgroup. Then we either
have CG(H) ∼ U3(3) : 2 or CG(H) is a soluble group of order 192. Again we deduce that H is
not a maximal subgroup of G, which completes the proof.

Corollary 5.6. There is only a single G-conjugacy class of subgroups Alt(7) which are
represented as in case (i) on the module V .

Lemma 5.7. Suppose that H 6 G with Soc(H) ∼= Alt(8). Then H fixes a non-zero vector
of V .

Proof. (Electronic files folder /Alt(8)) Using Table A.37 we have the following potential
character restrictions:

(i) χ2 + χ3 + 8χ4;

(ii) 4χ1 + 2χ4 + 2χ7;

(iii) 4χ1 + 2χ4 + 2χ6;

(iv) 4χ1 + 2χ4 + χ6 + χ7;

(v) 4χ1 + 4χ4 + 2χ5;

(vi) 12χ1 + 4χ2 + 4χ3 + 2χ4.

We can immediately eliminate the cases (ii) and (iii) from being potential character restrictions
because the two modules corresponding to the 20-dimensional character are not self-dual.
We have dim(H1(Alt(8), χ2)) = 0, dim(H1(Alt(8), χ3)) = 0, dim(H1(Alt(8), χ4)) = 1,
dim(H1(Alt(8), χ5)) = 1, dim(H1(Alt(8), χ6)) = 1 and dim(H1(Alt(8), χ7)) = 1, and we
deduce that in the cases (iv) and (vi) any subgroup Alt(8) must fix a vector or hyperplane.
We are left to deal with the cases (i) and (v).

Let us look firstly at case (v). Denote by Pχ4
and Pχ5

the projective indecomposable modules
associated to the two characters χ4 and χ5. The Loewy structure of these modules can be found
in [9], and we see that the modules Vχ4

and Vχ5
associated to χ4 and χ5, respectively, can

both be extended by exactly one trivial module. Also, the third socle layer of Pχ4 contains
three modules isomorphic to Vχ4 and none isomorphic to Vχ5 , whilst the third socle layer of
Pχ5

contains one module isomorphic to Vχ5
and none isomorphic to Vχ4

. We can deduce from
this that any subgroup Alt(8) of G in case (v) must fix a non-zero vector of V .

Now we shall examine case (i). The Brauer character values obtained in this case for the
non-trivial conjugacy classes of odd order in Alt(8) are given below.

3A 3B 5A 7A 7B 15A 15B

20 2 6 −7 −7 −15 −15

Now Alt(8) contains a unique conjugacy class of maximal subgroups Alt(7), and it is clear
in this case that these subgroups are of type (i) in the analysis of Lemma 5.5. Thus we may
use the results from the proof of Lemma 5.5 in the following way. If we take an element of
order 5 from a representative subgroup Alt(7) and generate its centraliser in Alt(8), we find
there are elements of order 3 which, together with the subgroup Alt(7), must generate Alt(8).
We carry out this calculation in G and find that, even though such subgroups exist, they are
not maximal subgroups in G. A more detailed explanation of the similar (but more involved)
calculation for Sym(8) is given below.

Note that Sym(8) can be generated as follows. We take an alternating group A ∼= Alt(7)
and an element z of order 5 in A. Then there exist involutions t which commute with z and
for which 〈A, t〉 ∼= Sym(8).
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Hence we let A be a fixed Alt(7) and choose an element z ∈ A of order 5. Since there exists
s ∈ A which inverts z we can use [7] to generate

CG(z) = 〈z〉 ×O × S ∼= 5× Ω−8 (2)× Sym(3).

We now want to run through all involutions t in CG(z) to determine which of these yields
〈A, t〉 ∼= Sym(8). Now Ω−8 (2) has three classes of involutions 2A, 2B and 2C and these classes
have sizes 1071, 4284 and 64 260, respectively, and of course Sym(3) has a single class of
involutions of size 3. Hence there are seven classes of involutions t in CG(z) which are as
follows.

t |tCG(z)| Class in G

(1, 1, 2A) 3 2A
(1, 2A, 1) 1 071 2A
(1, 2B, 1) 4 284 2B
(1, 2C, 1) 64 260 2D

(1, 2A, 2A) 3 213 2B
(1, 2B, 2A) 12 852 2C
(1, 2C, 2A) 192 780 2E

We now run through all the involutions in CG(z), and discover that the only classes to
yield involutions which generate a subgroup Sym(8) are (1, 1, 2A) and (1, 2C, 2A). All three
involutions in class (1, 1, 2A) generate a subgroup Sym(8) and in each case the group is
centralised by an element of order 3 in G, while the subgroups Sym(8) resulting from suitable
involutions in the class (1, 2C, 2A) have soluble centralisers of order 48 in G.

Lemma 5.8. Suppose H 6 G with Soc(H) ∼= Alt(9). Then H fixes a non-zero vector of V .

Proof. Suppose that H ∼= Alt(9). From Table A.38, there are only two possible character
restrictions of H to V :

(i) 8χ1 + 2χ2 + 2χ3 + 2χ4;
(ii) 4χ1 + 2χ7.

We find that

dim(H1(Alt(9), χ2)) = 0,dim(H1(Alt(9), χ3)) = 0

and

dim(H1(Alt(9), χ7)) = 2,

so we deduce that in both cases (i) and (ii) the subgroup H must fix a vector or hyperplane
of V . To complete the proof for the case H ∼= Sym(9) we apply Lemma 2.4.

Lemma 5.9. Suppose that H 6 G with Soc(H) ∼= Alt(10). Then H fixes a non-zero vector
of V .

Proof. Suppose that H ∼= Alt(10). Table A.39 yields the following possible character
restrictions:

(i) 8χ1 + 2χ2 + 2χ3;
(ii) 4χ1 + 2χ4.

We have

dim(H1(Alt(10), χ2)) = 1,dim(H1(Alt(10), χ3)) = 0

and

dim(H1(Alt(10), χ4)) = 1.
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Therefore in both cases (i) and (ii) we see that H must fix a vector or hyperplane. Now if
H ∼= Sym(10) we apply Lemma 2.4.

Lemma 5.10. Suppose that H 6 G with Soc(H) ∼= Alt(11). Then H fixes a non-zero vector
of V .

Proof. Suppose that H ∼= Alt(11). Using Table A.40 we see only one possible character
restriction, namely

4χ1 + 2χ2 + χ3,

and we have
dim(H1(Alt(11), χ2)) = dim(H1(Alt(11), χ3)) = 0.

Therefore we deduce that H must fix a non-zero vector of V , and using Lemma 2.4 for the
case H ∼= Sym(11) completes the proof.

Lemma 5.11. Suppose that H 6 G with Soc(H) ∼= Alt(12). Then H fixes a non-zero vector
of V .

Proof. Suppose that H ∼= Alt(12). Using Table A.41 we again see only one possible character
restriction, namely

4χ1 + 2χ2 + χ3.

Since dim(H1(Alt(12), χ2)) = 1 and dim(H1(Alt(12), χ3)) = 0, we deduce that H must fix a
non-zero vector of V . Now we apply Lemma 2.4 for the case H ∼= Sym(11) to complete the
proof.

Lemma 5.12. Suppose that H 6 G with Soc(H) ∼= L2(11). Then H fixes a non-zero vector
of V .

Proof. If H ∼= L2(11), then Table A.2 implies that the only possible character restriction of
H to V is 6χ1 + 3χ2 + 2χ3. We have dim(H1(L2(11), χ2)) = 2 and dim(H1(L2(11), χ3)) = 0,
and so H must fix a vector or hyperplane. By Lemma 2.4 any subgroup L2(11) : 2 of G must
also fix a vector or hyperplane.

Lemma 5.13. Suppose that H 6 G with Soc(H) ∼= L2(13). Then H fixes a non-zero vector
of V .

Proof. If H ∼= L2(13), then with Table A.3 to hand we find the only possible
character restriction of H to V is 4χ1 + 2χ2 + 2χ3. Since dim(H1(L2(13), χ2)) = 2 and
dim(H1(L2(13), χ3)) = 0, we see that H must fix a vector or hyperplane. By Lemma 2.4 any
subgroup L2(13) : 2 of G must also fix a vector or hyperplane.

Lemma 5.14. Suppose that H 6 G with Soc(H) ∼= L2(17). Then H fixes a non-zero vector
of V .

Proof. Using Table A.5 there are four possible character restrictions of H to V :
(i) 8χ1 + 2χ3 + 2χ4;
(ii) 8χ1 + 2χ2 + 2χ4;
(iii) 8χ1 + 2χ2 + 4χ3;
(iv) 8χ1 + 4χ2 + 2χ3.

We have
dim(H1(L2(17), χ2)) = 1,dim(H1(L2(17), χ3)) = 1
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and

dim(H1(L2(17), χ4)) = 0,

and so H must fix a vector or hyperplane. By Lemma 2.4 any subgroup L2(17) : 2 of G must
also fix a vector or hyperplane.

Lemma 5.15. Suppose that H 6 G with Soc(H) ∼= L2(25). Then H fixes a non-zero vector
of V .

Proof. If H ∼= L2(25), then Table A.7 yields that the only possible character restriction of
H to V is 4χ1 +2χ4. Now dim(H1(L2(25), χ4)) = 0, and so H must fix a vector or hyperplane.
Since Aut(L2(25)) ∼ L2(25) : 22, by Lemma 2.4 any subgroup of Aut(L2(25)) must also fix a
vector or hyperplane.

Lemma 5.16. Suppose that H 6 G with Soc(H) ∼= L3(3). Then H fixes a non-zero vector
of V .

Proof. From Table A.12 the only possible character restriction is 4χ1 + 2χ4. Observing
that dim(H1(L3(3), χ4)) = 1 we see that H must fix a vector or hyperplane of V . Since
Aut(L3(3)) ∼ L3(3) : 2, the result follows using Lemma 2.4.

Lemma 5.17. Suppose that H 6 G with Soc(H) ∼= U3(3). Then H fixes a non-zero vector
of V .

Proof. Suppose H ∼= U3(3). The information in Table A.19 allows three possible character
restrictions of H to V , which are:

(i) 2χ1 + 9χ2;
(ii) 4χ1 + 4χ2 + 2χ3;

(iii) 20χ1 + 6χ2.
Since dim(H1(U3(3), χ2)) = 1 and dim(H1(U3(3), χ3)) = 0 we see that in cases (ii) and (iii)
H must fix a non-zero vector of V . Suppose then that H is as in case (i). Note that U3(3)
contains a maximal subgroup L3(2), and as in [24] we observe that U3(3) can be generated
by this subgroup along with an element of order 3 which centralises a subgroup Sym(3) of
this L3(2). The character restriction in case (ii) implies that this L3(2) subgroup contains
a Frobenius subgroup of type 7C : 3D or 7C : 3E. From Lemma 4.16 we know that L3(2)
subgroups of the latter type do not exist in G, while in the former case we have constructed
representative L3(2) subgroups in the proof of Lemma 4.15. Using these representatives, and
the generation method described above, we check that any such U3(3) subgroup must fix a
vector in V . Since Aut(U3(3)) ∼ U3(3) : 2, we apply Lemma 2.4 to complete the proof.

Lemma 5.18. Suppose that H 6 G with Soc(H) ∼= M11. Then H fixes a non-zero vector
of V .

Proof. Using Table A.43 we have only one possible character restriction, namely 4χ1+2χ2+
χ3. However

dim(H1(M11, χ2)) = 1

and

dim(H1(M11, χ3)) = 0,

whence the result follows.
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Lemma 5.19. Suppose that H 6 G with Soc(H) ∼= M12. Then H fixes a non-zero vector
of V .

Proof. Using Table A.44, the only possible character restriction is 4χ1 + 2χ2 + χ3. Since
dim(H1(M11, χ2)) = 1 and dim(H1(M11, χ3)) = 0 we see that H must fix a non-zero vector
of V . The result follows from Lemma 2.4, since Aut(M12) ∼M12 : 2.

In § 4 we have eliminated all the groups H with F ∗(H) in List 1(i)–(iii), with the exception
of the case F ∗(H) ∼= L2(128). All groups H with F ∗(H) in List 1(iv) are ruled out in § 5. As
a consequence the proof of Theorem 1.1 is complete.

Appendix A. F2-character tables

Here we list certain irreducible F2-character values for various groups referred to in the main
body of the paper. In each case the information is produced using either [23], Magma or Gap
(or a combination). Note that the characters listed are not necessarily absolutely irreducible.
Unless otherwise stated, the notation used in these tables follows [23].

Table A.1.

L2(8) 1A 3A 7ABC 9ABC

χ1 1 1 1 1
χ2 6 −3 −1 0
χ3 8 −1 1 −1
χ4 12 3 −2 −3

Table A.2.

L2(11) 1A 3A 5A 5B 11A 11B

χ1 1 1 1 1 1 1
χ2 10 −2 0 0 −1 −1
χ3 10 1 0 0 −1 −1
χ4 24 0 −1 −1 2 2

Table A.3.

L2(13) 1A 3A 7ABC 13AB

χ1 1 1 1 1
χ2 12 0 −2 −1
χ3 14 −1 0 1
χ4 36 0 1 −3

Table A.4.

L2(16) 1A 3A 5A 15ABCD

χ1 1 1 1 1
χ2 8 −4 −2 1
χ3 8 2 3 −3
χ4 16 4 −4 −1
χ5 16 1 1 1
χ6 32 −4 2 −4
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Table A.5.

L2(17) 1A 3A 9ABC

χ1 1 1 1
χ2 8 −1 −1
χ3 8 −1 −1
χ4 16 −2 1
χ5 48 3 0

Table A.6.

L2(19) 1A 3A 5AB 9ABC

χ1 1 1 1 1
χ2 18 0 −2 0
χ3 20 2 0 −1
χ4 36 0 1 0
χ5 60 −3 0 0

Table A.7.

L2(25) 1A 3A 5A 5B

χ1 1 1 1 1
χ2 12 0 −3 2
χ3 12 0 2 −3
χ4 26 −1 1 1

Table A.8.

L2(27) 1A 3AB 7ABC

χ1 1 1 1
χ2 26 −1 −2

Table A.9.

L2(32) 1A 3A 11ABCDE

χ1 1 1 1
χ2 10 −5 −1
χ3 20 5 −2
χ4 20 5 −2
χ5 32 −1 −1
χ6 40 −5 −4
χ7 40 −5 7
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Table A.10.

L2(32) : 5 1A 3A 5A 11ABCDE

χ1 1 1 1 1
χ2 4 4 −1 4
χ2 10 −5 0 −1
χ3 20 5 0 −2
χ4 20 5 0 −2
χ5 32 −1 2 −1
χ6 40 −5 0 −4
χ7 40 −5 0 7

Table A.11.

L3(2) 1A 3A 7A 7B

χ1 1 1 1 1
χ2 3 0 b7 ∗
χ3 3 0 ∗ b7
χ4 8 −1 1 1

Table A.12.

L3(3) 1A 3A 3B 13ABCD

χ1 1 1 1 1
χ2 12 3 0 −1
χ3 26 −1 −1 0

Table A.13.

L3(4) 1A 3A 5A 7A

χ1 1 1 1 1
χ2 9 0 −1 b7− 1
χ3 9 0 −1 ∗∗
χ4 16 −2 1 2

Table A.14.

L3(8) 1A 3A 7IJK 9ABC

χ1 1 1 1 1
χ2 9 0 2 3
χ3 9 0 2 3
χ4 24 −3 3 6
χ5 27 0 −1 0
χ6 27 0 −1 0
χ7 27 0 −1 0
χ8 27 0 −1 0
χ9 27 0 −1 −3
χ10 27 0 −1 −3
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Table A.15.

L3(8) : 3 1A 3A 7IJK 9ABC 3B

χ1 1 1 1 1 1
χ2 2 2 2 2 −1
χ3 9 0 2 3 0
χ4 9 0 2 3 0
χ5 24 −3 3 6 0
χ6 27 0 −1 0 0
χ7 27 0 −1 0 0
χ8 27 0 −1 0 0
χ9 27 0 −1 0 0
χ10 27 0 −1 −3 3
χ11 27 0 −1 −3 3
χ12 54 0 −2 −6 −3
χ13 54 0 −2 −6 −3

Table A.16.

L4(3) 1A 3A 3B 3C 3D 5A 9A 9B

χ1 1 1 1 1 1 1 1 1
χ2 26 −1 −1 8 −1 1 2 −1
χ3 26 −1 8 −1 −1 1 −1 2
χ4 38 11 2 2 2 −2 −1 −1

Table A.17.

L4(4) 1A 3AB 3C 3D 5AB 5CD 5E 7A 7B 9AB

χ1 1 1 1 1 1 1 1 1 1 1
χ2 8 −1 −4 2 −2 3 −2 1 1 −1
χ3 8 −1 −4 2 −2 3 −2 1 1 −1
χ4 12 −6 6 0 7 2 2 −2 −2 0
χ5 16 7 4 1 −4 1 1 a a′ 1
χ6 16 7 4 1 −4 1 1 a′ a 1
χ7 28 10 4 −2 8 3 −2 0 0 −2
χ8 32 −13 8 2 −8 2 2 4 4 −1
χ9 36 9 9 0 11 −4 1 1 1 0
χ10 40 4 −8 −2 −10 5 0 −2 −2 1
χ11 40 4 −8 −2 −10 5 0 −2 −2 1
χ12 48 3 −12 0 −2 −2 −2 −1 −1 0
χ13 48 3 −12 0 −2 −2 −2 −1 −1 0

Where a = ω4 + ω2 + ω − 1 for a 7th root of unity ω, and a′ is the complex
conjugate of a.

Table A.18.

U3(4) 1A 3A 5ABCD 5EF 13ABCD 15ABCD

χ1 1 1 1 1 1 1
χ2 12 0 −3 2 −1 0
χ3 16 −2 6 1 3 3
χ4 36 0 1 −4 −3 −5
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Table A.19.

U3(3) 1A 3A 3B 7A 7B

χ1 1 1 1 1 1
χ2 6 −3 0 −1 −1
χ3 14 5 −1 0 0
χ4 32 −4 −1 −b7 ∗∗
χ5 32 −4 −1 ∗∗ −b7

Table A.20.

U3(8) 1A 3AB 3C 7ABC 9ABC

χ1 1 1 1 1 1
χ2 24 6 −3 3 6
χ3 54 −9 0 −2 0
χ4 54 9 0 −2 −6

Table A.21.

U3(8) : 31 1A 3AB 3C 7ABC 9ABC 3D

χ1 1 1 1 1 1 1
χ2 2 2 2 2 2 −1
χ3 24 6 −3 3 6 0
χ4 54 −9 0 −2 0 0
χ5 54 9 0 −2 −6 −3
χ6 54 9 0 −2 −6 −3
χ7 54 9 0 −2 −6 −3

Table A.22.

U3(8) : 32 1A 3AB 3C 7ABC 9ABC

χ1 1 1 1 1 1
χ2 2 2 2 2 2
χ3 24 6 −3 3 6
χ4 48 12 −6 6 12
χ5 54 −9 0 −2 −6
χ6 54 −9 0 −2 −6
χ7 54 −9 0 −2 −6

Table A.23.

U3(8).33 1A 3AB 3C 7ABC 9ABC

χ1 1 1 1 1 1
χ2 2 2 2 2 2
χ3 24 6 −3 3 6
χ4 54 −9 0 −2 −6
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Table A.24.

U3(8).32 1A 3AB 3C 7ABC 9ABC

χ1 1 1 1 1 1
χ2 2 2 2 2 2
χ3 2 2 2 2 2
χ4 2 2 2 2 2
χ5 2 2 2 2 2
χ6 24 6 −3 3 6
χ7 48 12 −6 6 12
χ8 54 −9 0 −2 −6
χ9 54 −9 0 −2 −6
χ10 54 −9 0 −2 −6

Table A.25.

U4(2) 1A 3A 3B 3C 3D 5A 9A 9B

χ1 1 1 1 1 1 1 1 1
χ2 6 −3 −3 3 0 1 0 0
χ3 8 −1 −1 −4 2 −2 −1 −1
χ4 14 5 5 2 −1 −1 −1 −1
χ5 40 4 4 −8 −2 0 1 1
χ6 64 −8 −8 4 −2 −1 1 1

Table A.26.

U4(3) 1A 3A 3B 3C 3D 5A 7A 7B

χ1 1 1 1 1 1 1 1 1
χ2 20 −7 2 2 2 0 −1 −1
χ3 34 7 7 −2 −2 −1 −1 −1
χ4 34 7 −2 7 −2 −1 −1 −1

Table A.27.

Sp4(4) 1A 3A 3B 5A 5B 5C 5D 5E

χ1 1 1 1 1 1 1 1 1
χ2 8 −4 2 −2 −2 3 3 −2
χ3 8 2 −4 3 3 −2 −2 −2
χ4 16 4 1 −4 −4 1 1 1
χ5 16 1 4 1 1 −4 −4 1
χ6 32 −4 −4 2 2 −8 −8 2
χ7 32 −4 −4 −8 −8 2 2 2
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Table A.28.

Sp4(4).4 1A 3A 3B 5A 5B 5C 5D 5E

χ1 1 1 1 1 1 1 1 1
χ2 16 −2 −2 1 1 1 1 −4
χ3 32 5 5 −3 −3 −3 −3 2
χ4 64 −8 −8 −6 −6 −6 −6 4

Table A.29.

Sp6(2) 1A 3A 3B 3C 5A 7A

χ1 1 1 1 1 1 1
χ2 6 3 −3 0 1 −1
χ3 8 −4 −1 2 −2 1
χ4 14 2 5 −1 −1 0
χ5 48 −12 3 0 −2 −1

Table A.30.

Sz(8) 1A 5A 7ABC 13ABC

χ1 1 1 1 1
χ2 12 −3 −2 −1
χ3 48 3 −1 −4

Table A.31.

G2(3) 1A 3A 3C

χ1 1 1 1
χ2 14 5 −4

Table A.32.

G2(4) 1A 3A 3B 5A 5B 5C 5D 7A 13A 13B

χ1 1 1 1 1 1 1 1 1 1 1
χ2 12 −6 0 2 2 −3 −3 −2 −1 −1
χ3 28 10 −2 3 3 3 3 0 2 2
χ4 36 9 0 −4 −4 1 1 1 −3 −3

Table A.33.

G2(8) 1A 3A 3B 7ABC 7DEF

χ1 1 1 1 1 1
χ2 18 −9 0 4 −3
χ3 42 15 −3 7 7
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Table A.34.

Alt(5) 1A 3A 5AB

χ1 1 1 1
χ2 4 −2 −1
χ3 4 1 −1

Table A.35.

Alt(6) 1A 3A 3B 5AB

χ1 1 1 1 1
χ2 4 1 −2 −1
χ3 4 −2 1 −1
χ4 16 −2 −2 1

Table A.36.

Alt(7) 1A 3A 3B 5A 7A 7B

χ1 1 1 1 1 1 1
χ2 4 −2 1 −1 −b7 ∗∗
χ3 4 −2 1 −1 ∗∗ −b7
χ4 6 3 0 1 −1 −1
χ5 14 2 −1 −1 0 0
χ6 20 −4 −1 0 −1 −1

Table A.37.

Alt(8) 1A 3A 3B 5A 7A 7B 15A 15B

χ1 1 1 1 1 1 1 1 1
χ2 4 −2 1 −1 −b7 ∗∗ −b15 ∗∗
χ3 4 −2 1 −1 ∗∗ −b7 ∗∗ −b15
χ4 6 3 0 1 −1 −1 −2 −2
χ5 14 2 −1 −1 0 0 2 2
χ6 20 −4 −1 0 −1 −1 −1 + b15 ∗∗
χ7 20 −4 −1 0 −1 −1 ∗∗ −1 + b15

Table A.38.

Alt(9) 1A 3A 3B 3C 5A 7A 9A 9B 15A 15B

χ1 1 1 1 1 1 1 1 1 1 1
χ2 8 5 −1 2 3 1 −1 −1 0 0
χ3 8 −4 −1 2 −2 1 2 −1 1 1
χ4 8 −4 −1 2 −2 1 −1 2 1 1
χ5 20 −4 2 −1 0 −1 −1 −1 −1 + b15 ∗∗
χ6 20 −4 2 −1 0 −1 −1 −1 ∗∗ −1 + b15
χ7 26 8 −1 −1 1 −2 −1 −1 −2 −2
χ8 48 6 3 0 −2 −1 0 0 1 1
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Table A.39.

Alt(10) 1A 3A 3B 3C 5A 5B 7A 9A 9B

χ1 1 1 1 1 1 1 1 1 1
χ2 8 5 2 −1 3 −2 1 −1 −1
χ3 16 −8 4 −2 −4 1 2 1 1
χ4 26 8 −1 −1 1 1 −2 −1 −1
χ5 48 6 0 3 −2 −2 −1 0 0

Table A.40.

Alt(11) 1A 3A 3B 3C 5A 5B 7A 9A

χ1 1 1 1 1 1 1 1 1
χ2 10 7 4 1 5 0 3 1
χ3 32 −16 8 −4 −8 2 4 2
χ4 44 20 5 −1 9 −1 2 −1

Table A.41.

Alt(12) 1A 3A 3B 3C 3D 5A 5B 7A 9A 9BC ∗ 2

χ1 1 1 1 1 1 1 1 1 1 1
χ2 10 7 4 −2 1 5 0 3 1 −2
χ3 32 −16 8 2 −4 −8 2 4 2 −1
χ4 44 20 5 2 −1 9 −1 2 −1 2

Table A.42.

Alt(13) 1A 3A 3B 3C 3D 5A 5B

χ1 1 1 1 1 1 1 1
χ2 12 9 6 3 0 7 2

Table A.43.

M11 1A 3A 5A 11AB

χ1 1 1 1 1
χ2 10 1 0 −1
χ3 32 −4 2 −1
χ4 44 −1 −1 0

Table A.44.

M12 1A 3A 3B 5A 11AB

χ1 1 1 1 1 1
χ2 10 1 −2 0 −1
χ3 32 −4 2 2 −1
χ4 44 −1 2 −1 0
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Table A.45.

J2 1A 3A 3B 5AB 5CD 7A

χ1 1 1 1 1 1 1
χ2 12 −6 0 2 −3 −2
χ3 28 10 −2 3 3 0
χ4 36 9 0 −4 1 1
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