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Abstract 

Small angle X-ray scattering (SAXS) has been widely used as a microstructure characterization 

technology. In this work, a fully connected dense forward network is applied to inverse the mean 

particle size and particle distribution from SAXS data of samples dynamically compressed with 

high-power lasers and probed with X-ray free electron lasers. The trained network allows 

automatic acquisition of microstructure information, performing well in predictions on 

single-species nanoparticles on theoretical model and in situ experimental data. We evaluate our 

network by comparing it with other methods, revealing its reliability and efficiency in dynamic 

experiments, which is of great value for in situ characterization of materials under high-power 
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1. Introduction 

The dynamic mechanical properties of materials are strongly dependent on the temporal evolution 

of material structures at the micro mesoscale, and has important applications in extreme scenarios 

such as celestial evolution and inertial confinement fusion[1–3]. The average grain size and grain 

distribution are the key microstructure characteristics that affect the physical and chemical 

properties[4–6], representing the fundamental qualities of polycrystalline materials, therefore are of 

vital importance in predicting material responses, evaluating the kinetic phase transformation 

process, and having a insight into the physical connotations. 

As a microstructure characterization technology, small angle X-ray scattering (SAXS) is of 

significant value in high-pressure material science[7–10] and high-power laser experiments[11,12]. In 

a typical scattering experiment, the X-ray impacts the sample at a small angle and scatters. The 

intensity of the scattered wave is measured and recorded by the detector and presented as a 

scattering pattern. For example, in the dynamic compressed experiment of polymer dissociation, 

nano crystalline solid particles can be formed and then consolidated into larger particles[13,14]. In 

the process of nucleation and subsequent phase transformation in such materials[15], the average 

particle size, grain distribution, particle shape, spacing, particle content and other microstructure 

characteristics will all affect the morphology and intensity of the scattering spectrum. 

The inversion of nanoparticles due to phase transition in extreme conditions is a major 

https://doi.org/10.1017/hpl.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2024.27


Accepted Manuscript 

 

 

 

 

challenge. Extracting particle size distribution from the scattering pattern is a typical ill-posed 

problem. Algorithms such as maximum entropy, renormalization, regularization, non-negative 

least squares method and other methods have been widely used to extract the particle size 

distribution from the scattering data and extensively implemented in softwares such as Irena, 

IsGISAXS and McSAS[16–20]. These algorithms are mainly searching for optimization parameters 

that satisfy the condition of 2 =constant, where 2  describes the degree of correlation of the 

fitting. Among them, McSAS adopts the Monte Carlo method, which uses rejection sampling to 

optimize by replacing model contributions in the dataset. At the end of the optimization process, 

the fitting parameter values contributed by each model in the dataset determine the final size 

distribution. During the SAXS analysis process and the microstructure inversion, it is usually 

necessary to establish a sample model first, run simulations of the scattering process and compare 

them with the experimentally observed pattern, and then repeat the process numerous times as well 

as adjust several parameters until this model is closest to the experimental result. Running 

simulations for each optimization step is time-consuming and requires considerable computing 

power[21]. 

With the emergence of fourth generation X-ray free electron lasers, it is possible to quickly 

image and obtain in situ response of materials, e.g., in dynamic shock-compression 

environments[22]. Large quantities of data, with laser shock drivers reaching repetition rates of up 

to 10 Hz[23], also pose a demand for rapid inversion of SAXS. In recent years, with the continuous 

advent of machine learning, it is possible to quickly retrieve scattering images and conduct on-site 

analysis. In view of the strong mapping ability of artificial neural networks (ANN), it can be well 

applied to in situ classification and quantification of scattering images including grazing-incidence 

small angle scattering (GISAS)[24], coherent diffraction imaging (CDI)[25], microstructural 
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characterization in 3D samples[6], etc. The ability of ANN to quickly and accurately identify the 

main characteristics is very important for the rapid characterization of crystal grain distribution, 

thus having a practical significance for the research in microstructure and phase transformation of 

dynamically compressed materials. 

In this work, we apply a fully connected dense feedforward network according to the 

principle of SAXS to extract the mean grain size and grain distribution of nanocrystals from in situ 

SAXS images in experiments, allowing automatic acquisition of microstructure information and 

avoiding the traditional tedious manual fitting. Using the trained network, the particle distributions 

obtained from simulation data are verified to be in good agreement with the theory. Taking a 

typical nanoparticle transformation experiment as an example[22], we use the network to retrieve 

the average grain size as well as the grain distribution, and compare it with other methods to ensure 

that the neural network prediction is meaningful and applicable for SAXS. This network is also 

suitable for the case of spherical voids in porous materials. And the beneficial modifications based 

on our network is applicable to the arbitrary size inversion of other shapes with density contrast 

from SAXS, which is of great value for the on-site characterization of materials under dynamic 

compression. 

 

2. Training neural network 

According to the principle of SAXS, we can establish a fully connected feedforward network 

corresponds exactly to our physical issures. The data set with various particle distributions as well 

as their volume fraction (representing particle concentration) are used as the labels of the network, 

while the corresponding scattering intensities are used as the input data set. For the predicted 
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particle distributions from the neural network, the loss function of the training and validation data 

can be calculated and the network parameters are adjusted to minimize the loss. The process can 

then be repeated for several epochs until the acceptable loss value is reached. 

 

2.1. Data generation 

The data set for the neural network is generated on the basis of the classical SAXS theory. The 

expected scattering intensity absI  in absolute units can be defined using [26] 

  
2 2( ) = (1 ) | ( ) | ( ),abs sI q V F q S q         (1) 

where q  is the wavenumber,   is the volume fraction of the nanoparticles, 1-  is the volume 

fraction of the solution, V  is the volume of a single nanoparticle, sl  is the total scattering 

length density contrast between solids and solutions, ( )F q  and ( )S q  represent the form factor 

and structure factor respectively. When assuming spherical nanoparticles in one case, the form 

factor ( )F q  can be expressed as 
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where R  is the effective radius of the scatter. By introducing the repellent potential ( )U r  of 

hard-sphere in Percus-Yevick closure[27–30], the structure factor can be described as 

 part( ) =1 ( ) .iqrS q g r e dV    (3) 

We created a dataset of scattering intensity generated by hard-spheres with an effective 

particle size range of 1-9 nm and a volume fraction range of 0.1-0.5, that corresponds exactly to 

our physical issues[13,15,22]. For example, we estimated the size of the generated nanoparticles from 
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shock compressed polymer samples via other diagnostics (such as X-ray diffraction) to be several 

nanometers, with a volume fraction between 10-50 %. Considering the possible distribution range 

of actual grain size in these experiments, we chose particle size distribution between 0.9-9.9 nm as 

the target labels, represented by 100 equally discrete probability values. When creating a random 

particle size distribution, we selected the composition of three shulz distributions with random 

effective radii as the total probability for different particle sizes. To assess the robustness of the 

network, we artificially added 0-3% random error as noise to the theoretical SAXS intensity data. 

This is based on the fact that the error of SAXS lineouts obtained on high energy X-ray light source 

is mainly related to the instrument and light source quality, which causes an intensity error of less 

than 2%[22]. ANN can generalize well to any particle size distribution by training on this simple 

data. In addition, the q  range that can be detected by SAXS detector from beamline experiments 

is about 0.4- 11.05 nm . Correspondingly, we selected the same q  range of scattering intensity in 

our ANN dataset, and took 1000 equally discrete intensity values within this range as well as the 

volume fractions (which can be estimated by comparing static experiments with dynamic 

experiments) as the input set (see Fig. 1 for the input and output parameters). The detailed 

parameter information in the dataset is shown in Table 1. We set 80% of the data in the dataset as 

the validation set and the remaining 20% as the testing set. 
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Figure 1. Schematics of traning process.  
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Table 1. Parameter ranges during data generation. 

Parameter Min value Max value Units 

q  0.4 1.05 1nm  

effective radius 1.0 9.0 nm 

particle distribution 0.9 9.9 nm 

volume fraction 10.0 50.0 % 

 

In order to prevent the slow convergence of features during optimization[31], it is necessary 

to preprocess and normalize the data, which is an important step of neural network training. The 

entire data set was scaled after creating the train-validation databases so that all the input and target 

features were in the range [0, 1] according to 

 
min( )

= ,
max( ) min( )

' i
i

z z
z

z z




 (4) 

where z  represents the data set of a certain feature, iz  represents a sample of z , and max( z ) 

and min( z ) are the maximum and minimum values of z , respectively. The scaling is undone 

afterward. 

 

2.2. Compilation and training of the ANN 

The compilation of the neural network and the training were performed using the Keras package 

running the Tensorflow backend[32]. 

We established a fully connected dense feedforward network according to our physical 

case with a rectified linear unit (ReLU)[33] as the nonlinear activation function. The input layer 
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includes 1000 discrete intensity values as well as one volume fraction value while the output layer 

contains 100 discrete probability values representing size distribution. The middle three hidden 

layers have 128, 64, and 32 neurons, respectively. We chose the mean absolute error (MAE) as the 

loss function in the training and testing process (see Eq. 5). The backpropagation[34] and the 

stochastic gradient descent optimization algorithm[35] were used to adjust the weights and biases 

iteratively until the loss function was minimized. In each iteration process, the network calculated 

the gradient of the batch loss relative to the weight and then updated the weight accordingly. 

  
=1

1
MAE( , ) = .

m

i i

i

X h h x y
m

  (5) 

The ANN was trained along with adjusting the memorization capacity (the number of 

hidden layers or neurons) to find the optimal network structure avoiding underfit and overfit. In 

each training process, 4680 datasets with more than 4 million trainable parameters have been 

trained. 

 

Figure 2 shows the training and validation loss or accuracy as a function of epoch. The 

validation loss is very close to the training loss, indicating that although the model is complex, it 

does not over fit the training data, and has good generalization ability in the verification dataset. 

 

3. Evaluation of the trained network 

Based on the trained neural network, the grain distribution can be quickly and reliably retrieved 

from scattering data. Therefore, the property of the trained network should be evaluated by 

measuring its performance in a large number of theoretical data. 
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3.1. Apply ANN to the theoretical models 

Figure 3 depicts the predictions of the trained ANN on several theoretical data. After inputting the 

theoretical SAXS intensity lineout data with 0-3% noise to the trained ANN, the network can 

directly give the particle distribution, as shown in the blue histogram in the right column of Fig. 3. 

Aiming at arbitrary particle distribution with various patterns, our predicted particle distribution 

and the effective radius are in good agreement with the theoretical ones. Conversely, the 

corresponding SAXS lineout can also be calculated from the predicted distribution, as shown in 

the left column of Fig. 3, which is almost consistent with the original theoretical SAXS lineout in 

the majority of cases, implying a high reliability in the prediction of arbitrary particle distributions 

from theoretical data with noise. 

 

Figure 2. Training and validation loss as well as accuracy of the neural network which contains 3 

middle hidden layers with 128, 64, 32 neurons respectively. 
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However, for simple distributions with small particle radii, the difficulty of fitting 

increases due to the tiny variation of scattering intensity in the range of 10.4-1.05 nm , as shown 

in the first panel in the right column of Fig. 3. The more complex the intensity curve and the larger 

the particle radius, the higher the fitting accuracy. 

 

3.2. Apply ANN to the experiments 

In order to evaluate the performance of ANN on the experimental data, we assess ANN with the 

real-time in situ SAXS experimental data measured in dynamic experiments. Five SAXS intensity 

data of shock compressed 100 m  PET[36] at various probing times under : 100 GPa have been 

obtained on the Linac Coherent Light Source (LCLS) laser facility. The details of the experiment 

can be referenced in the previous work[22]. The in situ SAXS lineout data was used as input of the 

network, the particle distribution can then be predicted by the trained ANN. As shown in Fig.4, the 

predicted distributions at various probing times are compared with those obtained from an 

analytical method (applying the non-negative least squares method)[26] and the Monte Carlo 

method[19,20]. The left panel reveals the particle radius distribution obtained by the three methods, 

while the right panel exhibits the corresponding fitting lineouts. Interestingly, the three methods 

consistently point out that the mean particle size gradually increases with time in the shock 

compressed PET. It can be seen that the mean size predicted by ANN is relatively close to that of 

the Monte Carlo, and both of these two methods can obtain arbitrary size distribution and find a 

more discrete distribution at the last two probing times. As an analytical model, a Schultz 

distribution[37,38] is assumed with the polydispersity =p  / 0.1R  , resulting in systematically 

lager effective radius at latter times than that of the another two methods. In fact, due to the 
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complexity of the dynamic compression process, the nanoparticles generated from the sample are 

usually too discrete and too arbitrary to be simply represented by a certain distribution. Therefore, 

the acquisition of arbitrary distribution from raw SAXS data will better reflect the actual situation, 

as predicted by ANN and Monte Carlo. Of course, in the actual experimental process, one still 

need to azimuthally integrate the original two-dimensional scattering pattern as well as subtract the 

backgrounds, which requires batch processing on written codes and usually takes a few minutes to 

complete. Afterwards, among the three methods, ANN can invert the particle distribution from the 

scattering data with a few milliseconds of compute time on a standard laptop, while Monte Carlo 

takes 10-30 minutes and the analytical method requires even more time per shot because if often 

requires manual input to assert good convergence, and therefore poses challenges when scaled to 

high-repetition-rate experiments or online analysis. Comparatively, in the experimental process of 

compact beam time from raw image to size distribution, ANN is very suitable for in situ data 

analysis, which is of great significance for the promotion of physical experiments and timely 

parameter adjustment. In further research, the process parameters of the Monte Carlo method, such 

as local volume fraction and scattering length density, can serve as intermediate inputs for ANN to 

fine tune the network. This kind of physics-informed neural network (PINN) is very promisingly 

beneficial for improving the accuracy of size distribution inversion from experimental data. 

Other aspects of actual experiments, such as the bandwidth and the high harmonics of the 

probe light spectrum, can also affect the size distribution inversion from SAXS[39]. For the shock 

compression phase transition described above, the accuracy of the experiment itself is not so high 

that the influence of the spectrum bandwidth and high harmonics can be ignored. Of course, in 

some more precise SAXS inversion problems, the influence of spectrum cannot be ignored. In 

these cases, the ANN can be constructed through the following methods: directly input the 
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scattering spectrum and particle size distribution obtained from the specified spectrum into the 

ANN for training; Or add parameters representing the spectral features to the ANN for training. 

 

Figure 3. Apply ANN to the theoritical models. Seven arbitrary particle distributions predicted by 

ANN (right panel) and their corresponding fitting curves (left panel) compared with the initial 
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theoretical models. 

 

 

 

Figure 4. The nanoparticle distributions generated from shock compressed PET obtained by 

ANN, Monte Carlo and analytical model (left panel) and their corresponding SAXS fitting curve 

compared with the experimental data (right panel). The red dots indicate the resulting mean 

particle radius from the three methods. The color bar represents the various probing times. 

 

4. CONCLUSIONS 

To conclude, in view of the request for rapid analysis of generous SAXS data on large-scale laser 

facilities, in this work, we apply a dense forward network to inverse the mean grain size and 

particle distribution from SAXS data, allowing automatic acquisition of microstructure 

information without tedious manual fitting in traditional methods. Our trained network performs 

well in grain distribution prediction on experimental data with single-species particles. The 

predicted results have good consistency with the Monte Carlo method, which also inverses 
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arbitrary distribution, and is more efficient. 

Since the scattering intensity comes from density contrast, theoretically, our trained 

network can also be applied to the case of void distribution with spherical shapes in porous 

materials, but its effectiveness still needs further experimental verification. In further work, two 

possible improvements can be considered if this network is to be applied to non-spherical particles 

or voids. One is that the network needs to be retrained for particles or voids of specific shapes, and 

the method of constructing and training the network can be consistent with this work. A more 

universal approach is to add additional factors representing the shape of particles to the input of the 

network on the basis of this method, and then retrain the network. In short, the powerful 

advantages of ANN can be utilized in the study of dynamic physical processes by adding scattering 

shape parameters, optimizing model structures, etc. In addition, improvements in the diagnosis of 

the experiment, such as increasing the scattering angle range and improving the signal-to-noise 

ratio, can also enhance the accuracy of the ANN model. 
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