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Abstract

A correspondence formula between the laws of dual Markov chains on Z with two
transition jumps is established. This formula contributes to the study of random walks
in stationary random environments. Counterexamples with more than two jumps are
exhibited.
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1. Introduction

If (Sn)n≥0 refers to a random walk of law ν on the group Z of integers and if (S∗
n)n≥0

is the random walk whose law
∨
ν is the inverse distribution of ν, we obviously have, for any

nonnegative integer n and any x in Z,

P[S∗
n = −x | S∗

0 = 0] = P[Sn = x | S0 = 0]. (1)

In the case of a Markov chain (Sn)n≥0 on Z, with transition probabilities (py,y+z)y,z∈Z, we
can consider a dual Markov chain (S∗

n)n≥0 by taking as new transition probabilities

p∗
y,y+z := py,y−z, y, z ∈ Z.

In [5] it was shown that the law of the return time at 0 for a birth-and-death Markov chain is
easily expressed using the law of such a dual Markov chain. This kind of duality also appears
in [3] and [4] for the study of random walks in stationary random environments on Z.

For a Markov chain (Sn)n≥0, equality (1) is obviously wrong in the general case as soon as
n ≥ 2.

The situation is slightly different in the case of random walks in stationary random envi-
ronments. In what follows, we establish a quenched formula, the annealed version of which
corresponds to (1) for random walks in stationary random environments on Z with the number
of possible jumps at each site equal to exactly two. In Section 6 we give counterexamples when
three jumps are allowed.
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2. Dual Markov chains, random walks in stationary random environments, and main
results

Let a and b be two elements of Z with a > b.
In the following, the Markov chains we consider are (time-homogeneous) Markov chains

on Z with exactly two different jumps, a and b, or possibly −a and −b.
Let us denote by (Sn)n≥0 such a Markov chain with jumps a and b. The transition probabil-

ities of (Sn)n≥0 are simply given by the function

P : Z → (0, 1), y �→ py,

where py := py,y+a . The probability 1 − py,y+a , which equals py,y+b, is also denoted by qy .
In this paper, the dual Markov chain of (Sn)n≥0 is the Markov chain (S∗

n)n≥0 on Z with
jumps −a and −b whose transition probabilities are given by

p∗
y,y−a = py,y+a and p∗

y,y−b = py,y+b.

Theorem 1 below shows a simple correspondence formula between the laws of (Sn)n≥0
and (S∗

n)n≥0. Our main motivation in this paper is to apply this theorem to random walks in
stationary random environments on Z.

Theorem 1. With the above notation, for any nonnegative integers n, na , and nb with na +nb =
n, we have, for x = naa + nbb,

P[S∗
n = −x | S∗

0 = 0] = P[Sn = a | S0 = −x + a]
+ (P[Sn > a | S0 = −x + a] − P[Sn > b | S0 = −x + b])

for na ≥ 1, and
P[S∗

n = −x | S∗
0 = 0] = P[Sn = b | S0 = −x + b]

for na = 0 (x = nb).

Remark. The last equality of Theorem 1 is easy to prove:

P[S∗
n = −nb | S∗

0 = 0] = p∗
0,−bp

∗−b,−2b · · · p∗
−(n−1)b,−nb

= p0,bp−b,0 · · · p−(n−1)b,−(n−2)b

= P[Sn = b | S0 = −nb + b].
The equality corresponding to the case na = n could be established in the same way.

In the next three sections, we consider na ≥ 1, first with an example (Section 3) and then in
the general case (Sections 4 and 5).

We are now interested in the context of random walks in stationary random environments.
The transition probabilities of (Sn)n≥0 (and, thus, also of (S∗

n)n≥0) are then given by realizations
of a stationary sequence of random variables.

More precisely, considering an invertible measure-preserving transformation θ : � → �

on a probability space (�, F , µ) (see [7] for instance), we introduce a measurable function
p : � → [0, 1] and, for a fixed ω in �, we define the transition probabilities of (Sn)n≥0 by

py(ω) := p(θyω), y ∈ Z.
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Thus, for each ω, we now have a probability P = Pω that depends on ω; it is the quenched law
of the random walk in the environment given by ω. The averaging probability with respect to
the environments P = Pω(·)µ(dω) is called the annealed law of the random walk in stationary
random environments.

In this context, Theorem 1 can be rewritten as follows.

Theorem 2. (Theorem 1 reformulated.) With the above notation, for almost all ω and any
nonnegative integers n, na , and nb with na + nb = n, we have

Pω[S∗
n = −x | S∗

0 = 0] = Pθ−x+aω[Sn = x | S0 = 0]
+ (Pθ−x+aω[Sn > x | S0 = 0] − Pθ−x+bω[Sn > x | S0 = 0])

for na ≥ 1, and

Pω[S∗
n = −x | S∗

0 = 0] = Pθ−x+bω[Sn = −x | S0 = 0]
for na = 0, where x = naa + nbb.

As a corollary of Theorem 2, we obtain our second theorem which is concerned with the
annealed case.

Theorem 3. In mean with respect to the environments, for any nonnegative integer n, the law
of Sn and the law of −S∗

n are the same. In other words, for any x in Z,

P[S∗
n = −x | S∗

0 = 0] = P[Sn = x | S0 = 0].
We deduce in particular the following result.

Corollary 1. For any nonnegative integer n, we have the identity

E((S∗
n)2 | S∗

0 = 0) = E(S2
n | S0 = 0).

2.1. Remark on the reversible case

A conductance between two successive integers y and y +1 is a positive number c(y, y +1)

and its inverse, r(y, y + 1), is the resistance between y and y + 1.
To a given family (c(y, y + 1))y∈Z of conductances, we can associate a nearest-neighbours

Markov chain (Sn)n≥0 on Z whose transition probabilities are proportional to the conductances.
Thus, we have

P[Sn+1 = y + 1 | Sn = y] = c(y, y + 1)

c(y)

and

P[Sn+1 = y − 1 | Sn = y] = c(y − 1, y)

c(y)
,

where c(y) := c(y − 1, y) + c(y, y + 1).
When the conductances are obtained as realizations of a stationary sequence of positive

random variables, we obtain a random walk in stationary random environments.
In the ergodic case, we can prove that, for almost all environments ω of conductances, the

sequence (Eω(S2
n | S0 = 0)/n)n≥1 converges to the asymptotic variance

σ 2 = 1∫
c dµ

∫
(1/c) dµ

,
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with the convention that 1/+∞ = 0 (see [1], [2], and [6]). Therefore, we observe a symmetry
between c and 1/c asymptotically in time.

For a fixed environment of conductances, if we replace conductances by resistances, we
change the Markov chain governed by transition probabilities proportional to the conductances
into a Markov chain whose transition probabilities are inversely proportional to the conduc-
tances. Thus, the Markov chain (Sn)n≥0 becomes the dual chain (S∗

n)n≥0 and we can apply
Corollary 1. This shows that the previous symmetry between c and 1/c appears in fact at any
fixed time n when averaging with respect to the environments.

3. Initial observations: an example

For this example, we consider a Markov chain (Sn)n≥0 with jumps a = 1 and b = −1 and
we are interested in the probability

Pω[Sn = x | S0 = 0]
for n = 10 and x = 2.

We recall the following notation:

py = py,y+1 and qy = py,y−1, y ∈ Z.

First, let us consider the probability that (S0, S1, S2, . . . , S10) follows the path

� := (0, −1, 0, 1, 2, 3, 4, 3, 2, 3, 2),

starting at 0 and ending at 2; see Figure 1.
We have

P[(S0, S1, S2, . . . , S10) = �] = q0 p−1 p0 p1 p2 p3 q4 q3 p2 q3.

Expanding this product with respect to each factor qx = 1 − px , we obtain a sum with sixteen
terms

� := 1 p−1 p0 p1 p2 p3 1 1 p2 1 + 1 p−1 p0 p1 p2 p3 1 1 p2 (−p3)

+ 1 p−1 p0 p1 p2 p3 1 (−p3) p2 1 + p−1 p0 p1 p2 p3 1 (−p3) p2 (−p3)

+ 1 p−1 p0 p1 p2 p3 (−p4) 1 p2 1 + 1 p−1 p0 p1 p2 p3 (−p4) 1 p2 (−p3)

+ 1 p−1 p0 p1 p2 p3 (−p4) (−p3) p2 1

+ 1 p−1 p0 p1 p2 p3 (−p4) (−p3) p2 (−p3)

+ (−p0) p−1 p0 p1 p2 p3 1 1 p2 1 + (−p0) p−1 p0 p1 p2 p3 1 1 p2 (−p3)

+ (−p0) p−1 p0 p1 p2 p3 1 (−p3) p2 1

+ (−p0) p−1 p0 p1 p2 p3 1 (−p3) p2 (−p3)

+ (−p0) p−1 p0 p1 p2 p3 (−p4) 1 p2 1

+ (−p0) p−1 p0 p1 p2 p3 (−p4) 1 p2 (−p3)

+ (−p0) p−1 p0 p1 p2 p3 (−p4) (−p3) p2 1

+ (−p0) p−1 p0 p1 p2 p3 (−p4) (−p3) p2 (−p3).

The main idea consists in transforming each term of � in such a way to make appear the
probabilities that the dual chain (S∗

n)0≤n≤10 follows some paths.
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Figure 2: Representations of the paths �, �∗, and �∗
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Let us illustrate these transformations with the thirteenth term of �:

(−p0) p−1 p0 p1 p2 p3 (−p4) 1 p21.

To take into account the order in which the factors of this product appear, we consider the
10-tuple

ξ := (−p0, p−1, p0, p1, p2, p3, −p4, 1, p2, 1).

Then, we apply a mirror permutation, i.e.

(1, p2, 1, −p4, p3, p2, p1, p0, p−1, −p0),

followed by a shift of the negative signs to the left (and cyclically), ignoring the terms equal
to 1:

(1, −p2, 1, p4, p3, p2, p1, p0, −p−1, p0) =: η.

Considering now the transition probabilities of the dual chain (S∗
n), this 10-tuple η reveals

the path
�∗ := (1, 2, 3, 4, 3, 2, 1, 0, −1, 0, −1);

see Figure 2. Indeed, the product

q1 q2 q3 p4 p3 p2 p1 p0 q−1 p0 = P[(S∗
0 , S∗

1 , S∗
2 , S∗

3 , S∗
4 , S∗

5 , S∗
6 , S∗

7 , S∗
8 , S∗

9 , S∗
10) = �∗],
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expanded with respect to the quantities qx = 1 − px , contains the term

1 (−p2) 1 p4 p3 p2 p1 p0 (−p−1) p0,

the product of the coordinates of η.
With the same transformations as above, the first term of �, i.e.

1 p−1 p0 p1 p2 p3 1 1 p2 1,

gives the 10-tuple (1, p2, 1, 1, p3, p2, p1, p0, p−1, 1), which is associated to the path �∗
1 :=

(1, 2, 1, 2, 3, 2, 1, 0, −1, −2, −1).
For the second term of �,

1 p−1 p0 p1 p2 p3 1 1 p2 (−p3),

we obtain the 10-tuple (p3, p2, 1, 1, p3, p2, p1, p0, −p−1, 1), which is associated to the path
�∗

2 := (3, 2, 1, 2, 3, 2, 1, 0, −1, 0, 1); see Figure 2.
Continuing the same way reveals that

(i) each term of � reveals a path �∗
i (1 ≤ i ≤ 16);

(ii) each of the paths �∗
i starts at 1 and ends at −1, or starts at 3 and ends at 1;

(iii) none of the paths �∗
i and �∗

j such that �∗
i 	= �∗

j are translations of each other;

(iv) considering all the terms of � associated to the same path �∗
i and summing the products

of their transformed 10-tuple coordinates, we obtain only a part of the probability

P[(S∗
0 , S∗

1 , S∗
2 , S∗

3 , S∗
4 , S∗

5 , S∗
6 , S∗

7 , S∗
8 , S∗

9 , S∗
10) = �∗

i ].
From (ii), it follows that a simple shift by ‘−1’ or ‘−3’ of the indexes of the py makes the

resultant paths �∗
i all start at 0 and end at −2.

Now, we claim that, when considering all the possible paths of length 10 starting at 0 and
ending at 2, we can reconstitute exactly the probability

P[S∗
10 = −2 | S∗

0 = 0]
by using the same procedure described above (see Corollary 2 below).

The following section makes precise and generalizes these remarks.

4. Results needed for the proof of Theorem 1

In this section we consider the general case of a Markov chain on Z with jumps a and b

(a > b) whose transition probabilities are given by the function

P : Z → (0, 1), y �→ py,

where py = py,y+a .
The sequence (py)y∈Z will sometimes be regarded as a sequence of indeterminates, also

denoted by P . Distinguishing between the two uses is left to the reader.
Consider a positive integer n, and let x = naa +nbb be an Sn-reachable state, where na and

nb are nonnegative integers such that na + nb = n.
Our aim is to establish a relationship between the law of S∗

n and the probability

P[Sn = x | S0 = 0]
that the walk (Sn)n≥0 reaches x at time n when it starts at 0.
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We shall proceed in a combinatorial way and consider, as in the previous section, the
probability for Sn and S∗

n to follow peculiar paths. To do this, we need to introduce further
notation.

We denote by C(n)
0 the set of paths of length n starting at 0 whose jumps are equal to a or b:

C(n)
0 := {� = (γ0, γ1, . . . , γn) ∈ Z

n+1 | γ0 = 0, γi+1 − γi ∈ {a, b}, i = 0, 1, . . . , n − 1}.
We denote by C(n)

0,s for s in Z the set of the paths in C(n)
0 which end at s:

C(n)
0,s := {� ∈ C(n)

0 | γn = s}.
We successively introduce

E(P ) :=
⋃
y∈Z

{−py, 1, py},

and, for � = (γ0, γ1, . . . , γn) in C(n)
0 ,

D�(P ) := {ξ = (ξ0, ξ1, . . . , ξn−1) ∈ E(P )n | ξi = pγi
if γi+1 = γi + a

or ξi ∈ {1, −pγi
} if γi+1 = γi + b}.

Thus, we have

P[(S0, S1, . . . , Sn) = �] = pγ0,γ1pγ1,γ2 · · · pγn−1,γn =
∑

ξ∈D�(P )

n−1∏
i=0

ξi

(this last identity is obtained by expanding the product pγ0,γ1pγ1,γ2 · · · pγn−1,γn with respect to
each factor qy = 1 − py).

Denoting by D(0, x, n, P ) the disjoint union of the sets D�(P ) over � in C(n)
0,x , we obtain

the following proposition.

Proposition 1. With the above notation,

P[Sn = x | S0 = 0] =
∑

ξ∈D(0,x,n,P )

n−1∏
i=0

ξi .

Similarly, we have

P[S∗
n = −x | S∗

0 = 0] =
∑

η∈D∗(0,−x,n,P )

n−1∏
i=0

ηi,

where D∗(0, −x, n, P ) is the set

⋃
�∈−C(n)

0,x

{η = (η0, η1, . . . , ηn−1) ∈ E(P )n | ηi ∈ {1, −pγi
} if γi+1 = γi − b

or ηi = pγi
if γi+1 = γi − a}.

Let us now suppose that na is greater than or equal to 1 and introduce the notation

i(ξ) := max{i ∈ {0, 1, . . . , n − 1} | ξi 	= 1} for ξ ∈ D(0, x, n, P )
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and
D+(0, x, n, P ) := {ξ ∈ D(0, x, n, P ) | ξi(ξ) ∈ {py | y ∈ Z}}.

Remark. Given an element ξ of D+(0, x, n, P ), then, by construction, the unique path � in
C(n)

0,x associated to ξ appears to make a jump equal to a between the times i(ξ) and i(ξ) + 1,
and continues to make jumps equal to b thereafter until it reaches x. Hence, we have

γi(ξ) = x − a − (n − i(ξ) − 1)b.

Furthermore, since � has exactly nb jumps equal to b, we necessarily have

i(ξ) ≥ n − nb − 1 = na − 1.

The following proposition gives a probabilistic interpretation of the set D+(0, x, n, P ).

Proposition 2. For any positive integer n and any x = naa + nbb with n = na + nb and
na ≥ 1,

P[Sn ≥ x | S0 = 0] =
∑

ξ∈D+(0,x,n,P )

n−1∏
i=0

ξi .

Proof. Let � = (γ0, γ1, . . . , γn) be a path in C(n)
0 such that γn ≥ x.

We begin by noting that, since the jumps of γ are equal to a or b, the function i �→ −bi +γi

is increasing with jumps equal to 0 or a − b. Its initial value −b · 0 + γ0 = 0 is less than or
equal to (na −1) (a −b) = −bn+x − (a −b) (a > b and na ≥ 1) and its final value −bn+γn

is greater than or equal to −bn + x. Thus, there exists a unique instant i0 in {0, 1, . . . , n − 1}
such that

−bi0 + γi0 = −bn + x − (a − b) and − b(i0 + 1) + γi0+1 = −bn + x.

Furthermore, i0 must be greater than na − 1.
It follows that

P[Sn ≥ x | S0 = 0]

=
n−1∑

i0=na−1

P[i0 + Si0 = −bn + x − (a − b), (i0 + 1) + Si0+1 = −bn + x | S0 = 0].

Using the homogeneity in time of the transition probabilities of (Sn)n≥0 and Proposition 1, we
obtain, thanks to the remark before Proposition 2,

P[Sn ≥ x | S0 = 0] =
n−1∑

i0=na−1

P[Si0 = −i0 − bn + x − (a − b) | S0 = 0]p−i0−bn+x−(a−b)

=
n−1∑

i0=na−1

∑
ξ∈D(0,−i0−bn+x−(a−b),i0,P )

(i0−1∏
j=0

ξj

)
p−i0−bn+x−(a−b)

=
∑

ξ∈D+(0,x,n,P )

n−1∏
i=0

ξi .

This completes the proof.
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For all r in Z, we now define a shift on E(P ) by

θr(py) := py+r , θr (1) := 1, θr (−py) := −py+r , y ∈ Z,

and we extend it on E(P )n according to

θr(ξ) := (θr (ξ0), θ
r (ξ1), . . . , θ

r (ξn−1)), ξ = (ξ0, ξ1, . . . , ξn−1) ∈ E(P )n.

We further define the three functions

ϕ1, ϕ2, ϕ3 : E(P )n → E(P )n

by

ϕ1(ξ) :=
{

θ−x+a(ξ) if ξ ∈ D+(0, x, n, P ),

θ−x+b(ξ) otherwise,

ϕ2((ξ0, ξ1, . . . , ξn−1)) := (ξn−1, . . . , ξ1, ξ0),

and, for all i ∈ {0, 1, . . . , n − 1},

(ϕ3(ξ))i :=
{

1 if ξi = 1,

sgn(ξsuccξ (i)) | ξi | if ξi 	= 1,

where succξ (i) denotes the index of the coordinate of ξ which is not equal to 1 and which
‘cyclically follows’ the coordinate ξi . More precisely, if the set {j ∈ {i + 1, i + 2, . . . ,

n − 1} | ξj 	= 1} is not empty, we set

succξ (i) := min{j ∈ {i + 1, i + 2, . . . , n − 1} | ξj 	= 1};
otherwise,

succξ (i) := min{j ∈ {0, 1, . . . , i} | ξj 	= 1}.
Observe that ϕ1 and ϕ3 do not affect the coordinates of ξ that are equal to 1.

The composite mapping � := ϕ3 ◦ ϕ2 ◦ ϕ1 allows us to write a first relation between the
laws of Sn and S∗

n .

Proposition 3. For any positive integer n and any x = naa+nbb with n = na +nb and na ≥ 1,
the mapping � restricted to D(0, x, n, P ) is one-to-one between the sets D(0, x, n, P ) and
D∗(0, −x, n, P ) of Proposition 1.

Proof. Since the sets D(0, x, n, P ) and D∗(0, −x, n, P ) have the same cardinality, it
suffices to prove that � : D(0, x, n, P ) → E(P )n is an injective mapping with values in
D∗(0, −x, n, P ).

The function � is injective because the functions

ϕ1 : D(0, x, n, P ) → E(P )n, ϕ2 : E(P )n → E(P )n, and ϕ3 : E(P )n → E(P )n

are also injective. The injectivity of ϕ1 : D(0, x, n, P ) → E(P )n is a consequence of the
injectivity of the shifts θr , r ∈ Z, and the fact that the images by ϕ1 of the sets D+(0, x, n, P )

and its complementary in D(0, x, n, P ) are disjoint. The injectivity of ϕ2 : E(P )n → E(P )n

is straightforward. The injectivity of ϕ3 : E(P )n → E(P )n is a consequence of the fact that,
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if we do not take into account the coordinates of ξ in E(P )n which are equal to 1 (and stay
unchanged under the action of ϕ3), the action of ϕ3 on ξ is a cyclic permutation of the signs of
the remaining coordinates.

Let ξ be an element of D(0, x, n, P ). We prove the theorem by showing that �(ξ) belongs
to the set D∗(0, −x, n, P ). Set �(ξ) = (η0, η1, . . . , ηn−1).

We have to only establish the existence of a path �∗ = (γ0, γ1, . . . , γn) of C(n)
0 such that

ηi ∈ {1, −pγi
} when γi+1 = γi − b and ηi = pγi

when γi+1 = γi − a. (Note that such a path
�∗ necessarily ends at −x since �(ξ) contains the same number of coordinates belonging to
{py | y ∈ Z} than ξ .)

Let i0 be the minimum i index such that ηi 	= 1 (i0 exists because na ≥ 1). Then existence
of the path �∗ is a consequence of the following assertions:

(i) ηi0 ∈ {−p−i0b, p−i0b};
(ii) for all i in {i0 + 1, i0 + 2, . . . , n − 1}, if ηi ∈ {−py, py} then either ηj = −py+(i−j)b

or ηj = py+(i−j−1)b+a , where j is the greatest element of the set {i′ | i0 ≤ i′ ≤
i − 1 and ηi′ 	= 1}.

Let us start by proving (i). Because of the definition of � and since ξ belongs to D(0, x, n, P ),
we have

ξn−i0 = ξn−i0+1 = · · · = ξn−1 = 1

(this assertion is empty when i0 = 0) and

ξn−1−i0 ∈ {−px−(i0+1)b, px−i0b−a}.
If ξn−1−i0 = −px−(i0+1)b then ξ belongs toD(0, x, n, P )\D+(0, x, n, P ) and we successively
obtain

(ϕ1(ξ))n−1−i0 = −p−i0b, (ϕ2 ◦ ϕ1(ξ))i0 = −p−i0b,

and
ηi0 = (ϕ3 ◦ ϕ2 ◦ ϕ1(ξ))i0 ∈ {−p−i0b, p−i0b}.

In the same way, if ξn−1−i0 = px−i0b−a then ξ is an element of D+(0, x, n, P ) and we have

(ϕ1(ξ))n−1−i0 = p−i0b, (ϕ2 ◦ ϕ1(ξ))i0 = p−i0b,

and
ηi0 = (ϕ3 ◦ ϕ2 ◦ ϕ1(ξ))i0 ∈ {−p−i0b, p−i0b}.

This completes the proof of (i).
To prove (ii), suppose that i ∈ {i0 +1, i0 +2, . . . , n−1} and that ηi ∈ {−py, py}. Denoting

by j the greatest element of the set {i′ | i0 ≤ i′ ≤ i −1 and ηi′ 	= 1}, we have, by the definition
of �,

ξn−1−i ∈ {−py+r , py+r}, where r = x − a or r = x − b

and
ξn−i = ξn−i+1 = · · · = ξn−j−2 = 1.

This implies that if ξn−1−i = −py+r then

ξn−1−j ∈ {−py+r+(i−j)b, py+r+(i−j)b},
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from which we deduce the identity

ηj = −py+(i−j)b.

If ξn−1−i = py+r then

ξn−1−j ∈ {−py+r+(i−j−1)b+a, py+r+(i−j−1)b+a}
and

ηj = py+(i−j−1)b+a.

This completes the proof of (ii) and, hence, the proposition.

Propositions 1 and 3 give at once the following result.

Corollary 2. For any positive integer n and any x = naa +nbb with n = na +nb and na ≥ 1,

P[S∗
n = −x | S∗

0 = 0] =
∑

ξ∈D(0,x,n,P )

n−1∏
i=0

(�(ξ))i .

5. Proof of Theorem 1

By the definition of �, for any ξ in D(0, x, n, P ), we have

n−1∏
i=0

(�(ξ))i =
n−1∏
i=0

θr(ξi),

where r = −x + a if ξ is in D+(0, x, n, P ) and r = −x + b otherwise.
From this, using Corollary 1 and Propositions 1 and 2, we derive

P[S∗
n = −x | S∗

0 = 0] =
∑

ξ∈D(0,x,n,P )

n−1∏
i=0

(�(ξ))i

= θ−x+a

( ∑
ξ∈D+(0,x,n,P )

n−1∏
i=0

ξi

)

+ θ−x+b

( ∑
ξ∈D(0,x,n,P )\D+(0,x,n,P )

n−1∏
i=0

ξi

)

= θ−x+a(P[Sn ≥ x | S0 = 0])
+ θ−x+b(P[Sn = x | S0 = 0] − P[Sn ≥ x | S0 = 0])

= θ−x+a(P[Sn ≥ x | S0 = 0]) − θ−x+b(P[Sn > x | S0 = 0])
= θ−x+a(P[Sn = x | S0 = 0]) + θ−x+a(P[Sn > x | S0 = 0])

− θ−x+b(P[Sn > x | S0 = 0]).
Here the probabilities have been regarded as polynomials in the indeterminates py, y ∈ Z,

and the shifts θ−x+a and θ−x+b have been extended to endomorphisms of the algebra Z[py;
y ∈ Z].
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Finally, for all r, s in Z, we have

θr(P[Sn = s | S0 = 0]) = P[Sn = s + r | S0 = r].
This allows us to complete the proof.

6. Counterexamples for random walks in stationary random environments with more
than two jumps

In this section, to any invertible ergodic measure-preserving transformation θ : � → � on
a nonatomic probability space (�, F , µ), we construct a random walk in stationary random
environments with jumps −1, 1, and 2 for which Theorem 2 does not hold.

By the hypotheses on (�, F , µ) and θ , there exists an element A of F with µ(A) > 0 and
θ−3A, θ−2A, A, θA pairwise disjoint sets (see [7]). Thus, we can consider

r(ω) := 1
6 (1A(ω) + 1�(ω)),

p(ω) := 1
6 (1θ−1A(ω) + 1�(ω)),

q(ω) := 1 − p(ω) − r(ω),

and characterize the law of the random walk in stationary random environments by

Pω[Sn = y + 2 | S0 = y] = r(θyω),

Pω[Sn = y + 1 | S0 = y] = p(θyω),

Pω[Sn = y − 1 | S0 = y] = q(θyω).

Then
P[S2 = 3 | S0 = 0] − P[S∗

2 = −3 | S∗
0 = 0]

=
∫

(p(ω)r(θω) + r(ω)p(θ2ω) − p(ω)r(θ−1ω) − r(ω)p(θ−2ω)) dµ(ω)

=
∫

r(ω)(p(θ−1ω) + p(θ2ω) − p(θω) − p(θ−2ω)) dµ(ω)

= 1

6

∫
(p(θ−1ω) + p(θ2ω) − p(θω) − p(θ−2ω)) dµ(ω)

+ 1

62

∫
1A(ω)(1A(ω) + 1θ−3A(ω) − 1θ−2A(ω) − 1θA(ω)) dµ(ω)

= 1

62 µ(A)

> 0,

which yields the result.

Remark. We can similarly construct a random walk in stationary random environments with
jumps −1, 0, and 1 for which Theorem 2 does not hold.
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