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A DEDEKIND-STYLE AXIOMATIZATION AND
THE CORRESPONDING UNIVERSAL PROPERTY

OF AN ORDINAL NUMBER SYSTEM

ZURAB JANELIDZE AND INEKE VAN DER BERG

Abstract. In this paper, we give an axiomatization of the ordinal number system, in the style of
Dedekind’s axiomatization of the natural number system. The latter is based on a structure (N, 0, s)
consisting of a set N, a distinguished element 0 ∈ N and a function s : N → N . The structure in our
axiomatization is a triple (O, L, s), where O is a class, L is a class function defined on all s-closed ‘subsets’
of O, and s is a class function s : O → O. In fact, we develop the theory relative to a Grothendieck-
style universe (minus the power set axiom), as a way of bringing the natural and the ordinal cases under
one framework. We also establish a universal property for the ordinal number system, analogous to the
well-known universal property for the natural number system.

§1. Introduction. The introduction and study of ordinal numbers goes back to
the pioneering works of Cantor in set theory [2, 3]. In modern language, Cantor’s
ordinal numbers are isomorphic classes of well-ordered sets, see e.g. [5]. There is
also a ‘concrete’ definition of an ordinal number as a transitive set which is well-
ordered under the element relation—see e.g. [7]. Such sets are usually called von
Neumann ordinals. Natural numbers can be seen concretely as the finite ordinal
numbers. In Dedekind’s approach to the natural number system described in [4],
the natural numbers are not defined as concrete objects, but rather as abstract
entities organized in a certain structure; namely, a triple (N, 0, s) consisting of a
set N (a set of ‘abstract’ natural numbers), a distinguished element 0 of N (in
[4], the distinguished element is 1), and a function s : N → N , which names the
‘successor’ of each natural number. The axioms that such a system should satisfy
were formulated by Dedekind, but are often referred to as Peano axioms today (see
e.g. [16] for some historical background):

• 0 does not belong to the image of s.
• s is injective.
• X = N for any subset X of N that is closed under s and contains 0.
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AN AXIOMATIZATION OF AN ORDINAL SYSTEM 1397

It is an observation due to Lawvere [10] that these axioms identify the natural number
systems as initial objects in the category of all triples (X, x, t) where X is a set, x ∈ X
and t is a function t : X → X . This ‘universal property’ of the natural number system,
freed from its category-theoretic formulation, is actually the ‘definition by induction’
theorem already contained in [4]. A morphism (N, 0, s) → (X, x, t) of such triples
is defined as a function f : N → X such that:

• f(0) = x,
• f(s(n)) = t(f(n)) for all n ∈ N .

The ‘definition by induction’ theorem states that there is exactly one morphism to any
other triple (X, x, t) from the triple (N, 0, s) satisfying the axioms stated above. This
theorem is of course well known because of its practical use: it says that recursively
defined functions exist and are uniquely determined by the recursion. Intuitively,
the theorem can be understood as follows. A triple (X, x, t) can be viewed as an
abstraction of the concept of counting—X is the set of figures used in counting, x is
where counting begins and the function t names increments when counting. Without
further restrictions on such ‘counting systems’, there are many non-isomorphic ones,
some of which are quite different from the natural number system, but still useful;
for instance, hours on a clock, where counting loops back to 1 once we pass 12. A
morphism of these triples can be viewed as a ‘translation’ of one counting system
to another. The universal property of the natural number system presents it as a
‘universal’ counting system, in the sense that it has a unique translation to any
other counting system. Incidentally, such intuition is not particular to the natural
number system: many structures in mathematics can be defined by natural universal
properties—see [11].

Ordinal numbers exhibit a similar structure to natural numbers—there is a
‘starting’ ordinal (the natural number 0), and every ordinal number has a successor.
The natural numbers 0, 1, 2, 3, ... are the first ordinal numbers. This set is closed
under succession. The ordinal number system allows for another type of succession
that can be applied to sets of ordinal numbers closed under succession, giving rise
to the so-called ‘limit’ ordinal numbers. The infinite sequence of natural numbers
is succeeded by a limit ordinal number, usually denoted by �. Now, we can take
the ‘usual’ successor of �, call it � + 1, and keep taking its successors until we
get another set that is closed under succession, after which we introduce another
limit ordinal number—it will be � + � = � · 2. The next limit ordinal number will
be � · 3. At some point, we reach � · � = �2, then �3, and so on until we reach
�� , then �� + 1, and so on. The process is supposed to continue until all ordinal
numbers that we have named no longer form a set. Let us also recall that von
Neumann ordinals are defined as sets of preceding ordinals. Thus the first ordinal
number, the number 0, is defined as 0 = ∅ and the successor of an ordinal number
n is defined as

⋃
{n, {n}}. A limit ordinal number is one that is the union of all

preceding ordinal numbers. We can, in particular, think of 0 as a limit ordinal
number given by the union of its predecessors, since the empty union equals the
empty set. Equivalently, limit ordinal numbers are those whose sets of predecessors
are closed under succession.

We may also think of the ordinal number system in terms of a triple (O,L, s)—
this time, O is a class (since the collection of all ordinal numbers is no longer a set),
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1398 ZURAB JANELIDZE AND INEKE VAN DER BERG

L is a (class) function that specifies limit ordinals and is defined for those subclasses
of O which form sets closed under the class function s, which specifies the successor
of each ordinal. In this paper we show that the following three axioms on such a
triple are suitable as analogues of the three Dedekind–Peano axioms for the ordinal
number system:

• L(I) does not belong to the image of s, and also s(L(I)) /∈ I , for any I such
that L(I) is defined.

• s is injective and L(I) = L(J) if and only if I = J and L(I), L(J) are defined,
where I and J denote closures of I and J, respectively, under s and L
predecessors.

• X = O for any subclass X of O that is closed under s and that contains L(I)
for each I ⊆ X such that L(I) is defined.

In particular, we prove that:

• The system of von Neumann ordinals constitutes a triple (O,L, s) satisfying
the three axioms above. There is nothing surprising here, as the result relies on
the well-known properties of ordinal numbers.

• Any triple (O,L, s) satisfying these three axioms has an order which makes it
order-isomorphic to the system of ordinal numbers. The order, in fact, is the
specialization order of the topology given by the closure operator in the second
axiom (without those axioms, this order is merely a preorder).

• The triple (O,L, s) satisfying the three axioms above is an initial object in
the category of all triples (O′, L′, s ′) such that I ′ = J ′ implies L(I ′) = L(J ′),
whenever those are defined (with the domain of L′ being the class of all s ′-
closed subsets of O′).

The idea for defining an ordinal number system abstractly goes back to Zermelo
(see ‘Seven notes on ordinal numbers and large cardinals’ in [18]). His approach is
to define it as a particular type of well-ordered class (O,�). The following axioms,
added to well-ordering, would suffice:

• For every x ∈ O, the class {x}> = {y ∈ O | y < x} is a set.
• For each subset X of O, the class X< = {y ∈ O | ∀x∈X [x < y]} is nonempty.

There is, of course, an analogous presentation (although less known than the one
given by Peano axioms) of the natural number system as a well-ordered set (N,�)
satisfying the following additional conditions:

• For each x ∈ N , the set {x}> is finite.
• For each x ∈ N , the set {x}< is nonempty.

This is an alternative approach to that of Dedekind, where there is greater emphasis
on the order structure. The difference between our approach to ordinal numbers
and the traditional approaches is similar, where in our approach we try to make
minimal use of the order structure. Universal properties of the ordinal number
system emerging from the more order-based approach have been established, in
various forms, in [8, 12]. Our universal property is different from those.

The main new results of the paper are given in the last section. Before that, we
redevelop the basic theory of ordinal numbers relative to the set-theoretic context
in which these results are proved, ensuring that the paper is self-contained.
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AN AXIOMATIZATION OF AN ORDINAL SYSTEM 1399

This paper grew out from the second author’s rediscovery of Tarski’s addition
of sets [13] and of a universal property for ordinal numbers, known already from
[12]—see [14] (although, at the time of writing [14], the author was not aware of [12]).
Some of the chapters of [14] are based on the present paper (see also Remark 2).

§2. The context. There are a number of alternatives for a context in which the
theory that we lay down in this paper could be developed. Elaboration of those
contexts and comparison of results across the contexts as a future development of
our work would certainly be worthwhile. In this paper, we have decided to stick to
what we believe to be technically the most simple and intuitive context, given by
a ‘universe’ inside the standard Zermelo–Fraenkel axiomatic set theory, including
the axioms of foundation and choice (see e.g. [7]). This approach is not unusual.
For instance, it is the approach followed in the exposition of category theory in
[11]. The universes we work with, however, are slightly more general than the more
commonly used Grothendieck universes [1, 6, 17]. The main difference is that our
universes do not require closure under power sets and can be empty. Our context is
in fact a particular instance of the quite general category-theoretic context used in
[8]. Generalization of our results to that context is left for future work.

We remark that the definitions, theorems and their proofs contained in this paper
could be adapted, after a straightforward modification to their formulation, to
‘absolute’ set theory, where our ‘sets’ could be replaced with ‘classes’ and elements
of the fixed universe with ‘sets’. We would then get the form of the definitions and
theorems given in Section 1.

For a set X, by PX we denote the power set of X, and by
⋃
X we denote the union

of all elements of X. By N we denote the set of natural numbers. While we do not rely
on any prior knowledge of facts about ordinal numbers (proofs of all needed facts
are included in the paper), we do rely on knowledge of basic set-theoretic properties
of the natural number system. In particular, we will make use of mathematical
induction, definition by recursion, as well as the fact that any infinite set has a
subset bijective to N.

Recall that a set X is said to be transitive when X ⊆ PX , or equivalently, when⋃
X ⊆ X . For a function f : X → Y and a set A ∈ PX , we write fA to denote the

image of A under f :

fA = {f(a) | a ∈ A}.

Definition 1. A universe is a set U satisfying the following:

(U1) U is a transitive set.
(U2) If X,Y ∈ U then {X,Y} ∈ U.
(U3)

⋃
fI ∈ U for any I ∈ U and any function f : I → U.

These axioms imply that U is closed under the following standard set-theoretic
constructions:

• Singletons. Trivially, since {x} = {x, x}.
• Union. Because

⋃
X =

⋃
1XX .

• Subsets. Let Y ∈ U and let X ⊆ Y . If X = ∅, then X ∈ U, because every
nonempty transitive set contains the empty set thanks to the axiom of
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1400 ZURAB JANELIDZE AND INEKE VAN DER BERG

foundation. If X �= ∅, then let x0 ∈ X . Consider the function f : Y → U

defined by

f(y) =

{
{y}, y ∈ X,
{x0}, y /∈ X.

Notice that {x0} ∈ U since x0 ∈ X ⊆ Y ∈ U and U is a transitive set closed
under singletons. Then X =

⋃
fY ∈ U.

• Cartesian products (binary). Let X ∈ U and Y ∈ U. Then

{(x, y)} = {{{x, y}, {x}}} ∈ U

for each x ∈ X and y ∈ Y . For each x ∈ X define a function fx : Y → U by
fx(y) = {(x, y)}. Then {(x, y) | y ∈ Y} =

⋃
fxY ∈ U for each x ∈ X . Now

define a function g : X → U by g(x) = {{(x, y) | y ∈ Y}}. Then X × Y =⋃
gX ∈ U.

• Disjoint union. Given X ∈ U, the disjoint union
∑
X can be defined as∑

X =
⋃
{x × {x} | x ∈ X}.

Then
∑
X =

⋃
fX where f : X → U is defined by f(x) = x × {x}.

• Quotient sets. Let X ∈ U and let E be an equivalence relation on X. Then
X/E =

⋃
qX , where q is the function q : X → U defined by q(x) = {[x]E}.

• Replacement. Let X ∈ U and let f be a function X → U. By (a), we can define
a function g : U → U such that g(y) = {y} for each y ∈ U. Then g ◦ f is a
function X → U such that for all x ∈ X ,

(g ◦ f)(x) = {f(x)}.
The image of X under g ◦ f is then

(g ◦ f)X = {{f(x)} | x ∈ X}.
Then by (U3),

fX = {f(x) | x ∈ X}
=

⋃
{{f(x)} | x ∈ X}

=
⋃

(g ◦ f)X ∈ U. �
From this it follows, of course, that when U is not empty, it contains all natural
numbers, assuming that they are defined by the recursion

0 = ∅,

n + 1 =
⋃
{n, {n}}.

Furthermore, when U contains at least one infinite set, it also contains the set N of
all natural numbers (as defined above).

The empty set ∅ is a universe. The sets whose transitive closure have cardinality
less than a fixed infinite regular cardinal κ form a universe in the sense of the
definition above (by Lemma 6.4 in [9]). In particular, hereditarily finite sets (where
κ = ℵ0) form a universe, as do hereditarily countable sets (where κ = ℵ1). The so-
called Grothendieck universes are exactly those universes in our sense, which are
closed under power sets, i.e., if X ∈ U, then PX ∈ U.
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AN AXIOMATIZATION OF AN ORDINAL SYSTEM 1401

For any two sets A and B, we write

A ≈ B
when there is a bijection from A to B. The restricted power set of a set X relative to
a universe U is the set

PUX = {A ⊆ X | ∃B∈U[A ≈ B]}.
The following lemmas will be useful.

Lemma 2. When U is nonempty, for any set X and its finite subset Y ⊆ X , we have
Y ∈ PUX .

Proof. This follows from the fact that when U is nonempty, it contains a set of
each finite size. �

Lemma 3. If A ⊆ B and B ∈ PUX , then A ∈ PUX .

Proof. If A ⊆ B ≈ C ∈ U, then A is bijective to a subset of C. �
Lemma 4. If C ∈ PUPUX then

⋃
C ∈ PUX . In particular, this implies that if

I ∈ PUX , then for any function f : I → PUX , we have
⋃
fI ∈ PUX .

Proof. Suppose C ∈ PUPUX . Then there is a bijection h : C ′ → C , where C ′ ∈
U. Since for each element c ∈ C we have c ∈ PUX , by axiom of choice we have a
function g : C → U such that c ≈ g(c) for each c ∈ C . Let gc denote a bijection
gc : c → g(c) (we again use the axiom of choice to select such a bijection for each
c ∈ C ). Now, define a function k : C ′ → U as follows:

k(c′) = {(x, c′) | x ∈ g(h(c′))}.
Then

⋃
kC ′ ∈ U by (U3). Consider the function f :

⋃
kC ′ →

⋃
C defined by

f(x, c′) = g–1
h(c′)(x).

This function is a surjection. Indeed, for each y ∈
⋃
C there is a c ∈ C such that

y ∈ c and so,

f(gc(y), h–1(c)) = g–1
h(h–1(c))(gc(y))

= g–1
c (gc(y))

= y.

So
⋃
C is bijective to a quotient set of

⋃
kC ′, and thus

⋃
C ∈ PUX . This proves

the first part of the lemma.
Now suppose I ∈ PUX and let f : I → PUX be a function. Then fI ∈ PUPUX .

By what we have just proved,
⋃
fI ∈ PUX . �

Lemma 5. Given a function f : X → Y ,

A ∈ PUX ⇒ fA ∈ PUY.

Proof. If A ≈ A′ ∈ U, then fA is bijective to a suitable quotient of A′. �
Lemma 6. If A ∈ PUX and B ∈ PUY , then A× B ∈ PU(X × Y ).

Proof. This follows from the fact that U is closed under cartesian products. �
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1402 ZURAB JANELIDZE AND INEKE VAN DER BERG

Lemma 7. PUU = U.

Proof. LetA ∈ PUU, i.e.,A ⊆ U such thatA ≈ B ∈ U. Then a bijectionf : B →
A exists, and since A ⊆ U, this gives us A = fB ∈ U.

Now consider A ∈ U. Then A ⊆ U by (U1), and since A ≈ A ∈ U, this gives us
A ∈ PUU. We can conclude that PUU = U. �

Remark. One could relax the context proposed in this section by dropping
the axiom of foundation and adopting an axiom on U stating that if it U is
non-empty, then it must contain the empty set—see [14]. We have refrained from
adopting this weaker context in the present paper, as it would result in a slightly
more technical presentation of the background material (especially the material on
concrete ordinals), without a significant gain in generality.

§3. Abstract ordinals. In this section we introduce an abstract notion of an ordinal
number system relative to a universe and establish its basic properties. Consider a
partially ordered set (X,�). The relation < for the partial order, as a relation from
X to X, induces a Galois connection from PX to itself given by the mappings

S → S> = {x ∈ X | ∀y∈S [x < y]} and

S → S< = {x ∈ X | ∀y∈S [y < x]}.
We call S> the lower complement of S, and S< the upper complement of S. Note that
by ‘a < b’ above we mean ‘a � b ∧ a �= b’, as usual. Since the two mappings above
form a Galois connection, we have

S ⊆ (S>)< and S ⊆ (S<)>

for any S ⊆ X . We define the incremented join
∨+
S of a subset S of X (when it exists)

as follows: ∨+
S = minS<.

Note that since S ∩ S< = ∅, the incremented join of S is never an element of S.
It will be convenient to use the following abbreviations (where x ∈ X andS ⊆ X ):

x+ =
∨+ {x}, S+ = {x+ | x ∈ S}.

The following basic laws are self-evident:
(L1) x < x+,
(L2) there is no z such that x < z < x+,
(L3) x < y ⇔ x+ � y,
(L4) x =

∨+ {x}> (for a total order),
(L5) x < y+ ⇔ x � y (for a total order),
(L6) x+ = y+ ⇔ x = y (for a total order),
(L7) x < y ⇔ x+ < y+ (for a total order).

Using (L3), we can establish the following:

Lemma 8. For any S ⊆ X , if x+ exists for all x ∈ S, then
∨
S+ exists if and only

if
∨+
S exists, and when they exist, ∨

S+ =
∨+
S.

The following (easy) lemma will also be useful:
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AN AXIOMATIZATION OF AN ORDINAL SYSTEM 1403

Lemma 9. Let (X,�) be a poset and let S ⊆ X . Then:

(i) If S does not have a largest element, then
∨
S exists if and only if

∨+
S exists,

and when they exist,
∨
S =

∨+
S. Conversely, if

∨
S =

∨+
S, then S does not

have a largest element.
(ii) If S has a largest element x = maxS, then

∨+
S exists if and only if x+

exists, and when they exist,
∨+
S = x+. Conversely, when � is a total order, if∨+

S = x+ then x = maxS.
(iii) If

∨+
S> exists then

∨+
S> = minS. Conversely, when � is a total order, if

minS exists, then minS =
∨+
S>.

Proof.

(i) If S has no largest element, then

{x ∈ X | ∀y∈S [y � x]} = {x ∈ X | ∀y∈S [y < x]}

and so ∨
S = min{x ∈ X | ∀y∈S [y � x]}

exists if and only if ∨+
S = min{x ∈ X | ∀y∈S [y < x]}

exists, and when they exist, they are equal. Now suppose
∨
S =

∨+
S. Since∨+

S is never an element of S, we conclude that S does not have a largest
element.

(ii) Let x = maxS. Then {x}< = S<, and so x+ = min{x}< exists if and only
if

∨+
S = minS< exists, and when they exist, they are equal. Now suppose,

in the case of total order, that
∨+
S = x+ for some x ∈ X . Then S can only

have elements that are strictly smaller than x+, and thus each element of S
is less than or equal to x (L5). Also, since x+ =

∨+
S = minS<, it does not

hold that x ∈ S<, and thus x is not strictly larger than every element of S.
We can conclude that x = maxS.

(iii) Suppose
∨+
S> exists. Since S ⊆ (S>)<, we must have

∨+
S> � x for each

x ∈ S. This together with the fact that
∨+
S> cannot be an element of S>

forces
∨+
S> to be an element of S. Hence

∨+
S> = minS. Suppose now that

� is a total order and minS exists. Consider an element x ∈ (S>)<. Then
x is not an element of S> and so we cannot have x < minS. Therefore,
minS � x. This proves minS =

∨+
S>. �

Definition 10. An ordinal system relative to a universe U is a partially ordered
set O = (O,�) satisfying the following axioms:

(O1) For all X ⊆ O, if X �= ∅, then X> ∈ PUO.
(O2)

∨+
X exists for each X ∈ PUO.

We refer to elements of O as ordinals.

Note that ifO is nonempty, then Axiom (O1) forces the universeU to be nonempty
as well. So for any ordinal x ∈ O, we have {x} ∈ PUO (Lemma 2). Note also that
Axiom (O1) is equivalent to its weaker form (the equivalence does not require (O2)
and relies on Lemma 3):

(O1′) {x}> ∈ PUO for all x ∈ O.
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Axiom (O2) implies that the mapping x → x+ is a function O → O. We call this
function the successor function of the ordinal system O. For each x ∈ O, an element
of O that has the form x+ is called a successor ordinal and the successor of x. We
call an ordinal that is not a successor ordinal a limit ordinal.

Recall that a poset is a well-ordered set when each of its nonempty subsets has a
smallest element.

Theorem 11. A poset (O,�) is an ordinal system relative to a universe U if and
only if it is a well-ordered set (and consecutively, a totally ordered set) satisfying (O1′)
and such that X< �= ∅ for all X ∈ PU(O).

Proof. Consider an ordinal system O relative to a universe U. Let X be a
nonempty subset of O. Then X> ∈ PUO by (O1), and thus

∨+
X> exists by (O2).

By Lemma 9(iii),
∨+
X> = minX . This proves the ‘only if ’ part of the theorem.

Note that any well-ordered set is totally ordered: having a smallest element of a
two-element subset {x, y} forces x and y to be comparable. The ‘if ’ part is quite
obvious. �

We will use this theorem often without referring to it. One of its consequences is
that each nonempty ordinal system has a smallest element. We denote this element
by 0. Note that 0 is a limit ordinal. Since by the same theorem an ordinal system is
a total order, the properties (L4–7) above apply to an ordinal system. In particular,
we get that the successor function is injective. We also get the following:

Lemma 12. In an ordinal system, for an ordinal x the following conditions are
equivalent:

(i) x is a limit ordinal.
(ii) {x}> is closed under successors.

(iii) x =
∨
{x}>.

Proof. We have x =
∨+ {x}> for any ordinal x (L4). If x is a limit ordinal then

for each y < x we have y+ < x (L3). So (i) ⇒ (ii). If (ii) holds, by (L1), we get
that {x}> does not have a largest element. So

∨+ {x}> =
∨
{x}> (Lemma 9). This

gives (ii) ⇒ (iii). Suppose now x =
∨
{x}>. If x were a successor ordinal x = y+,

then by (L5), y would be the join of {x}>. However, x �= y by (L1), and therefore,
x must be a limit ordinal. Thus, (iii) ⇒ (i). �

The following theorem gives yet another way of thinking about an ordinal system.

Theorem 13. A poset (O,�) is an ordinal system relative to a universe U if and
only if (O1) holds along with the following axioms:

(O2a) For all X ∈ PUO, the join
∨
X exists.

(O2b) x+ exists for each x ∈ O.

Proof. This can easily be proved using (i) and (ii) of Lemma 9. �
Transfinite induction and recursion are well known for well-ordered sets. We

formulate them here (in one particular form, out of many possibilities) in the case of
ordinal systems, since we will use them later on in the paper. We have included our
own direct proofs, for the sake of completeness, but we do not expect these proofs
to have any new arguments that do not already exist in the literature.
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Theorem 14 (transfinite induction). Let O be an ordinal system and let X ⊆ O
satisfy the following conditions:

(I1) X+ ⊆ X ;
(I2) for every limit ordinal x, if {x}> ⊆ X then x ∈ X .

Then X = O.

Proof. Since O is well-ordered, if O \ X is nonempty, then it has a smallest
element y. By (I1), y cannot be a successor of any z < y in X. By (I2), it also cannot
be a limit ordinal. This is a contradiction, since a limit ordinal is defined as one that
is not a successor ordinal. �

Here is one of the immediate consequences of transfinite induction (the proof will
require also the total order of an ordinal system, as well as the properties (L3) and
(L4)):

Corollary 15. Let O be an ordinal system relative to a universe U, and let X ⊆ O
satisfy the following conditions:

(S1) X is down-closed in O, i.e., if x < y ∈ X then x ∈ X , for all x, y ∈ O;
(S2) X is an ordinal system relative to U under the restriction of the order of O.

Then X = O.

Theorem 16 (transfinite recursion). Let O be an ordinal system and let X =
(X,L, s), where X is a set, s is a function X → X , and L is a function PUX → X .
Then there exists a unique function f : O → X that satisfies the following conditions:

(R1) f(x+) = s(f(x)) for any x ∈ O;
(R2) f(x) = L({f(y) | y < x}) for any limit ordinal x.

Proof. For each ordinal x ∈ O, let Fx be the set consisting of all functions

fx : {y ∈ O | y � x} → X
that satisfy the following conditions:

(i) f(y+) = s(f(y)) for any successor ordinal y+ � x, and
(ii) f(y) = L({f(z) | z < y}) for any limit ordinal y � x.

Note that any function f satisfying (R1–2) must have a subfunction in each set
Fx . Also, for any x ∈ O, a function fx ∈ Fx must have a subfunction in each set
Fy where y < x. We prove by transfinite induction that for each x ∈ O, the set Fx
contains exactly one function fx .

Successor case: Suppose that for some ordinal x and each y � x there exists a
unique function fy ∈ Fy . Then g =

⋃
{fx, {(x+, s(fx(x)))}} satisfies (i) and (ii),

and thus g ∈ Fx+ .
Now consider any function g ′ ∈ Fx+ . Since g and g ′ must each have the unique

functionfx ∈ Fx as a subfunction, g and g ′ are identical on the domain {y | y � x}.
However, since g and g ′ each satisfies condition (i), we get that g ′(x+) = s(fx(x)) =
g(x+), and thus g ′ = g is the unique function in Fx+.

Limit case: Suppose that for some limit ordinal x and each y < x there exists a
unique function fy ∈ Fy . Then, for any two ordinals y < y′ < x, the function fy
is a subfunction of fy′ , which is in turn a subfunction of every function in Fx . The
relation

g =
⋃
{{(x,L({fy(y) | y < x}))},

⋃
{fy | y < x}}
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is then a function over the domain {y | y � x} and, moreover, it is easy to see that
g ∈ Fx .

Now consider any function g ′ ∈ Fx . Since for each ordinal y < x the unique
function fy ∈ Fy is a subfunction of both g and g ′, we see that they are identical
on the domain {y | y < x}, and since they both satisfy condition (ii), the following
holds:

g(x) = L({g(y) | y < x}) = L({g ′(y) | y < x}) = g ′(x).

We can conclude that g ′ = g is the unique function in Fx .
We showed that for each ordinal x, exactly one functionfx ∈ Fx exists. Construct

a function f : O → X as follows: for each ordinal x,

f(x) = fx(x).

It satisfies (R1–2) because eachfx satisfies (i) and (ii). Since any function satisfying
(R1–2) must have a subfunction in each set Fx , we can conclude that f is the unique
function satisfying (R1–2). �

§4. Concrete ordinals. For a universe U, define a U-ordinal to be a transitive set
that belongs to the universe U and is a well-ordered set under the relation

x ∈– y ⇔ [x ∈ y] ∨ [x = y].

Thus, a U-ordinal is nothing but a usual von Neumann ordinal number [15] that
happens to be an element of U. In other words, it is a von Neumann ordinal number
internal to the universe U. Thus, at least one direction in the following theorem is
well known. We include a full proof for completeness.

Theorem 17. A set O is the set of allU-ordinals if and only if the following conditions
hold:

(a) O ⊆ U, and if ∅ ∈ U, then ∅ ∈ O;
(b) O is a transitive set;
(c) O is an ordinal system relative to U under the relation∈–, with the corresponding

strict ordering given by ∈.
When these conditions hold, the incremented join of X ∈ PUO is given by

∨+
X =⋃

{X,
⋃
X}.

Proof. We prove both directions. The proof of the last statement in the theorem
is included in Step 1(c).

Step 1. We prove that if O is the set of all U-ordinals, then (a–c) hold. While
proving (c), we show that the incremented join of a set of U-ordinals X ∈ PUO is given
by

∨+
X =

⋃
{X,

⋃
X}.

Let O be the set of all U-ordinals.
(a) This follows easily from the definition of a U-ordinal as a transitive element

of U.
(b) To prove transitivity, let y ∈ x ∈ O. We want to show that y is a U-ordinal

(i.e., an element of U that is transitive and well-ordered by ∈–). Since x ∈ U,
we have y ∈ U by (U1). Since y is a subset of the well-ordered set x, y must
also be well-ordered.
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Next, we must prove that y is transitive. Let z ∈ y. Then z ∈ x, since x
is transitive. We want to show that z ⊆ y, so suppose t ∈ z. Then t ∈ x, by
transitivity of x. By the fact that ∈– is a total order on x, we must have t ∈– y.
We cannot have t = y, since t ∈ z ∈ y, and so t ∈ y.

(c) We use the characterization of an ordinal system given in Theorem 11(b) as
a well-ordered set satisfying (O1′), in which X< �= ∅ holds for all X ∈ PUO.

Notice that the relation ∈– is a partial order on O: reflexivity is obvious,
while transitivity follows from each element of O being a transitive set. By the
axiom of foundation, ∈ is the strict ordering on O corresponding to∈–.

We can easily prove, as follows, that O satisfies (O1′).
O1′. Consider x ∈ O. Then we have:

{x}> = {y ∈ O | y ∈ x} ⊆ x.
Since x is a U-ordinal, x ∈ PUO and so {x}> ∈ PUO (Lemma 3). Note
that by (b) we actually have x = {x}>, although we did not need this to
establish (O1′).

Before we prove that O is well-ordered, we will first establish the following
two facts.

Fact 1. x ∩ y = min(y \ x) for any two U-ordinals x and y such that
y \ x �= ∅.

Let a ∈ x ∩ y. Then a /∈ y \ x, and hence a �= min(y \ x). By the well-
ordering of y, we then get that either a ∈ min(y \ x) or min(y \ x) ∈ a.
By transitivity of x and the fact that min(y \ x) /∈ x, the second option is
excluded. So a ∈ min(y \ x). This shows that x ∩ y ⊆ min(y \ x).

Now suppose a ∈ min(y \ x). Then a ∈ y by transitivity of y. If a /∈ x,
then a ∈ y \ x, which would give min(y \ x) ∈– a, which is clearly impossible.
So a ∈ x. This proves min(y \ x) ⊆ x ∩ y, and hence min(y \ x) = x ∩ y.

From Fact 1 we will prove the following.

Fact 2. x ∈– y ⇔ x ⊆ y for any two U-ordinals x and y.

To see why this holds, consider U-ordinals x and y such that x ⊆ y. Then
x = x ∩ y, and either y \ x is empty, in which case x = y, or

x = x ∩ y = min(y \ x) ∈ y,
by Fact 1. The other direction follows trivially from transitivity of y.

We now show that O is well-ordered under the relation ∈–. First, we prove
that O is totally ordered under ∈–. Consider x, y ∈ O. If x �= y, then either
x \ y or y \ x is nonempty. Without loss of generality, suppose that y \ x is
nonempty. By Fact 1, min(y \ x) ⊆ x. Then, by Fact 2, either min(y \ x) ∈ x
or min(y \ x) = x, and since min(y \ x) ∈ y \ x, we can conclude that x =
min(y \ x), and thus x ∈ y.

Now consider a nonempty Y ⊆ O, and any y ∈ Y . If y ∩ Y = ∅, then for
all x ∈ Y we have x /∈ y and thus y = minY by total ordering. If y ∩ Y �= ∅,
then min(y ∩ Y ) exists, since y ∩ Y ⊆ y. For all x ∈ Y \ y, it holds that
x /∈ y, and thus y ⊆ x (by total ordering and Fact 2), which in turn implies
min(y ∩ Y ) ∈ x. We can conclude that min(y ∩ Y ) ∈ x for all x ∈ Y , and
thus minY = min(y ∩ Y ).
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We will now complete the proof of (c) by showing that X< is nonempty
for all X ∈ PUO, and simultaneously prove that

∨+
X =

⋃
{X,

⋃
X} for all

X ∈ PUO.
Consider X ∈ PUO. By (a) and Lemma 7, X ∈ U. Then

⋃
{X,

⋃
X} ∈ U.

To show that
⋃
{X,

⋃
X} is a U-ordinal, we need to prove that it is a transitive

set well-ordered under the relation∈–.
Since each element of X is transitive,

⋃ ⋃
X ⊆

⋃
X holds, which implies

transitivity of
⋃
{X,

⋃
X}:⋃(⋃

{X,
⋃
X}

)
=

⋃
{

⋃
X,

⋃ ⋃
X}

=
⋃
X

⊆
⋃
{X,

⋃
X}.

Since O is transitive by (b), and X ⊆ O, each element of
⋃
X is a

U-ordinal, and thus each element of
⋃
{X,

⋃
X} is a U-ordinal. Then the

fact that
⋃
{X,

⋃
X} is well-ordered under the relation∈– follows from the fact

that O is well-ordered under the same relation, as we have already proven.
Then, since

⋃
{X,

⋃
X} is transitive and well-ordered under∈–, we have that⋃

{X,
⋃
X} is a U-ordinal.

Now, let us remark that for any X ∈ PUO,∨+
X = minX<

= min{y ∈ O | ∀x∈X x ∈ y}
= min{y ∈ O | X ⊆ y}.

Notice that
⋃
{X,

⋃
X} ∈ minX<, and consider any y ∈ X<. ThenX ⊆ y,

and it is not hard to see that
⋃
{X,

⋃
X} ⊆ y, since

⋃
X ⊆ y by transitivity

of y. Then, by Fact 2,
⋃
{X,

⋃
X} ∈– y, and so⋃

{X,
⋃
X} = minX< =

∨+
X.

Step 2. We prove that if (a)–(c) hold, then O is the set of all U-ordinals.

Let O be any set satisfying (a)–(c).
First we prove that every element of O is a U-ordinal, i.e., a transitive element of

U that is well-ordered by the relation∈–.
Let x ∈ O. By (c), the set O is ordered under the relation∈–. In this ordered set,

{x}> = {y ∈ O | y ∈ x} = x ∩O.

By (b), x ⊆ O, and so x = {x}>. By (a) and (c), x ∈ U. Furthermore, for any y ∈ x,
the following holds:

y = {y}> ⊆ {x}> = x.

This shows that x is transitive.
Since O is well-ordered under∈– (by (c) and Theorem 11) and x ⊆ O, we know x is

also well-ordered under the same relation. Thus, every element of O is a U-ordinal.
Now we need to establish that every U-ordinal is in O. We already proved that

the set O of all U-ordinals is an ordinal system, and since O is a set of U-ordinals,
O ⊆ O. The equality O = O then follows from Corollary 15. �
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§5. A Dedekind-style axiomatization. A limit-successor system is a triple X =
(X,L, s), where X is a set, L is a partial function L : PX → X called the limit
function and s is a function s : X → X called the successor function. A successor-
closed subset of a limit-successor system X is a subset I of X such that sI ⊆ I . For
a subset I ⊆ X , write s–1I to denote

s–1I = {x ∈ X | s(x) ∈ I }

and L–1I to denote

L–1I = {A ∈ domL | L(A) ∈ I }.

A subset I ⊆ X is said to be closed when

s–1I ⊆ I and
⋃
L–1I ⊆ I.

It is not difficult to see that closed subsets form a topology on X ; in fact, an
Alexandrov topology (arbitrary unions of closed subset are closed). We denote
the closure of a subset I in this topology by I . Recall that the corresponding
‘specialization preorder’ given by

x � y ⇔ x ∈ {y}

is a preorder (as it is for any Alexandrov topology) and that x ∈ I if and only if
x � y for some y ∈ I .

We abbreviate the operator s–1 composed with itself m times as s–m, with the
m = 0 case giving the identity operator. We write s–∞ for the operator defined by

s–∞I =
⋃
{s–mI | m ∈ N}

and
⋃
L–1 for the operator I →

⋃
L–1I . One can show that the closure of a subset

I ⊆ X can be computed as

I =
⋃
{s–∞ [⋃

L–1s–∞]k
I | k ∈ N}.

This means that the specialization preorder ‘breaks up’ into two relations �s and
≺L, each determined by s and L alone, as explained in what follows. These relations
are defined by:

x �s y ⇔ ∃m∈N[sm(x) = y] (⇔ x ∈ s–∞{y}),

x ≺L y ⇔ ∃I [[x ∈ I ] ∧ [L(I) = y]] (⇔ x ∈
⋃
L–1{y}).

We then have x � y if and only if

x = z0 �s z1 ≺L z2 �s z3 ≺L ... z2k �s y

for some z0, ... , z2k ∈ X , where k can be any natural number k � 0. Note that �s is
both reflexive and transitive, although the same cannot be claimed for ≺L.

Definition 18. Given a universe U, a U-counting system is a limit-successor
system (X,L, s) satisfying the following conditions:

(C1) The domain of L is the set of all successor-closed subsets I ∈ PUX .
(C2) If I and J belong to the domain of L and I = J , then L(I) = L(J).
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The structure above is the one that will be used for formulating the universal
property of an ordinal system at the end of this section. Before that, we give a
characterization of ordinal systems as counting systems having further internal
properties.

Lemma 19. Let U be a universe and let (X,L, s) be a U-counting system. Then ≺L
is transitive and furthermore,

x �s y ≺L z ⇒ x ≺L z
for all x, y, z ∈ X .

Proof. To prove transitivity of ≺L, suppose x ≺L y and y ≺L z. Then x ∈ I ,
L(I) = y, y ∈ J and L(J) = z for some successor-closed I, J ∈ PUX . Then the
union

⋃
{I, J} ∈ PUX (Lemma 4) is also successor-closed, and hence it belongs

to the domain of L by (C1). Since L(I) ∈ J , we get that I ⊆ J . This implies that⋃
{I, J} = J . By (C2),L(

⋃
{I, J}) = L(J). Havingx ∈

⋃
{I, J} andL(

⋃
{I, J}) = z

means that x ≺L z. This completes the proof of transitivity.
To prove the second property, suppose x �s y ≺L z. Then sm(x) = y and y ∈ J

whereL(J) = z, for somem ∈ N and some successor-closed J ∈ PUX . Here we also
expand J, this time adding to it all elements of the form sk(x), where k ∈ {0, ... , m –
1}. The resulting set

K =
⋃
{{x, s(x), ... , sm–1(x)}, J}

is clearly successor-closed and belongs to PUX (Lemmas 2 and 4). Then, since
K = J , we get that L(K) = L(J) by (C2). This implies x ≺L z. �

This lemma gives that in a U-counting system (X,L, s), for any x, z ∈ X we have

x � z ⇔ [x �s z] ∨ ∃y [x ≺L y �s z]
as a result of which the previous computation of the closure of a subset I ⊆ X
simplifies to

I =
⋃
{s–∞I,

⋃
L–1s–∞I }.

Note that x � z now intuitively means that z is a finite successor of x, or z is a finite
successor of the limit of a set containing x. Using this characterization of �, it is
also easy to confirm the following two facts:

• s is increasing under �
• x < y ⇒ s(x) � y, for all x, y ∈ X .

Theorem 20. The specialization preorder of a U-counting system (X,L, s) makes
X an ordinal system relative to U, provided the following conditions hold:

(C3) s–1{L(I)} = ∅ = I ∩ {s(L(I))} for all I such that L(I) is defined.
(C4) s is injective and L has the property that if L(I) = L(J) then I = J .
(C5) J = X for any successor-closed set J having the property that I ⊆ J ⇒

L(I) ∈ J every time L(I) is defined.

When these conditions hold, s is the successor function of the ordinal system and
L(I) =

∨
I =

∨+
I whenever L(I) is defined; moreover, the limit ordinals are exactly

the elements of X of the form L(I). Furthermore, the closure of I ∈ PUX is given by
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I = {
∨+
I }>. Finally, any ordinal system relative to U arises this way from a (unique)

U-counting system satisfying (C3–5).

Before proving the theorem, let us illustrate axioms (C1–5) in the case when U

is the universe of hereditarily finite sets. Then L is only defined on finite successor-
closed sets. Injectivity of s in (C4) forces every element x of such set to have the
property ∃m∈N\{0}[sm(x) = x]. At the same time, by (C3), such x cannot lie in the
image of L. So

J = {x ∈ X | ∀m∈N\{0}[sm(x) �= x]}

has the second property in (C5). Moreover, by injectivity of s again, J is also
successor-closed. Then, by (C5), J = X and so L can only be defined on the empty
set. With this provision, the triple (X,L, s) becomes a triple (X, 0, s) where 0 is
the unique element in the image of L, 0 = L(∅). The axioms (C1–2) then trivially
hold, while (C3–5) take the form of the axioms of Dedekind for a natural number
system:

• The first equality in (C3) states that 0 does not belong to the image of s, while
the second equality holds trivially.

• (C4) just states that s is injective.
• (C5) becomes the usual principle of mathematical induction.

Proof of Theorem 20. Suppose conditions (C1–5) hold.

Step 1. As a first step, we prove that the specialization preorder is antisymmetric,
i.e., that it is a partial order.

For this, we first show that ≺L is ‘antireflexive’: it is impossible to have x ≺L x.
Indeed, suppose x ∈ I and L(I) = x. Since I is successor-closed by (C1), s(x) ∈ I .
But then s(x) ∈ I ∩ {s(L(I))}, which is impossible by (C3).

Next, we show antisymmetry of �s . Suppose x �s z �s x and x �= z. Then we
get that sk(x) = x for k > 1. We will now show that this is not possible. In fact, we
establish a slightly stronger property, which will be useful later on as well:

Property 1. sk(x) �= x for all x ∈ X and all natural numbers k > 0.

Actually, we have already established this property in the remark after the theorem.
Here is a more detailed argument. Consider the set

J = {x ∈ X | ∀k>0[sk(x) �= x]}.

We will use (C5) to show that J = X .
First, we show that J is successor-closed. Let y ∈ J , and suppose sk(s(y)) = s(y)

for some k > 0. Then, by injectivity of s (which is required in (C4)), sk–1(s(y)) = y,
which is impossible. So s(y) ∈ J , showing that J is successor-closed.

Now let I ∈ PUX be a successor-closed subset of J (by (C1), I is such if and only
if L(I) is defined). Then L(I) �= sk(L(I)) for all k > 0 by the first equality in (C3).
Thus L(I) ∈ J , and we can apply (C5) to get J = X , as desired. Antisymmetry of
�s has thus been established.

We are now ready to prove the antisymmetry of �. Suppose x � z and z � x.
There are four cases to consider:
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Case 1. (x �s z �s x). Then x = z by antisymmetry of �s .

Case 2. (x ≺L y �s z �s x for some y). Then

y �s z �s x ≺L y
⇒ y �s x ≺L y (by transitivity of �s)
⇒ y ≺L y, (by Lemma 19)

which we have shown to be impossible.

Case 3. (x �s z ≺L y �s x for some y). Then, similarly, we get the impossible

y �s x �s z ≺L y
⇒ y �s z ≺L y (by transitivity of �s)
⇒ y ≺L y. (by Lemma 19)

Case 4. (x ≺L y �s z ≺L y′ �s x for some y, y′). In this case, too, we get the
impossible

y �s z ≺L y′ �s x ≺L y
⇒ y ≺L y′ ≺L y (by Lemma 19)

⇒ y ≺L y. (by transitivity of ≺L from Lemma 19)

We have thus shown that the specialization preorder is antisymmetric. We will
now establish the following property, which will be useful later on.

Property 2. If x < s(y) then x � y, for all x, y ∈ X .

Suppose x < s(y). Again, we have two cases:

Case 1. (x �s s(y)). This, together with x �= s(y), gives x � y by injectivity of s
from (C4).

Case 2. (x ≺L x′ �s s(y) for some x′ ∈ X ). Since x′ �= s(y) by the first equality
in (C3), by injectivity of s ( from (C4)), we must have x′ �s y. This gives us x � y.

We get x � y in both cases.

Step 2. We prove that the specialization preorder is a total order.

We will prove this by simultaneously establishing the following:

Property 3. Let y ∈ X , and let I ⊆ X . If x < y for all x ∈ I and L(I) is defined,
then L(I) � y.

Let

J = {x ∈ X | ∀y∈X [y � x ∨ x � y]}.

We will use (C5) to show that J = X . For this, we first prove that J is successor-
closed. Let x ∈ J , and consider any y ∈ X . Since x � s(x), if y � x, then y � s(x).
Ifx < y, then s(x) � y, as remarked after Lemma 19. This proves that J is successor-
closed.
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Now consider L(I), where I ⊆ J . To prove that L(I) ∈ J , we proceed as follows.
Let x ∈ X . If x � y for at least one y ∈ I , then x � L(I), since y ≺L L(I). Thus,
it suffices to prove that the set

KI = {x ∈ X | [∀y∈I y < x] ⇒ [L(I) � x]},

is the entire KI = X . This we prove using (C5).
First, we show that KI is successor-closed. Suppose x ∈ KI . If y < s(x) for all

y ∈ I , then by Property 2, y � x for all y ∈ I . If y = x for some y ∈ I , then x ∈ I ,
and, since I is successor-closed by (C1), we will have s(x) ∈ I , which will violate
the assumption that y < s(x) for all y ∈ I . So we get that y < x for all y ∈ I .
Then L(I) � x, since x ∈ KI . This implies L(I) � s(x), thus proving that KI is
successor-closed.

Now let H ⊆ KI be such that L(H ) is defined. Suppose y < L(H ) for all y ∈ I .
From the first equality in (C3), we get that y ≺L L(H ) for each y ∈ I . So for
each y ∈ I , there exists Gy such that y ∈ Gy and L(Gy) = L(H ). This implies that
Gy = H for each y ∈ I (by (C4)), and so I ⊆ H . Since I ⊆ J , each element of H is
comparable with each element of I. We consider two cases.

Case 1. (for every h ∈ H , there exists y ∈ I such that h � y). ThenH ⊆ I . This
would then give I = H , and so by (C2), L(I) = L(H ), showing that L(I) � L(H ),
as desired.

Case 2. (there exists h ∈ H such that y < h for every y ∈ I ). SinceH ⊆ KI , this
gives us L(I) � h. This, together with h ≺L L(H ), will give L(I) � L(H ).

In both cases, L(I) � L(H ). We have thus shown that KI has the required
properties for us to apply (C5) to conclude that KI = X . This, then, shows that
L(I) ∈ J , and so J has the required properties to conclude that J = X . The proof
that the specialization preorder is a total order is now complete. At the same time,
since J = X , and for each I ⊆ J such that L(I) is defined, KI = X , we have also
established Property 3.

Step 3. We now show that L(I) =
∨
I =

∨+
I whenever L(I) is defined, and that

s(x) = x+ for all x ∈ X .

Properties 1 and 3 show that L(I) is the join of I for any I such that L(I) is
defined. Indeed, if x � y for all x ∈ I , then for each x ∈ I , we also have s(x) � y.
Since x < s(x), as clearly x � s(x) and by Property 1, x �= s(x), we get that x < y
for all x ∈ I . Then, by Property 3, L(I) � y, thus showing that L(I) is a join of I.

Furthermore, when L(I) is defined, I is successor-closed and so it cannot have a
largest element, by Property 1. Then the join L(I) of I must also be the incremented
join of I (Lemma 9).

Finally, the property x < s(x), together with the fact that s(x) � y whenever
x < y, implies that s(x) = x+ for each x ∈ X . Thus, once we prove that X is an
ordinal system under the specialization preorder, we have that s is its successor
function and L is given by the join.

Step 4. We prove that X is an ordinal system under the specialization preorder,
where limit ordinals are exactly the elements of the form L(I).
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Consider the set

J = {x ∈ X | {x}> ∈ PUX}.

If x ∈ J , then by Property 2, {s(x)}> =
⋃
{{x}>, {x}} ∈ PUX (Lemmas 2 and 4),

and so s(x) ∈ J . For any x ∈ J , we therefore have

{x} = {y ∈ X | y � x}
= {y ∈ X | y < s(x)} (by Property 2)

= {s(x)}> ∈ PUX.

Suppose I ⊆ J is such that L(I) is defined, and define a function f : I → PUX
by f(x) = {x}. Then, by Lemma 4,

⋃
fI =

⋃
{{x} | x ∈ I } ∈ PUX.

Notice that I ⊆ {
∨
I }>, since I is the down-closure of I under the specialization

preorder.
Then, note that

⋃
I =

⋃
{x | x ∈ I } holds for all I ⊆ X , as is true in any

Alexandrov topology, and thus

{L(I)}> =
{∨
I
}>

(by Step 3)

= I (since X is totally ordered)

=
⋃
{{x} | x ∈ I }

=
⋃
{{x} | x ∈ I } ∈ PUX,

and so L(I) ∈ J . By (C5), J = X , and thus (O1′) holds.
To prove that X is an ordinal system under the specialization preorder, it remains

to show that it satisfies (O2), i.e., that for any Y ∈ PUX , the incremented join of
Y exists in X. If Y has a largest element, then the successor of that element is the
incremented join of Y (Lemma 9). If U does not contain an infinite set, then Y is
finite, and so it has a largest element.

Now considerY ∈ PUX that has no largest element, with U containing an infinite
set. We define:

s∞Y = {sn(x) | [x ∈ Y ] ∧ [n ∈ N]}.

This is, of course, the closure of Y under s. Consider a function f : Y × N → X
defined by f(x, n) = sn(x). Then, by Lemmas 5 and 6,

s∞Y = {sn(x) | [x ∈ Y ] ∧ [n ∈ N]}
= {f(x, n) | (x, n) ∈ Y × N}
= f(Y × N) ∈ PUX.

Thus L(s∞Y ) is defined, by (C1). Since Y ⊆ s∞Y , it holds that y < L(s∞Y )
for all y ∈ Y . Let y ∈ Y . We prove by induction on n that for each n ∈ N, we have
sn(y) < z for some z ∈ Y .

Base case. If n = 0, this follows from the fact that Y does not have a largest
element.
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Induction step. Suppose sn(y) < z for some z ∈ Y . Then sn+1(y) = s(sn(y)) �
z. Since z cannot be the largest element of Y, we must have z < z ′ for some z ′ ∈ Y .
Then sn+1(y) < z ′.

What we have shown implies that the incremented join L(s∞Y ) of s∞Y is also
the incremented join of Y.

We have thus proven that the specialization preorder of a U-counting system
satisfying (C3–5) makes it an ordinal system relative to U, with s as its successor
function, and L given equivalently by join and by incremented join. This also
establishes that, if an ordinal system relative to U arises this way from a U-counting
system satisfying (C3–5), then this U-counting system is unique.

We now prove the existence of such a U-counting system. Actually, before doing
that, note that by (C3), no element of X of the form L(I) can be a successor
ordinal, and so it must be a limit ordinal. Conversely, for a limit ordinal x we have
x = L({x}>) (Lemma 12). This shows that limit ordinals are precisely the ordinals
of the form L(I).

For an ordinal system O relative to U, consider the limit-successor system
(O,

∨
, +), where

∨
is the usual join restricted to the domain required by (C1)

(i.e., successor-closed elements of PUX ).

Step 5. We show that (C1–5) hold for the limit-successor system (O,
∨
, +) and

that the corresponding specialization preorder matches with the order of O. In this step
we also show that I = {

∨+
I }> holds for each I ∈ PUO.

By Theorem 13, L is indeed defined over the entire domain required in (C1). To
prove (C2), first we establish that

I =
{∨+
I
}>

for each I ∈ PUO. It is easy to see that {
∨+
I }> is closed, so I ⊆ {

∨+
I }>. To

show {
∨+
I }> ⊆ I , let x ∈ {

∨+
I }>. We have well-ordering and hence total order

by Theorem 11. Then x <
∨+
I and so x � y ∈ I for some y. Consider

y′ = min{y ∈ I | x � y}.
We consider two cases:

Case 1. (y′ is a successor ordinal). Then y′ = y′′+ for some ordinal y′′. Since
y′ ∈ I , we must have y′′ ∈ I . Then y′′ < x and so y′ � x by (L3). This gives x = y′

and so x ∈ I .

Case 2. (y′ is a limit ordinal). Then {y′}> is successor-closed. Furthermore, we
have

y′ =
∨+ {y′}> =

∨
({y′}>)+ =

∨
{y′}>.

By closure of I , we get {y′}> ⊆ I . Since y < x for all y < y′, we get y′ � x. This
gives x = y′ and so x ∈ I .

We have thus established that the equality I = {
∨+
I }> holds for each I ∈ PUO.

From this it follows that the specialization preorder matches with the order of O.
We then get that (C2) holds by the fact that if down-closures of two subsets of a
poset are equal, then so are their joins. Thus (O,

∨
, +) is a U-counting system.
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It remains to show that (C3–5) hold. Consider a successor-closed I ∈ PUO. I has
no maximum element thanks to (L1) and thus,

∨
I =

∨+
I by Lemma 9. By the same

lemma,
∨+
I cannot be a successor if I has no maximum. Thus, ( +)–1{

∨
I } = ∅,

which is the first part of (C3). Since (
∨
I)+ >

∨
I � x for each x ∈ I , we have that

(
∨
I)+ /∈ I , which means the second part of (C3) also holds, i.e., I ∩ {(

∨
I)+} = ∅.

We already know that + is injective, so to see that (C4) holds, consider another
successor-closed J ∈ PUO. If

∨
I =

∨
J , then

I =
{∨+
I
}>

=
{∨
I
}>

=
{∨
J
}>

=
{∨+
J
}>

= J .

Thus (C4) holds. Finally, consider a successor-closed subset J of O where
∨
I ∈ J

for all successor-closed subsets I of J such that I ∈ PUO. Then J = O if it satisfies
(I1) and (I2) in our formulation of transfinite induction. We check both:

I1. J+ ⊆ J follows from the fact that J is successor-closed.
I2. Let x be a limit ordinal such that {x}> ⊆ J . Then x =

∨
{x}> ∈ J by Lemma

12.

Since both of these conditions hold, we can conclude that J = O, and thus (C5)
holds. This completes the proof. �

Given two U-counting systems (X1, L1, s1) and (X2, L2, s2), a function f : X1 →
X2 that preserves the successor function (fs1 = s2f) automatically preserves
successor-closed subsets, so for any successor-closed I ∈ PUX1, both sides of the
equality

L2(fI ) = f(L1(I))

are defined (Lemma 5). When this equality holds for any such I, along with f
preserving successors, we say that f is a morphism of U-counting systems and
represent f as an arrow

f : (X1, L1, s1) → (X2, L2, s2).

It is not difficult to see that U-counting systems and morphisms between them
form a category, under the usual composition of functions. Isomorphisms in this
category are bijections between U-counting systems which preserve both succession
and limiting. Call aU-counting system an ordinal U-counting system when conditions
(C3–5) hold. Clearly, the property of being an ordinal U-counting system is stable
under isomorphism of U-counting systems. By Theorems 17 and 20, an ordinal
U-counting system exists and is given by the U-ordinals. We will now see that ordinal
U-counting systems are precisely the initial objects in the category of U-counting
systems.

Theorem 21. For any universe U, a U-counting system is an initial object in the
category of U-counting systems if and only if it is an ordinal U-counting system.

Proof. Since we know that an ordinalU-counting system exists (Theorem 17) and
that the property of being an ordinalU-counting system is stable under isomorphism,
it suffices to show that any ordinal U-counting system is an initial object in the
category of U-counting systems. By Theorem 20, an ordinal U-counting system has
the form (O,

∨
, +), where O is an ordinal system relative to U and

∨
is the join

defined for exactly the successor-closed subsets I ∈ PUO in the U-counting system.
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For any U-counting system (X,L, s), if a morphism (O,
∨
, +) → (X,L, s) exists,

it must be the unique function f defined by the transfinite recursion

(i) f(x+) = s(f(x)) for any x ∈ O;
(ii) f(x) = L({f(y) | y < x}) for any limit ordinal x (Lemma 12).

We now prove that the function f defined by the recursion above is a morphism. It
preserves succession by (i). Consider I ∈ PUO closed under successors. Then

∨
I is

a limit ordinal and I = {
∨
I }>, by Theorem 20. By definition of f, we then have

f(
∨
I) = L({f(y) | y <

∨
I }) = L(fI ).

We will now prove fI = fI . We clearly have fI ⊆ fI , so it suffices to show that
fI ⊆ fI . This is equivalent to showing I ⊆ f–1fI , which would follow if we prove
f–1fI is closed. If x+ ∈ f–1fI , then s(f(x)) = f(x+) ∈ fI . Therefore, f(x) ∈
fI and so x ∈ f–1fI . If

∨
J ∈ f–1fI , then (as

∨
J is a limit ordinal by Theorem

20)

L({f(y) | y <
∨
J}) = f(

∨
J) ∈ fI ,

which implies {f(y) | y <
∨
J} ⊆ fI . This gives J ⊆ {

∨
J}> ⊆ f–1fI . Note that

we have the first of these two subset inclusions due to the fact that
∨
J =

∨+
J

thanks to Theorem 20. This proves that f–1fI is closed. So fI = fI . We therefore
get f(

∨
I) = L(fI ) = L(fI ), showing that f is indeed a morphism (O,

∨
, +) →

(X,L, s). �
Consider the case when every element in U �= ∅ is a finite set (e.g. U could be

the universe of hereditarily finite sets). Then each triple (X, 0, s), where X is a
set, s is a function s : X → X , and 0 ∈ X , can be seen as a U-counting system
for the same s, with L(I) = 0 for each finite I. A morphism f : (X1, 01, s1) →
(X2, 02, s2) between such U-counting systems is a function f : X1 → X2 such
that s2f = fs1 and f(01) = 02. The natural number system (N, 0, s), with its
usual successor function s(n) = n + 1, is an initial object in the category of such
U-counting systems. Theorem 21 presents the natural number system as an initial
object in the category of all U-counting systems. It is not surprising that the natural
number system is initial in this larger category too, since the empty set is the only
finite successor-closed subset of N.
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[15] J. von Neumann, Zur Einführung der transfiniten Zahlen. Acta Litterarum ac Scientiarum

Regiae Universitatis Hungaricae Francisco-Josephinae, Sectio Scientiarum Mathematicarum, vol. 1 (1923),
pp. 199–208.

[16] H. Wang, The axiomatization of arithmetic, this Journal, vol. 22 (1957), no. 2, pp. 145–158.
[17] N. H. Williams,On Grothendieck universes. Composito Mathematica, vol. 21 (1969), no. 1,

pp. 1–3.
[18] E. F. F. Zermelo, Ernst Zermelo: Collected works/Gesammelte Werke: Volume I/Band I – set

theory, miscellanea/Mengenlehre, Varia, Schriften der Mathematisch-Naturwissenschaftlichen Klasse,
vol. 21, Springer, Berlin-Heidelberg, 2010.

DEPARTMENT OF MATHEMATICAL SCIENCES
STELLENBOSCH UNIVERSITY

PRIVATE BAG X1 MATIELAND, 7602 STELLENBOSCH, SOUTH AFRICA
and

NATIONAL INSTITUTE FOR THEORETICAL AND COMPUTATIONAL SCIENCES (NITHECS)
STELLENBOSCH, SOUTH AFRICA

E-mail: zurab@sun.ac.za

DEPARTMENT OF MATHEMATICAL SCIENCES
STELLENBOSCH UNIVERSITY

PRIVATE BAG X1 MATIELAND, 7602 STELLENBOSCH, SOUTH AFRICA
E-mail: ineke.vdb@gmail.com

https://doi.org/10.1017/jsl.2022.6 Published online by Cambridge University Press

mailto:zurab@sun.ac.za
mailto:ineke.vdb@gmail.com
https://doi.org/10.1017/jsl.2022.6

	1 Introduction
	2 The context
	3 Abstract ordinals
	4 Concrete ordinals
	5 A Dedekind-style axiomatization

