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Background. Lung adenocarcinoma (LUAD) is the most common histological subtype of non-small cell lung cancer (NSCLC)
with a low 5-year survival rate, which may be associated with the presence of metastatic tumors at the time of diagnosis, especially
lymph node metastasis (LNM). Tis study aimed to construct a LNM-related gene signature for predicting the prognosis of
patients with LUAD.Methods. RNA sequencing data and clinical information of LUAD patients were extracted fromTe Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Samples were divided into metastasis (M) and
nonmetastasis (NM) groups based on LNM status. Diferentially expressed genes (DEGs) between M and NM groups were
screened, and thenWGCNA was applied to identify key genes. Furthermore, univariate Cox and LASSO regression analyses were
conducted to construct a risk score model, and the predictive performance of model was validated by GSE68465, GSE42127, and
GSE50081. Te protein and mRNA expression level of LNM-associated genes were detected by human protein atlas (HPA) and
GSE68465. Results. A prognostic model based on eight LNM-related genes (ANGPTL4, BARX2, GPR98, KRT6A, PTPRH, RGS20,
TCN1, and TNS4) was developed. Patients in the high-risk group had poorer overall survival than those in the low-risk group, and
validation analysis showed that this model had potential predictive value for patients with LUAD. HPA analysis supported the
upregulation of ANGPTL4, KRT6A, BARX2, RGS20 and the downregulation of GPR98 in LUAD compared with normal tissues.
Conclusion. Our results indicated that the eight LNM-related genes signature had potential value in the prognosis of patients with
LUAD, which may have important practical implications.

1. Background

Almost a quarter of cancer-related deaths are caused by lung
cancer, which ranks among the top ten causes of cancer
deaths in both men and women [1]. Non-small-cell lung
cancer (NSCLC) accounts for approximately 85% of lung
cancer cases, of which lung adenocarcinoma (LUAD) is the
most common histological subtype, accounting for 60% of
cases [2]. With the improvement of treatment approaches,
the mortality of LUAD has been declining steadily year by
year. However, the 5-year survival rate remains still low.
Studies have indicated that the poor prognosis of most
LUAD patients is due to the presence of metastatic tumors at
the time of diagnosis [3, 4]. Notably, lymph node metastasis

(LNM) is the most common form [5]. Tus, there is an
urgent need to elucidate the molecular mechanisms of LNM
in LUAD.

Te lymphatic system is the main route of LUAD me-
tastasis, and lymphatic metastasis is an important indicator
infuencing the prognosis and staging of it [6]. It has been
reported that the 5-year survival rate of LUAD patients with
LNM is only 27%, while the 5-year survival rate of those
without LNM is more than 95% [7]. Terefore, identifying
specifc biomarkers of LNM is helpful for the diagnosis and
treatment of LUAD. Previous studies have screened several
genes related to LUAD metastasis. For example, Jiang et al.
[8] revealed that PTK7 served a carcinogenic role in LUAD
and might be a molecular biomarker of LNM; Zhang et al.
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[9] indicated that overexpression of Rab27b was associated
with the malignant properties of LUAD, and it might be
considered as a potential indicator of LNM and prognosis.
Despite these encouraging fndings, the clinical impact of
a single gene is limited. In recent years, with the develop-
ment of large-scale genome analysis techniques, numerous
studies have demonstrated gene signatures for survival
prediction and risk stratifcation of LUAD patients [10]. Te
published models are constructed mainly based on the
immune or autophagy-associated genes [11–13]; however,
few studies have proposed LNM-related prognostic models
to predict the overall survival of patients with LUAD.

In this study, we explored the potential prognostic value
of LNM genes in LUAD via integration of the LNM-
associated genes and clinical data obtained from Te Can-
cer Genome Altas (TCGA) portal. Samples from the TCGA
database were divided into metastasis (M) and nonmeta-
stasis (NM) groups, and then genes diferentially expressed
in these two groups were identifed. Next, weighed gene
coexpression network analysis (WGCNA) was performed to
screen the key modules and genes related to LNM, followed
by LASSO regression analysis to construct an optimal
prognostic model. Further, the predictive performance of
model was assessed by using three gene expression omnibus
(GEO) datasets. Meanwhile, the expression level of genes in
themodel was assessed by using the GEO dataset and human
protein atlas (HPA) database. Te constructed model could
be used as a prognostic signature to improve the manage-
ment of metastatic patients, which might ultimately be
applied to assist clinicians in treatment selection and
prognostic evaluation for LUAD patients with LNM.

2. Methods

2.1. Data Collection and Preprocessing. Te mRNA expres-
sion data and clinical follow-up information of 505 LUAD
samples were downloaded from the TCGA database (2021/
09/10 analysis archive; https://gdc-portal.nci.nih.gov/).
Among these, the N0 stage was considered as the NM group
and N1–N3 stages were regarded as the M group. Next, after
eliminating the samples with missing information on sur-
vival time, 493 samples remained to construct the
prognostic model.

Moreover, three external datasets downloaded from the
GEO database (https://www.ncbi.nlm.nih.gov/) were
employed as validation cohorts, including GSE68465 (based
on the GPL96 platform) [14], GSE42127 (based on the
GPL6884) [15, 16], and GSE50081 (based on the GPL570)
[17]. After eliminating the patients without complete sur-
vival data, 700 samples were included in further analyses:
442 in GSE68465, 131 in GSE42127, and 127 in GSE50081.
Similarly, these samples were divided into NM andM groups
according to the metastatic state.

2.2. Screening of Diferentially Expressed Genes (DEGs) be-
tweenM and NMGroups. Diferentially expressed analysis
between M and NM groups was conducted by using the
limma package of R software (Version 3.6.1; https://

bioconductor.org/packages/release/bioc/html/limma.
html) [18], and genes with p value < 0.05 and |log2 fold
change (FC)| > 0.5 were considered as DEGs. Te heatmap
for DEGs was plotted via pheatmap package (Version
1.0.8; https://cran.r-project.org/web/packages/pheatmap/
index.html) and the volcano plot was visualized by the
ggplot2 package in R. Furthermore, DAVID (Version 6.8;
https://david.ncifcrf.gov/) was employed to perform Gene
ontology (GO) enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses. Te p

value less than 0.05 as the threshold for signifcant
enriched terms.

2.3. Screening of Disease-Related Modules and Genes Using
WGCNA. Te WGCNA approach is used to excavate the
gene modules that are highly related to the sample phe-
notype in high-throughput data; among these, the most
central genes are identifed as key genes that serve a crucial
role in the module. In this analysis, with the lymph node
metastasis and nonmetastasis as properties, the WGCNA
package (Version 1.61, https://cran.r-project.org/web/
packages/WGCNA/) [19] was used to analyze the entire
gene of TCGA-LUAD. Te top 75% of the genes with the
median absolute deviation (MAD) were selected, and then
MAD value> 0.01 were extracted to conduct the WGCNA
algorithm. Next, Venn analysis was used to screen the
overlapping genes between DEGs and genes in modules for
subsequent analysis.

2.4. Establishment of a Prognostic Model. Further, 493
samples with complete prognostic information in the TCGA
database were used as a training cohort to develop the
prognostic model. Based on the mRNA expression levels of
the overlapping genes, univariate Cox regression analysis
was performed by using the survival package (Version 2.41-
1; https://bioconductor.org/packages/survivalr/) to screen
prognosis-related genes, with p value< 0.05 as cutof value.
Ten, optimal gene signature was obtained via LASSO
analysis using Lars package (Version 1.2; https://cran.r-
project.org/web/packages/lars/index.html). Te following
formula was used to calculate the risk score (RS):
RS� Coefgene ×Expgene. Here, Coef represents the LASSO
coefcient, and Exp represents the expression level of
the gene.

2.5. Performance Assessment of the RS Model. After calcu-
lating the RS, patients in the TCGA, GSE68465, GSE42127,
and GSE50081 datasets were divided into high-risk (HR) and
low-risk (LR) groups based on the median value of RS. Te
Kaplan–Meier (KM) approach was used to evaluate the
association between the diferent risk groups and LUAD
prognosis. In addition, the receiver operating characteristic
(ROC) curves were plotted to evaluate the prognostic per-
formance of the RS model. Te area under the ROC curve
(AUC) at diferent endpoints (1, 3, and 5 years) was cal-
culated by using the time ROC package (Version 0.4)
in R3.6.1.
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2.6. Gene Set Enrichment Analysis (GSEA) of the HR and LR
Groups. GSEA was used to analyze the functional pathways
enriched by HS and LS groups, and nominal (NOM)p
value< 0.05 and ∣normalized enrichment score (NES)∣ > 1
were set as cutof threshold criteria.

2.7. Prognostic Characteristics of Genes in the RS Model.
In the training cohort, the KMmethod was used to compare
the survival time of each gene between the HR and LR
groups by using the survival package (Version 2.41-1).

2.8. Correlation Analysis of RS and Clinical Characteristics.
By combining the clinical information from LUAD, the
correlation between RS and clinical characteristics (age,
gender, T, N, and stage) was analyzed. p value< 0.05 was
considered statistically signifcant.

2.9. HPA Validation. Te immunohistochemical staining
map of genes in the RS model was downloaded from the
HPA database (https://www.proteinatlas.org/) to verify the
diference in protein expression levels of genes between
normal and tumor groups.

2.10. Methylation Analysis. Te correlation between each
biomarker and its corresponding methylation site as well as
copy number was analyzed using MEXPREWSS (https://
mexpress.be/).

2.11. Gene Expression Validation. Next, we used an in-
dependent dataset (GSE68465) to verify the mRNA ex-
pression levels of genes in the RS model. Te paired t-test in
R was applied to validate the diference in expression level of
biomarkers between the M and NM groups.

3. Results

3.1. Screening of DEGs and Functional Enrichment Analysis.
According to the state of cancer metastasis, 172 and 333
samples in the TCGA database were classifed into NM and
M groups, respectively. A total of 294 DEGs were screened
between M and NM groups. Te specifc distribution of
DEGs was visualized by the heatmap (Figure 1(a)) and
volcano plot (Figure 1(b)).

Functional enrichment analyses showed that these DEGs
were signifcantly enriched in 21 GO-biological process (BP)
terms, 12 GO-cellular component (CC) terms, 7 GO-
molecular function (MF) terms, and 3 KEGG pathways
(Figure 2). In brief, DEGs were mainly enriched in GO-BP
terms such as cell-cell signaling and cell adhesion; enriched
in GO-CC terms such as collagen trimer and extracellular
region; and enriched in GO-MF terms such as calcium ion
binding and structural molecule activity. In terms of KEGG
pathways, DEGs were involved in ECM-receptor in-
teraction, serotonergic synapse, and complement and co-
agulation cascades.

3.2. Identifcation of LUAD-Related HubModules and Genes.
As shown in Figure 3(a), we selected the value of power
when the scale-freeR2 reached to 0.85 for the frst time (red
line), that is, power = 4. Based on the hierarchical clustering
and dynamic tree-cutting algorithms, highly correlated
genes were clustered into modules, and fnally 13 modules
were obtained (Figure 3(b)). Next, the correlation between
each module and LNM was assessed. Results indicated that
four modules including yellow (r= 0.34, p � 5E − 12), tur-
quoise (r= 0.21, p � 2E − 06), black (r= 0.10, p � 0.02), and
magenta (r= 0.18, p � 6E − 05) were positively correlated
with the LNM (Figure 3(c)). Among these, the yellow
module had the highest correlation with LNM, which was
regarded as the metastasis-related signifcant module for
further analysis. In this module, 288 LNM-related genes
were contained, and then genes were integrated with the
above DEGs. In total, 66 overlapping genes were obtained
for subsequent analyses (Figure 3(d)).

3.3.Constructionof theRSModelBasedonOverlappingGenes.
First, univariate Cox regression analysis showed 36 genes had
prognostic values. Next, LASSO analysis indicated that eight
was considered as the optimal number based on the lambda
values (Figures 4(a) and 4(b)). Eight genes were ANGPTL4,
BARX2, GPR98, KRT6A, PTPRH, RGS20, TCN1, and TNS4.
According to the expression level and LASSO coefcient of
each gene, the RS model was constructed using the following
formula: RS� (0.0365 ∗ ExpANGPTL4) + (0.0158 ∗ ExpBARX2)
+ (−0.0131 ∗ ExpGPR98) + (0.0232 ∗ ExpKRT6A) + (0.024 ∗
ExpPTPRH) + (0.0852 ∗ ExpRGS20) + (0.0124 ∗
ExpTCN1) + (0.0211 ∗ ExpTNS4).

3.4. Validation of Predictive Performance for the RS Model.
In the training and validation sets, samples were assigned
into HR and LR groups based on the median of RS. In the
TCGA training set, the distribution and survival status of
patients are presented in Figure 5(a). Te patients in the
LR group had signifcantly shorter overall survival than
those in the HR group (Figure 5(b)). Te AUC of ROC
curves for 1, 3, and 5 years were 0.68, 0.67, and 0.71,
respectively, indicating that the RS model had good ac-
curacy and specifcity (Figure 5(c)). Moreover, these
fndings were confrmed by the validation datasets. In
brief, in the GSE68465, patients in the HR group had more
dead cases (Figure 5(d)) and had a poor survival time
(Figure 5(e)). Te ROC curve indicated that AUC was
0.65, 0.64, and 0.61 at 1, 3, and 5 years (Figure 5(f )). In the
GSE42127, more alive cases were observed in the LR group
(Figure 5(g)). Te KM curve indicated that patients in the
HR group showed a signifcantly lower probability of
survival compared to the LR group (p< 0.05, Figure 5(h)).
Te ROC analysis revealed that AUC values for 1-, 3-, and
5-year OS were 0.74, 0.61, and 0.61, respectively
(Figure 5(i)). In the GSE50081, patients with higher RS
were more likely to have a poor prognosis (Figure 5(j)).
Meanwhile, survival curves showed that overall survival
was signifcantly lower in the HR group than in the LR
group (p< 0.05, Figure 5(k)). Results of the AUC for 1-, 3-,
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and 5-year OS were 0.74, 0.67, and 0.64, respectively
(Figure 5(l)). Altogether, these data suggested that the
predictive performance of the model was superior.

3.5. Diferent Pathway in HR and LR Groups Analyzed by
GSEA. Fourteen diferent signaling pathways were identi-
fed between the HR and LR groups. Among these, eight
pathways were associated with the LR group, such as valine
leucine and isoleucine degradation, taste transduction, and
nitrogen metabolism; six pathways were closely corrected
with the HR group, including the P53 signaling pathway,
pathogenic Escherichia coli infection, ubiquitin-mediated
proteolysis, the proteasome, pyrimidine metabolism, and
pancreatic cancer (Figure 6).

3.6. Prognostic Value Analysis of Each Gene in the RS Model.
Based on the median of gene expression level, patients were
divided into low-expression and high-expression groups.
KM curves showed that patients with low expression of
ANGPTL4, KRT6A, TCN1, TNS4, PTPRH, and RGS20 had
signifcantly longer survival times (p value< 0.05,
Figures 7(a)–7(f)); a high-expression level of GPR98 was
associated with longer overall survival (p value< 0.05,
Figure 7(g)). Although there was no signifcant diference,
we observed that high gene expression of BARX2 was
connected with a poor prognosis (Figure 7(h)).

3.7. Correlation Analysis of Gene Signatures and Clinical
Features. Te correlation analysis revealed that patients
with higher RS were signifcantly with higher T stage
(T3 +T4), higher N stage (N1–N3), and advanced stages

(stage III + IV) (Figure 8(a)). A heatmap showed that genes
included TNS4, TCN1, RGS20, PTPRH, KRT6A, BARX2,
and ANGPTL4 were up-regulated in the HR group, while
GPR98 was down-regulated in the HR group (Figure 8(b)).
Meanwhile, the relationship between each gene and clinical
features was calculated, and results showed that KRT6A and
TNS4 were signifcantly associated with these three in-
dicators (Figure 8(c)).

3.8. Immunohistochemical Verifcation of Genes Using HPA.
Te HPA database was applied to display the protein level of
genes in the RS model. Te immunohistochemical images of
PTPRH, TCN1, and TNS4 were not recorded in this database.
Te representational plots of ANGPTL4, KRT6A, BARX2,
RGS20, and GPR98 are shown in Figure 9(a). Compared with
the normal samples, the protein expression levels of
ANGPTL4, KRT6A, BARX2, and RGS20 were higher, while
the expression level of GPR98 was lower in the LUAD
samples, which was consistent with the above fndings.

3.9. Methylation Analysis of Biomarkers. Te methylation
sites and copy number of genes in the RS model were an-
alyzed by using the MEXPREWSS website, while the in-
formation for GPR98 was not retrieved in this database. We
found that ANGPTL4, BARX2, KRT6A, PTPRH, RGS20,
TCN1, and TNS4 were signifcantly associated with 8, 12, 6,
15, 19, 3, and 8 methylation sites, respectively.

3.10. Validation of mRNA Expression Levels of Genes. To
further observe the expression level of genes, we used
GSE68465 to verify the diference in the mRNA expression
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Figure 1: Identifcation of diferentially expressed genes (DEGs) between metastasis (M) and nonmetastasis (NM) groups. (a) Heatmap of
DEGs between M and NM groups. Blue box indicates the M group and red box indicates NM group. (b) Volcano plot showing the DEGs
between M and NM groups in TCGA cohort. Blue node represents a lower expression of gene in the M group, and red node represents
a higher expression of gene in the M group.
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level between the M and NM groups. As shown in
Figure 9(b), ANGPTL4, KRT6A, PTPRH, TCN1, and TNS4
were signifcantly higher in the M group than those in the
NM group; while the expression level of GPR98 was
markedly decreased in the M group (all p value< 0.05).

4. Discussion

LNM is one of the main factors afecting the prognosis of
LUAD, and it signifcantly reduces the survival rate of pa-
tients with LUAD [20], which is considered as an important
predictor of poor prognosis. Terefore, credible prognostic
signatures related to LNM status may provide a great
prospect for identifying potential therapeutic targets and
enhancing patient management. In this study, an eight
LNM-related genes model, including ANGPTL4, BARX2,
GPR98, KRT6A, PTPRH, RGS20, TCN1, and TNS4, was
developed. Our RS model could efectively stratify patient
outcomes in the LUAD and was validated in GSE68465,

GSE42127, and GSE50081. Based on the median of RS,
patients in TCGA and GEO were divided into HR and LR
groups, and patients in the HR group had a poor prognosis.
Tese fndings meant that our bioinformatics analysis using
TCGA and GEO cohorts had prognostic value, and the
identifed genes might serve as potential markers for LUAD.

Te focus of this study was to compare M with NM
samples, and the screened DEGs were associated with LNM
states. Eight key genes were further obtained via univariate
and LASSO regression analyses. Angiopoietin-like 4
(ANGPTL4) encodes a glycosylated secreted protein that
acts as a serum hormone to regulate blood glucose ho-
meostasis and lipid metabolism; meanwhile, the encoded
protein can serve as an apoptotic survival factor for vascular
endothelia cells that may prevent metastasis by inhibiting
vascular growth and tumor cell invasion [21, 22]. Previous
studies confrmed that ANGPTL4 was signifcantly associ-
ated with vein invasion and tumor invasion depth in human
colorectal cancer, and all patients with distant metastases
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presented immunopositive for ANGPTL4, suggesting that
ANGPTL4 could promote distant metastasis [23]. Moreover,
Mo et al. [24] established a nine-gene signature that was
observably connected with metastasis and prognosis of
LUAD patients, of which ANGPTL4 was also contained.
BARX homeobox 2 (BARX2) encodes a member of the
homeobox transcription factor family, which controls cell
adhesion and actin cytoskeleton remodeling [25]. Evidence
has indicated that it may be a molecular switch that controls
cell diferentiation and proliferation [26]. BARX2 was
enriched in the epithelial-mesenchymal transition (EMT)

pathway, and it was involved in tumorigenesis and the
development of LUAD [27]. GPR98, also called Adhesion G
protein-coupled receptor V1 (VLGR1), encodes a member
of the G protein-coupled receptor superfamily. Previous
study showed that there were 30 alternative exon usage of
GPR98 signifcantly associated with survival of glioblastoma
multiforme [28]. Keratin 6A (KRT6A) encodes a family
member of type II cytokeratins, which is involved in the
EMTpathway. Yang et al. [29] observed that KRT6A was up-
regulated in LUAD tissues and overexpression of it was
associated with poor prognosis; meanwhile, KRT6A
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Figure 7: KM survival analysis of patients divided into the low- and high-expression groups of eight signature genes in the TCGA cohort. (a)
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promoted migration and proliferation of lung cancer cells,
indicating that KRT6A could be used as a prognostic bio-
marker for LUAD. Te protein encoded by protein tyrosine
phosphatase receptor type H (PTPRH) belongs to the
protein tyrosine phosphatase (PTP) family that regulates
a variety of cellular processes, such as cell growth, difer-
entiation, and oncogenic transformation [30]. Existing
studies have reported the relationship between PTPRH and
LUAD. For example, Chen et al. [31] observed that PTPRH

was overexpressed in the LUAD tissue and served as an
independent prognostic factor for LUAD. Previous studies
indicated the prognostic value of regulator of G protein
signaling 20 (RGS20) in patients with LUAD, and it might be
a novel prognostic marker for LUAD [32]. Meanwhile, the
expression level of RGS20 was elevated in metastatic cancer
cells, and then themigration and invasion abilities of NSCLC
cell lines (A549 and H1299) were impaired when RGS20 was
stably knocked out, suggesting that RGS20 might accelerate
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Figure 8: Correlation analysis of RS and clinical characteristics. (a) RS in subgroups of the Tstages (T1 +T2 vs. T3 + T4), N stages (N0 vs.
N1–N3), or pathological stages (I + II vs. III + IV). (b) Heatmaps showing the mRNA expression of eight selected genes in TCGA cohort.
(c) Correlation of each gene and clinical characteristics (T stages, N stages, and pathological stages). Ns, no signifcance; ∗p value < 0.05;
∗∗p value < 0.01; ∗∗∗p value < 0.001; ∗∗∗∗p value < 0.0001.
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the metastasis of tumor cells [33]. Transcobalamin 1 (TCN1)
encodes a member of the vitamin B12-binding protein
family, and it plays multiple roles in maintaining the basic
functions of cell proliferation and metabolism [34]. TCN1
acts as a biomarker for the prognosis of various cancers,
including colon cancer [35], gastric cancer [36], and LUAD
[37], and it could promote the migration and invasion of
cancer cells. Tensin 4 (TNS4) is a protein coding gene that

promotes cell movement through GPCR signal transduction
and the EMT pathways [38]. Furthermore, TNS4 was as-
sociated with the prognosis of LUAD [39], and it served an
important role in the migration and invasion of gastric
cancer [40]. Taken together, these studies emphasized that
the identifed genes were involved in cancer progression and
could serve as prognostic markers for LUAD. Nevertheless,
the relationship between GPR98 and metastasis of LUAD
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Figure 9: Validation of the expression level of genes in the RS model. (a) Protein expression level of fve genes in LUAD and normal tissues
based on immunohistochemistry results from the human protein atlas (HPA) database. (b) mRNA expression level of RS model genes in M
and NM groups in GSE68465. Blue indicates NM sample and yellow indicates M sample.
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has not been reported, which requires further investigated in
clinical experiments.

After constructing the RS model, the patients were di-
vided into LR and HR groups. Survival analysis revealed that
patients in the HR group had shorter overall survival than
those in the LR group. Next, performance evaluation showed
that the established model had better performance in pre-
dicting the prognosis of LUAD patients. To explore the
pathways involved in the gene sets from the HR group,
a GSEA was performed. Results revealed that several key
pathways were closely corrected with the HR group, such as
P53 signaling pathway, pathogenic escherichia coli infection,
and ubiquitin-mediated proteolysis. Evidence indicated that
genes such as PAQR3 could regulate the progression of
NSCLC via the p53 signaling pathway [41], and genes in-
volved in this pathway may play roles in distant metastasis
and LNM [42]. Luo et al. [43] revealed that the TUBB gene
was enriched in pathogenic Escherichia coli infection, which
was associated with the progression of pancreatic cancer. A
defect in genes participating in the ubiquitin-mediated
proteolytic pathway could cause a series of human dis-
eases, such as cancer [44]. Tus, we speculated that genes
might infuence the status of LNM by regulating these
pathways, which further afected the prognosis of LUAD.

Based on the gene expression profling from public
databases (TCGA andGEO) and a two-step design including
development and validation, our study provided reliable
evidence for the value of the LNM-related gene signature in
the prognostic evaluation of LUAD. Although there have
been studies to construct a prognostic model of LUAC based
on LNM-related genes [45], the advantage of our research
was to select genes signifcantly related to LNM viaWGCNA
for further analysis. However, some limitations should be
noted. Te sample size of this analysis was small, and it was
necessary to verify the predictive accuracy of the model in
a large-scale clinical sample. In addition, the biological
function and specifc mechanism of these identifed genes in
LNM of LUAD were still unclear, so we will elucidate their
contents in the future work.

5. Conclusion

In summary, we constructed and validated a LNM-related
gene signature to predict the prognosis for patients with
LUAD. Tis prognostic model contained eight genes and
had better specifcity and predictive performance, which
may assist clinicians in making a correct diagnosis and
discovering the prognostic risk of LUAD patients in
advance.
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