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When making directional surface gravity waves in a wave tank or when initialising
numerical simulations of the ocean, the wave spectrum is often curtailed suppressing
higher frequencies and wavenumbers. We consider the impact of doing this by numerically
simulating two seminal experiments, those of Onorato et al. (J. Fluid Mech., vol. 627,
2009, pp. 235–257, R2) and Latheef & Swan (Proc. R. Soc. A, vol. 469, no. 2152, 2013,
p. 20120696). We simulate waves using a fully nonlinear potential-flow model. We find
that curtailing the spectrum can have a significant impact on the subsequent evolution. In
particular, for cases where the spectrum has been curtailed, the nonlinear physics produces
significantly more extreme or rogue waves than are observed in the case where the full
spectral tail was included in the initial conditions, and this difference persists over tens
of periods after the waves are initialised. This suggests that sea states that are ‘out of
equilibrium’ (i.e. with their tails removed) can produce a greater number of rogue waves.
We show this can also have an impact on predicted loads on offshore infrastructure.

Key words: nonlinear instability, surface gravity waves

1. Introduction

The magnitude of extreme ocean waves is of interest to engineers and physicists. The
former need to design offshore infrastructure and the latter are interested in the fascinating
weakly nonlinear processes that lead to the formation of large waves. Of particular interest
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is whether more large waves (sometimes called freak or rogue waves) occur than would
be predicted by linear or second-order theory (see Dysthe, Krogstad & Müller (2008),
Onorato et al. (2013), Adcock & Taylor (2014) for reviews).

Laboratory experiments are frequently used to investigate the formation of extreme
waves. Froude number similarity is generally sufficient for large waves to evolve in the
same way in the laboratory and in the ocean. However, one important difference between
laboratory and ocean is how the waves are generated. In the ocean, the type of waves we
consider in this paper are generated by wind. It is difficult to replicate this experimentally
although this has been tried and is an active area of research (e.g. Toffoli et al. 2017;
Shemer 2019). In most laboratories waves are created using paddles, but this creates
a number of issues. Near the paddle evanescent waves form, although these typically
decay after a few wavelengths (Schäffer 1996). It is difficult to suppress ‘error waves’,
which are caused by not accurately reproducing the bound harmonics – the low-frequency
‘difference’ term is particularly hard to reproduce with a conventional flap-type paddle
and can be problematic in shallower-water experiments (Orszaghova, Borthwick & Taylor
2012; Whittaker et al. 2017; Mortimer et al. 2022). Difficulties in creating the desired
statistics in a tank are considered in the recent work of Canard, Ducrozet & Bouscasse
(2022). A final issue is that paddles will only operate over a finite bandwidth making it
difficult to create very broad-banded spectra, and this will often lead to a desired spectrum
being modified by setting to zero a small amount of energy above a given cutoff frequency.
A similar approach may be taken when initialising numerical simulations. The importance
of this cutoff is the subject of the present paper.

In the laboratory (or indeed numerically) it is possible to make sea states that are
implausible in the real ocean. For instance, in the laboratory very steep random waves
can be generated with a narrow directional spread and small bandwidth, which would be
implausible in the ocean as nonlinear energy transfers and wave breaking would cause a
downshift of the spectral energy peak and a broadening of the spectrum. In nature it is
possible to have part of a spectrum suppressed (e.g. by wave/ice interaction Toffoli et al.
(2015) or slicks), but waves are expected to naturally rapidly re-establish a high-frequency
tail. The high-frequency tail also forms rapidly in experiments if it is not generated by the
paddle (Latheef & Swan 2013) (see also Fadaeiazar et al. 2020). The question addressed
herein is whether the nonlinear energy transfers that act to (re-)establish the tail have a
significant impact on the number of large waves formed and, therefore, whether or not
including the high-frequency tail in the initial conditions is potentially problematic.

Fedele (2015), building on the work of Janssen (2003), derived an expression for the
evolution of the dynamic kurtosis as the sea state evolves (see also Janssen & Janssen
2019), with the dynamic kurtosis being a useful proxy for the number of rogue waves.
This predicted that, for directionally spread waves, an initially random sea state that would
have zero excess dynamic kurtosis would see an increase in dynamic kurtosis as the waves
moved away from the paddle. However, the dynamic kurtosis would then peak before
decaying to zero. Fedele’s results assumed, amongst other approximations, that the sea
state was narrow banded. Applying the results of Fedele’s theory to broad-banded spectra
can be challenging, as results are dependent on the Benjamin–Feir index squared (e.g. Tang
et al. 2020), which itself is dependent on the bandwidth of the spectrum. For broad-banded
spectra, bandwidth is difficult to define. However, curtailing the tail of the spectrum (whilst
leaving the total energy unaltered) will increase the Benjamin–Feir index, thus implying
that a higher peak in excess kurtosis would be expected (and, hence, more rogue waves).

In this paper we consider the impact of removing the high-frequency spectral tail
on rogue waves statistics by numerically simulating two seminal experiments, those

953 A9-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

96
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.961


Spectral cutoff and rogue waves

Case Exp./Num. Length in x (m) Length in y (m) Water depth (m) Run time (s)

O09 Exp. 50 70 3 1200
O09ST & O09LT Num. 43 20 3 1800
LS13 Exp. 10 20 1.25 1800
LS13ST & LS13LT Num. 11/26.5/70 20 1.25 1800

Table 1. Dimensions of the laboratory experiments (exp.) and the numerical (num.) domains. Here ST and
LT denote short-tail and long-tail cases, respectively.

of Onorato et al. (2009) and Latheef & Swan (2013). We simulate waves using the
fully nonlinear potential-flow model OceanWave3D (Engsig-Karup, Bingham & Lindberg
2009). The present study only considers directionally spread waves as, in the open
ocean, waves always have a distribution of directions and, thus, directional waves are of
most interest. Unidirectional waves have significantly different nonlinear physics (see, for
instance, Fedele 2015), and the results described here are unlikely to apply directly to
unidirectional scenarios.

2. Methodology

2.1. Cases
We examine two cases based on experimental studies by Onorato et al. (2009) (O09
hereinafter) and Latheef & Swan (2013) (LS13 hereinafter). For each, we perform
numerical simulations with and without the high-frequency tail included in the initial
conditions. Basic information for both of the experiments are presented in table 1.

The experiments of O09 were performed in the MARINTEK directional basin in
Norway. In this study we revisit a total of eight measurement locations along the centreline
of the basin. In the original study a total of six independent experimental runs with
different random realisations were considered, which we combine here. Several authors
have numerically simulated the experiments of O09 including the case we choose to repeat
(Toffoli et al. 2010; Xiao et al. 2013).

The experiments of LS13 were conducted in the wave basin at Imperial College London.
From these experiments, we include the measurements at ‘gauge 2’, which is 3.1λ0 from
the wavemaker, where λ0 is the peak wavelength; which is the gauge analysed in LS13.
Their wavemaker had a cutoff (smoothed over a short range) at three times the peak
frequency (3ω0). The case we choose to simulate from their experiments was also repeated
in an alternative basin at MARIN in the Netherlands with consistent results (LS13).

Both studies were based on the JONSWAP spectra for which the bandwidth is controlled
using the peak enhancement factor γ . In O09 a cosine-N spreading function is used,

DO09(θ) = AO09 cosN(θ), (2.1)

where θ is the angle deviating from the mean wave direction, N the spreading parameter
and AO09 a normalising coefficient. In LS13 a normal distribution is used for the spreading
function,

DLS13(θ) = ALS13

Θ1
exp

[
− θ2

2Θ2
1

]
, (2.2)
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Case ωp (rad s−1) k0 (rad m−1) k0d Spreading Hs (m) ε Cutoff Energy (%)

O09ST 6.8231 4.024 4.88 Θ1 ≈ 2◦ 0.08 0.16 2.4k0 90 %
O09LT 6.8231 4.024 4.88 Θ1 ≈ 2◦ 0.08 0.16 6k0 98 %
LS13ST 3.9270 1.627 2 Θ1 = 15◦ 0.15 0.12 3ω0 99 %
LS13LT 3.9270 1.627 2 Θ1 = 15◦ 0.15 0.12 ∼ 40ω0 100 %

Table 2. Initial sea-state parameters used in this study, where ω0 is the peak frequency, k0 the peak
wavenumber based on the linear dispersion relationship. Water depth, d, is presented non-dimensionally.
Spreading shows the equivalent spreading angles based on the spreading functions (2.2). The percentage of
total energy below the cutoff frequency is given in the rightmost column.

where Θ1 is the spreading parameter and ALS13 a normalising coefficient. In this study,
for O09, we consider the case with N = 840 based on (2.1), which approximately has an
angle of spreading of Θ1 ≈ 2◦ based on (2.2).

The initial sea-state parameters considered in each study are given in table 2. The
non-dimensional sea-state steepness ε = kpHs/2, where kp is the peak wavenumber and Hs
is the significant wave height. For each case, table 2 presents the amount of energy below
the cutoff frequency relative to a non-curtailed spectrum in the rightmost column. Note
that in all cases the energy has been redistributed after curtailing the spectrum so that the
total energy of the initial input spectrum is the same for both short-tail (ST) and long-tail
(LT) cases, although we emphasise the effects of the cutoff on the energy are very small. In
particular, the zeroth moment of the wave spectrum based on the input spectrum for both
LS13 ST and LT cases is 0.00144 m2, of which the energy corresponding to 0.000014 m2

(∼1 %) is redistributed between the LT and ST cases. For O09 cases, the zeroth moment
of the wave spectrum based on the input spectrum is 0.00041 m2 for both ST and LT cases,
of which the energy corresponding to 0.000042 m2 (∼10 %) is redistributed between the
LT and ST cases. In all simulations, the sea states are generated by setting the phase of
a component to be randomly distributed between 0 and 2π and drawing the amplitude of
each component from a Rayleigh distribution following Tucker, Challenor & Carter (1984).
To make directional sea states, each wave component is assigned a random travelling angle
drawn from the specified spreading function (i.e. (2.1) for O09 cases and (2.2) for LS13
cases).

The initial omni-directional spectra are shown in figure 1 where we have used
logarithmic axes to highlight the small differences (in terms of energy) between the ST
and LT cases. The choice of cutoff frequencies in each case is determined by past studies
of these cases. For the O09 simulations, we choose the cutoffs (2.4k0 for ST and 6k0 for
LT) to be consistent with Barratt, van den Bremer & Adcock (2022), who in turn based
these values on other numerical simulations in the literature (Toffoli et al. 2010; Xiao et al.
2013). For the LS13 simulations, we choose the cutoff (3ω0 for ST) to be consistent with
the cutoff in the laboratory experiments of LS13. For the LT case, we do not apply an
explicit cutoff but the high tail is, of course, limited by the discretisation of the simulation.

2.2. Numerical set-up
We solve the standard potential-flow water-wave equations using OceanWave3D (with
details given in Appendix A and in Engsig-Karup et al. 2009). The numerical resolutions
used are based on the detailed examination of the numerical behaviour and convergence
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Figure 1. Initial omni-directional frequency variance density spectra for the simulations of the experiments
of (a) LS13 and (b) O09.

of this code in Barratt, Bingham & Adcock (2020). Thus, for the LS13 cases, we use
a spatial resolution of 0.113 m (approximately 34 nodes per peak wavelength) and, for
the O09 cases, we use a spatial resolution of 0.068 m (approximately 23 nodes per peak
wavelength). Eight clustered nodes are used vertically in the water column. The total
simulation time is 1800 s with a time step of 0.02 s (80 per peak period). Wave breaking is
simulated using a local smoothing filter, which is turned on when the vertical Lagrangian
acceleration on the free surface is greater than 0.4 g, where g is the gravitational
acceleration constant. This local smoothing filter will remove a small amount of energy
from the breaking crests until the vertical particle acceleration is below the threshold.

We create waves at one side of the basin using a double relaxation zone to absorb any
reflected waves. Waves are absorbed at the far end of the domain using relaxation zones.
This mirrors the set-up of the experiments we are comparing against. The width of the
absorbing zone in our numerical tank is 5.26λ0, where λ0 is the peak wavelength. Two
additional relaxation zones are implemented at both side walls. These relaxation zones
are configured to damp out the velocity component in the transverse direction, which
minimises unwanted artefacts from the side-wall reflection. The linear wave generation
method is adapted in our numerical scheme, which implies there is no second-order
correction for the bound harmonics of the input signal (see details in the introduction and
in Schäffer 1996). The linear wave generation method is also used in the O09 experiment
and it is unclear about the wave generation mechanisms used for LS13. For numerical
simulations, initiating a simulation with exactly the same content as in a developed sea
state is also difficult. Aside from effects from wind input and breaking that might be
present, there are a number of nonlinear phenomena present. There will obviously be
bound waves that are significant around large waves. There will also be amplification of
short waves and crests (and suppression at troughs) due to long/short wave interaction
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(Longuet-Higgins & Stewart 1960) as well as there being a cascade of energy from
longer to shorter wavelengths. Capturing all of these in directional simulations would be
a substantial challenge. We note that the Creamer transform (Creamer et al. 1989) would
capture much for unidirectional waves.

Numerical set-up parameters are given in table 1. We use a number of different lengths
in the x direction for computational reasons. Thus, we have more simulations of the first
part of the domain and, hence, more data points and smaller confidence intervals in this
part of the domain.

3. Results

3.1. Crest statistics
We start by analysing crest statistics. To reduce statistical uncertainty, we use data from
multiple locations at 90◦ to the mean wave direction. For the LS13 cases, we use two
measurement locations in the y direction separated by 11.72 m (3.03λ0). For the O09 cases,
we use three measurement locations in the y direction separated by 3.42 m (2.20λ0). These
points are far enough apart that there is negligible correlation, and this helps the clarity of
the results. We present data normalised using the initial conditions measured at x = 0.

3.1.1. O09
First, we examine the O09 case. Figure 2 compares the exceedance probabilities of crests
at four locations along the length (x direction) from the experiments and for the ST and LT
simulations. Also shown for comparison is the commonly used distribution by Forristall
(2000), which is based on second-order theory. The shaded regions correspond to 90 %
confidence intervals for the simulations based on the bootstrap method (Efron & Tibshirani
1994). To examine the crest statistics of O09 further, we also consider crest exceedance
probabilities as a function of the distance along the length of the basin (x). We choose
to analyse the amplitude of crests with a 10−3 probability of exceedance (i.e. the 1/1000
wave). This threshold is a trade-off between statistical robustness and capturing the tail
behaviour. However, the conclusions do not change if we use alternative values. For O09,
these data are presented in figure 3.

The same general trends occur in experiments and both simulations. All predict more
large waves than predicted by Forristall’s second-order theory, which is not unexpected
for this steep and narrow-banded case. As is evident from figure 3 for small x/λ0, in the
simulations there is a spike in the number of large waves near the inlet that is presumed to
be due to ‘error waves’ in the wave generation. Away from the inlet the number of large
waves observed increases for a distance of approximately 12λ0 before falling again. The
wave crests for the ST case are generally higher than for the LT case, and this difference
is mostly statistically significant, especially for the first 12λ0. It is not known exactly what
frequency cutoff was applied in the experiments so it is not possible to say whether the
experiments support one or other of our simulations. However, although both simulations
appear to overestimate slightly the numbers of large waves, they do provide a useful
confirmation of the validity of our simulations. The key result for the present paper is the
dependence of the simulation on the high-frequency cutoff selected. Whilst there is the
expected statistical variation, the short-tailed initial spectrum clearly produces more large
crests than the long-tailed spectrum, although these appear to get closer as one moves
down the basin.
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Figure 2. For O09, crest exceedance probabilities at four different distances from the paddle (locations of
gauges in the experiments of O09): (a) x = 3.1λ0, (b) x = 6.3λ0, (c) x = 12.6λ0, (d) x = 22.3λ0 for ST
and LT simulations. The shaded regions correspond to 90 % confidence intervals for the simulations based
on the bootstrap method. The results O09ST and O09LT are obtained through fully nonlinear potential-flow
simulations. Also shown are the experimental results from O09.

3.1.2. LS13
Second, we analyse the crest statistics for the LS13 case. Figure 4 shows the crest
exceedance probability at four locations along the length of the basin (noting that
experimental data are only available at the second location: x = 1.075λ0). We again
consider the amplitude of the crests at the 10−3 probability level in figure 5.

We again observe a rapid increase in the number of large waves close to where the waves
are generated that dies away by 0.5λ0. We also see that the number of extreme crests is
lower in the LS13 compared with O09. This is expected as the LS13 is less steep and has
a broader bandwidth. In both simulations there appears to be an increase in the number of
extreme crests observed as one moves down the tank. Possibly, this is the same effect as
observed in the O09 case up to 12λ0, but the non-dimensionally shorter domain does not
show a peak (where non-dimensional length is based on the scaling of Fedele (2015); see
§ 3.2).

However, it is clear that there are substantial and statistically significant differences
between the probability of large waves when the tail is and is not included in the
wavemaker signal. When the tail is included in the initial conditions, the distribution

953 A9-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

96
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.961


T. Tang and others

0
0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Forristall

Experiment

O09LT

O09ST

5 10

x/λ0

η/Hs

15 20 25 30

Figure 3. For O09, wave crest amplitude at the 10−3 crest exceedance probability level for ST and LT
simulations. The shaded regions correspond to 90 % confidence intervals for the simulations based on the
bootstrap method. Also shown are the experimental results from O09. A zero-phase shift Fourier filter is applied
to smooth out short-term fluctuations within the length scale of 0.4λ0.

remains close to the distribution of Forristall (2000). However, there is a clear departure
from this distribution when the tail is omitted. It can further be seen that there is better
agreement between the experiments of LS13 and the numerical simulations with the short
tail compared with the long tail.

We do not present results for wave height distribution in the present paper as we have
already considered two metrics for the free surface distribution. However, we note that
wave height variations are consistent with the rest of the results presented in the paper.

3.2. Kurtosis of the free surface and comparison with Fedele (2015)
Moving on from crest statistics, we now analyse our results using the common proxy for
rogue wave density, namely the excess kurtosis of the free surface (see Mori & Janssen
2006). The excess kurtosis C4 is given by the kurtosis of the free surface minus 3, as a
linear Gaussian surface elevation would correspond to a kurtosis of 3. The excess kurtosis
C4 is comprised of dynamic (Cd

4) and bound (Cb
4) contributions, such that C4 = Cd

4 + Cb
4,

where the dynamic contribution accounts for the build-up of phase correlation and the
bound contribution accounts for the presence of bound harmonics.

A number of other authors have used O09 as the basis for numerical simulations and
have studied the kurtosis evolution. Toffoli et al. (2010) and Xiao et al. (2013) performed
both modified nonlinear Schrödinger (MNLS) equation and fully nonlinear simulations
to examine the evolution of the sea state. Furthermore, Barratt et al. (2022) conducted
only MNLS simulations but looked explicitly at the impact of the spectral cutoff. We refer
the reader to the original papers for full details of their numerical methods. However,
pertinent to the current studies, the high-wavenumber cutoffs for the different simulations
are given in table 3. No cutoff is documented as being applied in the original experiments
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Figure 4. For LS13, crest exceedance probabilities at four different distances from the paddle: (a) x = 0.3λ0,
(b) x = 1.075λ0 (location of the gauge in the experiments of LS13), (c) x = 1.76λ0, (d) x = 16.1λ0. The
shaded regions correspond to 90 % confidence intervals for the simulations based on the bootstrap method.
The results LS13ST and LS13LT are obtained through fully nonlinear potential-flow simulations. Also shown
are the experimental results from LS13.

Case Method Effective wavenumber cutoff k/k0 Evolution domain

Toffoli et al. (2010) MNLS 2 Space
Toffoli et al. (2010) Fully nonlinear n/a Time
Xiao et al. (2013) MNLS 2 Time
Xiao et al. (2013) Fully nonlinear n/a Time
Barratt et al. (2022) (O09ST) MNLS 2 Time
Barratt et al. (2022) (O09LT) MNLS 6 Time

Table 3. Wavenumber cutoffs used in the literature to simulate O09.

of O09, although we presume the physical limitations of the paddles meant that a full
high-frequency tail could not be created.

3.2.1. O09
The evolution of kurtosis for our simulations is shown in figure 6, comparing to the
experimental results of O09 and the simulations detailed in table 3. We have plotted the
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Figure 5. For LS13, wave crest amplitude at the 10−3 crest exceedance probability level for ST and LT
simulations. The shaded regions correspond to 90 % confidence intervals for the simulations based on the
bootstrap method. Also shown are the experimental measurements from LS13. A zero-phase shift Fourier filter
is applied to smooth out short-term fluctuations within the length scale of 0.4λ0.

data on different subfigures depending on whether the spectrum was severely curtailed
to improve clarity, showing the ST cases in panel (a) and the LT cases in panel (b).
Experiments are shown in both. In some cases in the literature (see table 3) wave fields that
are homogeneous in space are evolved in time. In these cases space/time mapping is done
using the group velocity (see, for instance, Chabchoub & Grimshaw 2016), which is strictly
only valid in the narrow-banded limit. The x axes in figure 6 show the corresponding
spatial x/λ0 or temporal t/(2T0) parameters with kurtosis shown on the y axis (including
the contribution of bound harmonics). Here, λ0 and T0 represent the peak wavelength and
wave period, respectively.

All the results show the same general trends with the kurtosis peaking at approximately
15λ0 (or equivalent in time) away from the generation zone. All simulations overestimate
the kurtosis relative to the experiment except the LT simulation of Barratt et al. (2022)
beyond 20λ0.

The key result for the present paper is that we again observe a difference between the
short- and long-tailed simulations, with the curtailed spectrum producing more extreme
waves than the case with the spectrum cutoff at 6k0. However, whilst this difference is
significant, the difference is much less than Barratt et al. (2022) found when carrying out
MNLS simulations using the same parameters. Important differences between the fully
nonlinear simulations and the MNLS simulations of Barratt et al. (2022) are the different
evolution models, the need to explicitly calculate bound harmonics in the MNLS, the
lack of wave breaking in the MNLS and the work of Barratt et al. (2022) is homogenous
in space and the other simulations listed in Table 3 are in time. However, despite these
differences in the modelling, the discrepancy between the two results is significant. Due
to the modelling differences it is harder to say anything definitive about the simulations of
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Figure 6. Kurtosis evolution for O09ST (red line) and O09LT (blue line) compared against other studies. (a)
The cases with truncated tails; these cases are Xiao et al. MNLS (−−−), Toffoli et al. MNLS (◦) and Barratt
et al. MNLS ST case (red −−−). (b) The cases without truncated tails; these cases are Xiao et al. HOS
(——), Toffoli et al. HOS (×) and Barratt et al. MNLS LT case (blue −−−). The shaded bands represent
95 % confidence intervals based on the standard deviation of different realisations. The coloured dash line
indicates the peak kurtosis value for O09ST and O09LT, respectively.

Toffoli et al. (2010) and Xiao et al. (2013) as regards cutoff. For example, a low-pass filter
is applied in the higher-order spectral method (HOSM) to model the energy dissipation due
to wave breaking in Xiao et al. (2013), which is absent for HOSM implemented by Toffoli
et al. (2010). This could lead to kurtosis differences shown in figure 6(b). However, their
results are generally supportive of the conclusion that curtailing the spectrum increases
the number of extreme waves.

Fedele (2015) derived analytical predictions for the evolution of the kurtosis. Applying
this requires the evaluation of the spectral bandwidth. Multiple definitions exist in the
literature and the results are sensitive to which bandwidth definition is used. Fedele (2015)
uses the ‘half-width’ parameter that gives identical results for both the truncated tail and
the full tail simulations. Using this estimate of bandwidth we get a value of the aspect
ratio of the initial spectrum, R, of 0.031, where R is a measure of short crestedness of the
dominant waves (see Fedele (2015) for details). Given that this predicts identical evolution
regardless of cutoff, we instead calculate bandwidths using

ν(t) = 1√
π Q0

, (3.1)

where Q0 is the peakedness parameter used to calculate the Benjamin–Feir index by Serio
et al. (2005). Using this parameter gives values of R = 0.045 for O09LT and R = 0.065
for O09ST. Figure 7 presents the predicted evolution of excess kurtosis in O09 based on
these differing bandwidth estimates along with our numerical results. We note that the
bound-wave contribution to the excess kurtosis is also included for both simulated results
and the theoretical curves presented in this study (the theoretical curves are obtained
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Figure 7. Excess kurtosis evolution for case O09ST (red line) and case O09LT (blue line) compared against
the solution of Fedele (2015) based on the initial wave spectrum at x = 0λ0 for both cases. The shaded bands
represent 95 % confidence intervals based on the standard deviation of different realisations.

following (1.3) for bound harmonics and (2.16) for dynamic excess kurtosis in Fedele
2015).

In general, agreement between theory and experiment is good. The overall shape and
the (non-dimensional) location of maximum kurtosis is predicted well for both cases.
The initial evolution is generally well predicted, particularly for the narrower banded ST
spectrum. However, the magnitude of kurtosis downstream of the peak appears to reduce
faster than predicted by theory. The evolution of excess kurtosis presented herein agrees
well with previous numerical simulations reported by Barratt et al. (2022), where similar
faster reduction of kurtosis is also observed towards the end of the basin. We do not think
that this deviation from the theory is primarily caused by the local smoothing filter utilised
in our numerical model to simulate breaking, as the MNLS equation simulations of Barratt
et al. (2022) do not have such a dissipation but show a similar trend.

3.2.2. LS13
We now turn to the kurtosis evolution for the LS13 case. This is significantly broader
banded than O09. As we have no other simulations or experiments to compare with, we
simply consider the comparison with the theory developed by Fedele (2015). Using the
bandwidth estimated by Serio et al. (2005), a much smaller excess kurtosis is predicted,
and the evolution of both LT and ST cases are nearly identical. Figure 8 presents the
predicted evolution of kurtosis. We plot the kurtosis including the contribution from the
bound harmonics (and include these in the theoretical lines as well).

As with the results for exceedance probabilities, there is a clear difference between
the kurtosis of the two LS13 simulations. This is not predicted by the theory of Fedele
(2015). The initial oscillation, seen in crest exceedance plots, is again present. Following
this transience, the kurtosis changes little over the length of the simulation. There may be
a small increase with distance, consistent with the theoretical prediction. Whilst the theory
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Figure 8. Evolution of kurtosis for case LS13ST and case LS13ST compared with the predictions of Fedele
(2015) based on the initial wave spectrum at x = 0 for both cases. The shaded bands represent 95 % confidence
intervals based on the standard deviation of different realisations.

does seem to agree well for LS13ST, LS13LT is over-predicted. However, for this case, all
the values of kurtosis are small (consistent with other studies such as Klahn, Madsen &
Fuhrman 2021b).

3.3. Spectral changes
We examine how parameters that characterise the (spectrum of the) sea state evolve. We
look at two properties. First, we examine the significant steepness ξ , defined as

ξ = 2πHs

gT2
m

, (3.2)

where Hs is the significant wave height, which corresponds to four times the standard
deviation of the surface elevation, and Tm is the mean wave period, which is given by

Tm =
√

m0/m2, (3.3)

where m0 and m2 are the zeroth and second moment of the omni-directional spectrum
S( f ). We also consider the bandwidth, ν, as defined in (3.1). Figures 9 and 10 present
these for O09 and LS13, respectively.

The changes in both steepness and bandwidth are pronounced for the more nonlinear
O09 case. Indeed, the changes suggest that (even for the LT case) the spectrum is out of
equilibrium leading to a downshift in the spectral peak and broadening of the spectrum.
For this case, the experiments are in good agreement with the long-tailed simulation over
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Figure 9. (a) Spatial evolution of significant steepness ξ for O09ST, O09LT and experimental results presented
in O09. The results are normalised by the initial value of O09LT. (b) Spatial evolution of spectral bandwidth
parameter ν for O09ST, O09LT and experimental results presented in O09. The results are normalised by the
initial value of O09LT.
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Figure 10. (a) Spatial evolution of significant steepness ξ for both LS13ST and LS13LT cases normalised by the
initial value of LS13LT. (b) Spatial evolution of spectral bandwidth parameter ν for both LS13ST and LS13LT
cases normalised by the initial value of LS13LT.

the first part of the tank (roughly up to the peak in kurtosis), but in the second half the
numerics see greater changes than the experiments. Changes to the sea-state parameters
are much smaller for the LS13 case although there appears to be a modest increase in
bandwidth and a spectral downshift particularly early in the simulation. We also observe a
similar decreasing trend in wave steepness, especially for the experiments and numerical
results of the more nonlinear O09 case. This decrease in space is likely attributed to the
energy dissipation due to wave breaking during the experiment and the local breaking filter
in the numerical simulations (see details in § 2.2).
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The key result for the purpose of this paper is a comparison of the long- and short-tailed
simulations. The main differences here are at the start of the simulation particularly
for O09 where ST and LT have opposite trends over the first few wavelengths for both
bandwidth and steepness. Apart from this, the evolution is similar although it is noticeable
that in all results there are differences at the end of the basin between ST and LT
simulations. This shows that one cannot just assume that there are some rapid changes
as the full spectral tail grows and for the evolution to then be the same – this conclusion is
of course consistent with the results for extreme waves discussed above.

3.4. Application to wave loading of a surface-piercing column
Studying the statistics of wave kinematics directly is difficult. Furthermore, the important
practical question asked in this paper is whether loads measured experimentally are
dependent on the high-frequency cutoff used. We therefore follow Paulsen et al. (2014),
Klahn, Madsen & Fuhrman (2021a) and consider loads on an idealised structure using a
simple loading model. In this case we choose to use the drag part of Morison’s equations
to predict the overturning moment around the sea bed of a uniform structure. Thus, the
load is given by

F(z, x, t) = ρ
D
2

CDu|u|, (3.4)

where F(z, x, t) is force per unit length on a fixed vertical cylinder with a nominal diameter
of D located at a specific spatial location (x, z), and z is the vertical coordinate. In (3.4),
ρ is the water density, CD is the drag coefficient and u is the horizontal velocity at the
corresponding time and space. Note that OceanWave3D explicitly solves for the wave
kinematics, and so we use the velocity directly from the simulations. The force is integrated
over the column to give the overturning moment around the bed.

We analyse the output time series by analysing the moment magnitude that is exceeded
for 0.5 % of the simulation, which we refer to as M. Again, the choice of 0.5 % is a trade-off
between statistical robustness and analysing the extremes we are primarily interested in.
Figures 11 and 12 show how this metric evolves along the length of the numerical tank
for O09 and LS13, respectively. We observe the same fundamental trends in the evolution
of moment as we do for surface properties. The ST simulations generate a substantially
higher overturning moment compared with the long-tailed simulations although these are
significantly closer for the LS13 case. This strongly implies that there are more extreme
kinematics in the simulations with a short-tailed spectrum.

4. Discussion

Our results suggest that minor differences in the initial spectrum of random wave
simulations or experiments can lead to a significant change to the number of rogue waves
observed and to loads predicted on structures placed in the waves. Our simulations appear
to be consistent with other simulations carried out in the literature even if these were
not explicitly looking at the phenomenon. This result has a potentially significant impact
for random wave investigations (both looking directly at the waves but also for offshore
model testing). This is particularly true for laboratory tests where physical limitations of
the paddles are a constraint on the waves that can be generated. However, we highlight
that although we have strong evidence from simulations here, we have not been able to
do laboratory experiments to investigate this. To do so would require redesigning the
wavemaker and would be a major undertaking. This paper provides evidence that there

953 A9-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

96
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.961


T. Tang and others

0

0.95

1.00

0.90

M
/M

L
T
 (

x 
=

 0
λ

0
)

1.35

1.30

1.25

1.20

1.15

1.10

1.05

O09ST

O09LT

1 2

x/λ0

3 10 15 20 255

(b)(a)

Figure 11. For O09, the overturning moment magnitude exceeded 0.5 % of the total simulation time
normalised by its initial value (at x = 0) for O09LT. The shaded bands represent 90 % confidence intervals
based on the bootstrap method.
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Figure 12. For LS13, the overturning moment magnitude exceeded 0.5 % of the total simulation time
normalised by its initial value (at x = 0) for LS13LT. The shaded bands represent 90 % confidence intervals.

is a practical problem here and we think justifies more work to both explain the results and
find a way of avoiding this effect in experiments.
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The findings in this paper came as a surprise to the authors. The changes to the initial
spectra are minor (particularly for the LS13 case) yet produce significantly different results.
This said, the results are consistent with the study of Barratt et al. (2021). In Barratt et al.
(2021) deterministic wave groups were shown to evolve very differently with and without
the high-frequency tail. The deterministic study of Barratt et al. (2021) provides a basis for
the results presented here as some of the physics may be clearer for deterministic groups
than in random seas.

The physical mechanism at play here is not fully understood. However, the ideas of
spectral equilibrium appear to be important, particularly the equilibrium of the spectral
tail, which various authors have considered in different contexts (Waseda, Toba & Tulin
2001; Annenkov & Shrira 2006; Viotti & Dias 2014; Trulsen 2018). There is clearly an
interplay between the nonlinear physics trying to establish a smooth tail in which the
components are in equilibrium and the creation of correlation between wave components,
leading to an abnormal number of large waves.

Some aspects of the physics identified in this paper are caught by the narrow-banded
theory of Fedele (2015), but it cannot capture all the dynamics of realistically
broad-banded seas despite being a useful starting point.

5. Conclusions

We have simulated two classic random wave experiments from the literature, namely
Onorato et al. (2009) and Latheef & Swan (2013), using a fully nonlinear potential-flow
solver. We have examined the significance of making minor modifications to our initial
conditions, suppressing the high-frequency content in the initial conditions of some of
the simulations as is routine in the literature and a practical necessity in a laboratory
experiment. Despite these changes being small, they lead to significant differences in the
number of large waves and persist for tens of wavelengths after the waves are generated.
Furthermore, when the full spectral tail is used in the initial conditions there is minimal
extra elevation beyond that expected by second-order theory, consistent with work such as
Fedele et al. (2016), for the LS13 sea state, which has parameters that are plausible in the
open ocean.

Our results suggest that care is needed in initialising simulations or experiments where
the aim is to reproduce open-ocean conditions. Except in exceptional circumstances, in
the open ocean a fully developed spectral tail will be present and the spectrum will be,
at least roughly, in equilibrium. The problem identified herein is a particular problem
for experimental facilities where it is difficult to create a broad frequency range with
a conventional paddle, and physical limitations mean that tanks cannot be hundreds of
wavelengths long to negate this issue.
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Appendix A. Governing equations of OceanWave3D

OceanWave3D model is based on the flexible-order finite difference discretisations to
determine the exact potential-flow solutions (Engsig-Karup et al. 2009). OceanWave3D
model can also generate the internal kinematics without extra computation steps since the
potential-flow equations are solved within the fluid domain. We consider the fluid velocity
in all three directions (i.e. x, y, z), which are noted as u, v and w respectively. These velocity
components can be calculated by the gradient of the velocity potential φ(x, y, z, t),

u, v, w = (∇φ, ∂zφ), (A1)

in which ∇ = (∂x, ∂y) is the horizontal gradient operator. Following the equation
established by Zakharov (1968), the kinematic and dynamic free surface boundary
conditions are expressed in terms of velocity potential in (A2) and (A3), which can be
formulated by using the chain rule on the nonlinear version of the Bernoulli equation as
well as the nonlinear kinematic boundary condition,

∂tη = −∇η · ∇φ̃ + w̃(1 + ∇η · ∇η), (A2)

∂tφ̃ = −gη − 1
2 (∇φ̃ · ∇φ̃ − w̃2(1 + ∇η · ∇η)), (A3)

in which φ̃ = φ(x, y, η, t) is the velocity potential at the free surface (z = η), and w̃ =
∂zφ|z=η is the vertical velocity at the free surface. To obtain the exact value of the vertical
velocity in a specific time, the Laplace equation in the fluid is solved, along with the
kinematic and dynamic boundary conditions.

This numerical scheme is embedded with a classical four-stage, fourth-order
Runge–Kutta scheme for calculating the time integration of the free surface. In terms of
the spatial discretisation, OceanWave3D defines a meshed grid point along the horizontal
xy axes, and the free surface field η and the velocity potential field φ are to be evolved at
all grid points. All the spatial derivatives of the free surface field are calculated through
the discrete counterparts according to the finite difference scheme with nonlinear terms
expressed explicitly by direct product approximations at the collocation points. For the
treatment of numerical boundary conditions of the domain, Neumann boundary conditions
of the normal component of velocity are satisfied.

To solve the transformed Laplace problem, vertical grid points are defined below every
horizontal free surface grid point with spacing described following the (non-conformal)
sigma-coordinate transformation,

σ ≡ z + h(x)

η(x, t) + h(x)
, (A4)

where z is the vertical coordinate of the grid point, x is the horizontal positioning vector
and h specifies the water depth from the still water level.

This structured grid configuration allows direct implementation of finite difference
schemes to obtain first and second derivatives with flexible orders (in the present paper
a sixth order in the finite difference scheme is adopted following Barratt et al. 2022). This
can be achieved by a standard method using Taylor series expansion on all the grid points
(Engsig-Karup et al. 2009).
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