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Abstract 

Tools for analysing additive manufacturability often employ complex models that lack transparency; this 

impedes user understanding and has detrimental effects on the implementation of results. An expert system 

tool that transparently learns features for successful printing has been created. The tool uses accessible data 

from STL models and printer configurations to create explainable parameters and identify risks. Testing has 

shown good agreement to print behaviour and easy adaptability. The tool reduces the learning curves designers 

face in understanding design for additive manufacturing. 

Keywords: additive manufacturing, expert systems, bayesian, design for additive manufacturing, 
machine learning 

1. Introduction 
It is not uncommon for print preparation software to feature basic predictor tools for print success, going 

so far as identifying overhangs and other parametrically identified risk factors (Claudius Ellsel, 2021a; 

Wiberg et al., 2019a). Despite such tools, prediction of the suitability of a geometry for Additive 

Manufacturing (AM) is often the remit of those with accrued expertise. Existing methods can prove 

opaque to users (Jiang et al., 2022; Wang et al., 2020), hindering users from understanding the limits of 

their printers. Developing more refined predictions in this context then relies on the skills of the 

designers, which can prove a limit to novice users (Haug et al., 2023; Wang et al., 2018). The resulting 

inefficiency in the AM process limits the material efficiency of AM technologies (Schmitt et al., 2021). 

In this study, the challenge of increasing the reliability of AM towards right first time printing is 

approached by creating an explainable expert system. The tool will indicate the important geometrical 

factors for its prediction which will uniquely allow designers to fully and transparently probe their 

models for print suitability specific to a given AM method against prior build data. The tool uses human-

understandable print parameters based on Standard Tessellation/Triangle Language (STL) data to 

predict print success and highlight likely geometric problem areas. A Bayesian ontology is proposed 

which can learn from a growing base of training data, resulting in a tool which is able to make blunt 

predictions from the geometry but refine these by identifying and focusing on data from similar prints.  

This paper will begin with outlining the niche for transparent build outcome prediction tools that is 

intended to be filled in section 2. From this, the statistical approach will be defined and the tool 

methodology explained in section 3. The paper will then document trials carried out on the tool 

predicting print quality of controlled test parts in section 4, then discuss the outcomes of the study 

alongside strengths and weaknesses of the methodology in section 5. 
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2. Background 

2.1. Risk factors for AM designs 

Fused Filament Fabrication (FFF) is one of the most popular AM processes (Bhuvanesh Kumar and 

Sathiya, 2021), and prints by extruding plastic filaments heated slightly beyond their melting points and 

depositing them to build up a solid (Lluch-Cerezo et al., 2019). FFF builds that failed due to geometry 

will usually fit into a common set of fault causes (see Figure 1). One of the easiest to detect is the 

overhang (Claudius Ellsel, 2021; Rogers et al., 2022; Wiberg et al., 2019). Thin parts also prove a risk, 

with the parts not having sufficient strength to survive the print process (Bhuvanesh Kumar and Sathiya, 

2021). Similarly, features near to or smaller than the size of the filament are likely to cause further issues 

for the manufacturing process (Medellin-Castillo and Zaragoza-Siqueiros, 2019).  

2.2. The problem of transferable knowledge in AM 

Historically, AM has relied heavily on experience derived knowledge (Haug et al., 2023). These skills 

are by nature localised to a small number of machines and general geometry motifs (Haug et al., 2023). 

they have limited transferability, and are redundantly acquired by separate users. The issue is 

particularly acute for individual hobbyists and novice users, who are likely to loose a large fraction of 

print attempts and so incur frustration and inefficiency (Haug et al., 2023; Schmitt et al., 2021). 

To address these challenges, the works of Ngaim and Khor (Ngaim, Kee Yuan; Khor, 2019) and 

Hemmer, Schemmer and Kühl (Hemmer et al., 2021) provide strong examples of the numerous studies 

that emphasise the importance of user understanding. In this, they conclude that an algorithmic tool 

should be designed to encourage the use of the designers cognition first, which allows full leverage of 

human insight. The tool can then act as a check to the designer cognition and create a healthy discord 

between machine and designer. For this reason algorithmic transparency is paramount. Providing 

transparency allows human and algorithm strengths to mutually complement each other. 

 
Figure 1. Classifications of build outcomes 

3. Methodology 

3.1. Process overview 

To build a positive user interaction, the intended architecture has been created from the ground up to 

promote transparency (Hemmer et al., 2021; Yang et al., 2020). The statistical approach seeks in turn 

to curate the data set and establish relevance, to identify which transparent parameters are relevant, then 

to fit a model to make predictions, all using geometrical properties that are easily understandable. 

Each class of build outcome is best represented by a different set of metrics, and this is to be reflected 

in the tool primarily through the feature selection approach, which is dynamic for the different built 

forms. The two forms of fault, failure to print and noticeable surface deviation, were chosen as separate 

categories to be predicted by the tool. Examples of each can be seen in Figure 1. Further, Figure 2 shows 

the data process of the tool, both for identifying the input of query build settings, and for the process by 
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which prior training data (including STL layouts, prior classifications, printer settings, printer and 

material types) are implemented into the statistical model.  

 
Figure 2. The data handling process 

3.2. Explainable indicative parameters 

There is no shortage of computational tools which can be used to predict manufacturability (Claudius 

Ellsel, 2021; Wiberg et al., 2019), however, the tools can prove opaque (Jiang et al., 2022; Wang et al., 

2020) which reduces the useful knowledge transfer. The research has led to a new tool, which has been 

built purely around explainable metrics to improve human interpretability. In combination with the 

transparent and explainable approach to Machine Learning (ML), this will give every opportunity for a 

designer to understand and justify the results that the tool returns, and so incorporate the generated 

insights into their work. 

The machine and material used were categorical data which are difficult to enumerate. The approach 

taken for these was to assign a similarity weighting for each of 1 if they match the build under analysis, 

and 0.2 if not, in a blunt binary system to account for the difference and in lieu of more detailed data. 

These two categorical scores offer scope for further development and their values can be treated as a 

hyperparameter for the fit, which further investigations could refine. 

Another hyperparameter for the statistical model is the number of factors that the model trains for.  

Feature selection trials included variations in which features had their level of relevance to the outcome 

assessed by the Ordinary Least Squares (Sebenius et al., 2022) and ARD Automatic Relevance 

Determination (Wipf and Nagarajan, 2007) methods.  

The OLS model in early tests proved better able to capture features such as overhangs as sources of 

concern (see Figure 9). Relevance scores from this approach were generated for each factor in each 

model, weighted according to the relevance scores and the highest resulting features taken forwards. 

This was done to preserve explainability for each decision but does mean that each query can be fit to a 

different set of parameters dependent on global variables. 

3.3. Local parameter explanations 

Local parameters were generated from the STL data. All parameters are calculated for each STL to 

allow appropriate combinations of features. These are explained below:  

• Bed normal angles – This is the inclination of each triangles outer surface from the base 

• Spike volumes – The STL processing will translate any STL to the position with the lowest z 

position at z = 0, and the centroid directly above at x=0, y=0. Relative to this point, the volume 

of the tetrahedron formed by the surface element is calculated 

• Areas – The area of each triangle on the surface.  

• Height above base – The centre of each element was calculated as the linear average of the 

corners, and the z coordinate (Height above the base) used.  

• Eccentricity – A measure of the distortion, the sum of all side lengths over the root of area. 
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• Triangular skew – A measure of the regularity of a triangle based off assessing the maximum 

ratio of a bisecting line through a corner with the length of the base it crosses.  

• Local curvature – This was calculated by the average change in normal angles for the three 

bordering elements, with a larger average change taken to represent higher local curvature.  

• Through model thickness – Taking the normal of each triangle, this was represented by finding 

the straight line distance to the nearest opposing face.  

• Base distance metric - Calculating the minimal surface distance to a supported surface is a 

computationally heavy and complex process (Maekawa, 1996). While not exact, a metric was 

developed that approximates this value in an STL. Supported triangles were marked, and the 

triangles that border them identified. For each, the shortest distance from the centroid of the 

base to the new triangle was established as a separation metric. Those triangles that connect to 

these were considered next, and if with multiple competing connections only the shortest 

considered. The process was iterated until the entire surface has been considered. While factors 

such as triangle skew add noise to this, it will grow with the true distance and is a 

computationally efficient approach to this type of metric.  

• Base member register (Boolean) – If all three points of a triangle are on the base (z = 0) or input 

data labels a triangle as supported, then the triangle is given a Boolean value of 1 in this vector.  

• Class of surface (labels, used to train) – Each triangle is given a class: 0 – surface element prints 

successfully, 1 – support face, 2 – fails to print 3 – significant surface error. 

Global parameters were employed to assign weight to the influence of each build's triangle sets on the 

statistical model. They are both calculated from a requested STL and given by the end user. This will 

create a vector associated with each build and a similar vector 𝑆 for the user request, which is used to 

weight prior data: 

𝑺 =  
𝑴𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍 ∙  𝑴𝑷𝒓𝒊𝒏𝒕𝒆𝒓 ∙ 𝒆

∑ 𝒍𝒏(|
𝑽

𝑽𝒓𝒆𝒒
|)𝑮𝒍𝒐𝒃 𝑽𝒂𝒓𝒔

∙ 𝒆
∑ 𝒍𝒏(|

𝑷
𝑷𝒓𝒆𝒒

|)𝑮𝒍𝒐𝒃 𝑽𝒂𝒓𝒔

|𝑺|
⁄  

 (1) 

Where 𝑀 are the classification vectors for if the material or printer matches, 𝑉 is a vector of global 

scores for all geometric aspects, 𝑃 is the same for global registered parameters, the subscript 𝑟𝑒𝑞 

indicates the states provided by the user request and all are vectorised, indexed by build. 

The following global parameters were considered based on the geometry: 

• Surface area 

• Foot area 

• Total volume 

• Overhang area  

• Head temperature 

• Bed temperature 

• Support infill 

• Layer height 

• Filament gauge 

• Registered material  

• Registered printer type 

Comparative parameters are given as strings, which if different will multiply the weightings of a given 

build by 0.2. This total weighting is used when averaging data in the model fitting and parameter 

selection, to establish the relevance of the available data sets. 

3.4. Data combination 

Each model calls a bespoke combination, based on the provided print data and its comparison with the 

database. This allows the relevance weightings (as defined in Vector 𝑆, in Equation 1) to be applied to 

each gaussian prior distribution from the prior data, and then weighted results be combined for each 

class prediction. 

The data sets are fitted into a Gaussian Naïve Bayes (GNB) model, a supervised model which classifies 

based on the likelihood of a data point originating from one of a set of Gaussian distributions. The approach 

allows the use of a Bayesian information criteria to assess certainty of fits to each class. The highest 

likelihood class for each triangle is then used to classify the surfaces into the expected print outcome. The 

prediction method uses a Gaussian Mixture Model (GMM) fitting with GNB distributions to a space 

featuring each recommended parameter. The reduced dimensionality that the feature selection created aids 

to reduce the dimensionality and avoid associated problems (Carbon-Mangels and Hutter, 2011). 

https://doi.org/10.1017/pds.2024.183 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.183


 

 
DESIGN FOR ADDITIVE MANUFACTURING 1813 

4. Model validation 

4.1. Training of the tool for validation 

One of the biggest challenges to any ML related study is to amass a sufficient data set to derive causal 

relationships. Models are only as good as the data they are provided with, and this is particularly true 

with an expert system such as in this study. While developing the tool, evaluation prints were carried 

out on data from two printer types: Two Prusa I3 Mk3 and two Stratasys F370. All tests were limited to 

PolyLactic Acid (PLA) as a trial material. To build a data set, a total of 118 test prints were undertaken 

and their results categorised (see Table 1). The work made use of a test model low poly Samoyed (The 

mounting part was neglected, obtained under a Creative Commons Attribution Licence from BrunoPizza 

on Thingiverse (see Acknowledgements). 

Table 1. The log of test prints and outcomes used to train the tool 

Printer Total Tests Failed Prints Surface Deviation 

Prusa I3 mk3 22 1 6 

Stratasys F370 96 3 5 

4.2. Variation in prediction from changes in number of parameters 

The key hyperparameter for the tool was the number of parameters to be used to fit the GNB model. If 

an excess number of parameters are used the model will be more computationally expensive and more 

prone to latching onto noise (Andrews, 2018). Conversely, a single parameter model in effect becomes 

a linear clustering exercise, with classifications drawn by points in a single metric. 

Varying the number of parameters that were considered in the model resulted in a model that converged 

to a consistent certainty. Tests showed that the flagged areas were not significantly changed, nor were 

the average uncertainty levels when changing the included data beyond the third dataset. The results of 

this investigation subsequently lead to the decision to carry out tests of the model with three parameters. 

  

Num. of 

Paras 

1 2 3 4 5 6 7 8 9 

Certainty 0.8064 0.8667 0.8390 0.8420 0.8420 0.8422 0.8422 0.8422 0.8422 

 
Figure 3. Samy models with the varying parameter count showing the certainty 

4.3. The impact of scale on predictions 

The Prusa I3 Mk3 was similarly used to trial the test part in the standard (feet on base) orientation, with 

the length (nose to tail distance along the bed and line of symmetry) set to 30 mm, 40 mm, 50 mm, 75 

mm, 100 mm, 125 mm and 150 mm as shown in Figure 4. Surface deviation was apparent in the 30 mm 

and 40 mm builds around fine features like the ears and tail of the dog. The approach confirmed the 

suitability of the 75 mm model as the standard test scale. 

Test parts in general did display some error around the fine tips of the ears, which as the primary thin 

section indicated the risk of through part thickness. The algorithm failed to detect this issue, likely 

because the low triangle count in the ear region meant the tip end thickness was neglected. The model 

flagged three parameters; the curvature radius metric, spike volume (related closely to area) and 

 
            

 
  
      

  

  

    

https://doi.org/10.1017/pds.2024.183 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.183


 

 
1814   DESIGN FOR ADDITIVE MANUFACTURING 

Jacobians, related to surface element regularity, as the metrics with sufficient influence. That they 

proved insufficient to detect this aspect of the model demonstrates a limitation of the simplistic model. 

 
Figure 4. The core tests of the impact of scale on the test parts 

 

Figure 5. The small scale test prints and the 
associated reduced surface quality 

 

 

Figure 6. The certainty scores varying with 
scale 

 

The tool predicted all parts would succeed in printing, and other than very local surface error at the ear 

tips, below the triangle size, was accurate in this regard. This reflects that the specific parameter 

selection did not use features relating to the thickness directly, although the influence may have been 

passed in the spike volume and curvature radius. Positively, as the scale reduced the certainty dropped. 

The certainty of success of fine features reduced to at or below 50% on the 30mm build, indicating the 

part would likely fail in printing at scales significantly below this, which with fine features was assessed 

to be likely true. Indeed, running this statistical model, the 30mm Samy predicted a 33.5% certainty of 

local surface deviation (the highest on any triangle) and 19.8% for failure of some areas. 

These certainties remained very consistent with scale and are likely the results of local features such as 

small details more than global changes, the peaks remaining nearly perfectly static as the scale varied. 

The bulk of the certainties and their average changed significantly. The variation of these parameters 

can be seen in Figure 6. To explore this, a 15 mm and 20 mm model of Samy were printed (see Figure 

5). While these prints did complete successfully, the smaller surface elements were influenced by the 

filament gauge, which was reflected in the spike volumes and lead to the increased prediction. 

4.4. The impact of orientation on the predictions 

Support for printed geometries will vary between print orientations, as different sections of the geometry 

become unsupported. No rotation was trailed in X (yaw) because as a simplifying assumption the 

statistical model treats the print process as having planar isotropy about X, so will not change predictions 

based on flat rotation of a part. Varying orientation, predictions of the success when factoring in the 

varying support surfaces showed low chances of build failures. The success of all prints (see Figures 7 

and 8) demonstrated that the tool factored in the support assignment correctly, but the lack of predicted 

failures does limit the insight that can be derived from these tests. The thin sections at the ears were a 
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noted area of concern, and in some orientations the local print saw failures despite the support. Despite 

this, the tool was able to account for the varying support locations correctly and make rational 

predictions about risk factors such as remaining overhangs (Ahn et al., 2002; Lluch-Cerezo et al., 2019). 

 
Figure 7. Surface classifications, images and certainties of the Samy test part changing 

orientation in pitch 

 
Figure 8. Surface classifications, images and certainties of the Samy test part changing 

orientation in roll 

5. Discussion 
Although the tool was not always able to identify the areas that cause failure of the builds with the 

provided data set, it was taken as a very positive result that common known failure causes were able to 

be flagged as concerns (see Figure 9) and risk factors were seen throughout tests to reduce the certainty 

of the pass status (See Figures 3, 4 and 7). Remarkably, this was achieved despite the very limited data 

set of 118 builds available for testing. 

The tool has been designed to allow easy inclusion of further data, and it is the intent of the authors to 

continue adding data to train the statistical model further as it becomes available. The choice of 

transparent parameters would often select features which do not have as much apparent physical logic 

but made sensible predictions. For instance, in trial screw-thread models, the parameter selection was 

seen to prioritise eccentricity, thus picking a metric that would isolate the screw thread areas in order to 

flag these as risk areas for surface deviation. While a positive result, the finding does leave considerable 

scope for further parameters to be added with the scope for each parameter to identify features not 

envisaged by the designers of the software and a larger bank being desired. As such, including more 

explainable parameters, and exploring with deeper ML methods for potential further parameters are both 

achievable and beneficial areas for further exploration. It is potentially possible to work into the tool 

additional factors such as specific lattice structures for infill, which can significantly impact AM 

outcomes (Amaechi et al., 2022). While beneficial for bulk accuracy, this is not an intended extension. 
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This is because including additional ML complexity would reduce transparency and make user 

interaction more cumbersome. The tool is designed to work as an expert system that is practical to use 

for a designer who needs useful technical insight but would not have time to do in-depth part 

classification or analysis to feed into the tool. Extending the tool to additional file formats would be a 

rational extension, and a notable exception to this approach is the potential to expand the tool to concerns 

regarding the specific support structures (Jiang et al., 2022). The model could be further applied to 

predict support mass, print times and with minor adaption used to calculate optimal print orientations to 

maximise success chances. The current statistical model is also somewhat limited by a lack of insight 

into the amount of data needed to increase the certainty of the predictions. While more data would 

doubtless improve the tool, it would be worth conducting a more strenuous test series with more diverse 

data available to test how the available data impacts certainties and predictions. 

 
Figure 9. A hook model showing predicted surface error (left) and certainties (right) on 

unsupported faces 

A noted benefit, as reflected in the analysis was that the explainable parameters and transparency 

focused statistical model allowed for the causes of certain results to be easily directly interrogated. This 

angle of allowing designers both a simple use case for the tool, and also to dig into the results is hoped 

to be a noted positive and offset the reduced accuracy that is likely over deeper ML methods by 

encouraging positive user interactions (Hemmer et al., 2021; Ngaim, Kee Yuan; Khor, 2019). 

6. Conclusion 
Even using the data set of 118 prints, the novel methods developed and embodied in this new tool 

demonstrated a good capture of key AM design techniques. The tool generally made sensible predictions 

about manufacturability, which line up well with known results and expert perspectives. The tool 

followed provided data in rarely predicting failure or surface deformation, but with factors such as scale 

and overhangs, the certainty was clearly reduced. This was often traceable to single parameters and in 

that way provides unique insights to the designer not possible in more opaque tools (Claudius Ellsel, 

2021; Wiberg et al., 2019). The ability to trace numerical reasoning through the model and 

understandable parameters will give unparalleled scope to query the results and reasonings for a 

prediction made by the tool. There is significant scope for future development of the method, and it is 

intended that more parameters and model formats (particularly the .3mf file format) will be added into 

the tool alongside further data and refinement of the user experience. It would be further possible to 

expand the study to provide material and time usage predictions, and combine with an optimisation loop 

to indicate beneficial print orientations for part success.  
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