Iron Speciation Microanalysis: Evaluating Low Overvoltage Wavelength Dispersive Spectrometry Using Natural Reference Materials

Edward P. Vicenzi^{1,2}, Douglas C. Meier^{2,3} and Paul K. Carpenter⁴

^{1.} Museum Conservation Institute, Smithsonian Institution, Suitland, MD USA

- ^{2.} Materials Measurement Science Division, NIST, Gaithersburg, MD USA
- ^{3.} McCrone Associates, Inc., Westmont, IL USA

^{4.} Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO USA

Determining the ratio of Fe^{2+}/Fe^{3+} in solids has traditionally been performed by a variety of methods: 1) bulk analysis by Mössbauer spectroscopy [1], milliscopic analysis by X-ray photoelectron spectroscopy [2], or microbeam analysis at high spectral resolution by X-ray absorption spectroscopy (XAS) using a synchrotron light source [3,4]. While XAS produces high fidelity results, it suffers from additional overhead, e.g. preparing a proposal, travel to the light source, and the restrictions imposed by the limited time allotted for an approved study. Wavelength dispersive (WD)-based X-ray emission spectrometry in the electron microprobe has also been employed to characterize the chemical state of iron [5-7], as well as determining Fe concentration at higher spatial resolution using non-conventional L-lines [8].

Previous EPMA studies emphasize the significant correction required for Fe L line data owing to selfabsorption of Fe L_{α} and L_{β} X-rays by the L₃ and L₂ edges. Because of the nature of the electron beam interaction volume, the magnitude of this correction scales with beam energy. Accordingly, we have collected Fe L WD spectra using accelerating voltages as low as 2 keV for a number of Fe-bearing reference materials, including: hematite (Fe₂O₃), magnetite (Fe₃O₄), fayalite (Fe₂SiO₄), ilmenite (FeTiO₃), and pyrite (FeS₂). The emergence of field emission EPMAs over the past 8-9 years has made the use of overvoltages (E_0/E_c) of 2.9 possible for Fe L_α (705 eV) using a 2 keV beam. One goal of this study was to determine if the lowest practical beam voltages could be used to evaluate the $Fe^{2+}/(Fe^{2+}+Fe^{3+})$ proportion in natural basaltic glasses (e.g. VG2) where the ratio has been previously characterized by wet chemistry to be 83% [9]. Fe L spectra have been deconvolved using a sum of Gaussian and Lorentzian peak shapes, resulting in fits with r^2 values between 0.97-0.99, for the fewest number of peaks required to describe the data. Our initial results collected at 2 keV show that the peak centroid for Fe L_{α} in VG2 (24%) Gaussian peak shape) is shifted by less than an eV relative to Fe³⁺ (Fe₂O₃: 39% Gaussian) and indistinguishable from Fe²⁺ (favalite: 45% Gaussian) (Figures A-C). Data collected at 5 keV suffer significantly greater self-absorption and are show for reference (Figures A'-C'). A new method for treating WDS spectra when fitting compound Gaussian and Lorentzian peaks shapes will be proposed. **References:**

[1] M Enders, D Speer, W Maresch and C McCammon Contrib Mineral Petrol (2000), 140: 135-147.

- [2] M Aronniemi, J Sainio and J Lahtinen, Surface Science (2005), 578: 108-123.
- [3] NR Poolton, IW Kirkman, and E Pantos Journal of Physics D: Appl Physics (2011) 44: 6pp.
- [4] F Bourdelle et al, Contrib Mineral Petrol (2013) 166: 423-434.
- [5] M Fialin, C Wagner, and G Remond EMAS (1998) 98: 129-140.
- [6] JT Armstrong Anal Chem (1999) 71: 2714-2724.
- [7] HE Höffer and GP Brey American Mineralogist (2007) 92:873-885.
- [8] P Gopon et al, Microsc Microanal (2013) 19: 1698-1708.
- [9] E Jarosewich, JA Nelen, and JA Norberg Geostandards Newsletter (1980) 4: 43-47.

Figure 1. A, B, and C) Iron L line WDS scans for Fe_2O_3 , Fe_2SiO_4 , and VG2 glass at $E_0=2$ keV; A', B', and C') Iron L line WDS scans for Fe_2O_3 , Fe_2SiO_4 , and VG2 glass at $E_0=5$ keV.