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Abstract. Sunspots are of basic interest in the study of the Sun. Their relevance ranges from
them being an activity indicator of magnetic fields to being the place where coronal mass
ejections and flares erupt. They are therefore also an important ingredient of space weather.
Their formation, however, is still an unresolved problem in solar physics. Observations utilize
just 2D surface information near the spot, but it is debatable how to infer deep structures and
properties from local helioseismology. For a long time, it was believed that flux tubes rising from
the bottom of the convection zone are the origin of the bipolar sunspot structure seen on the
solar surface. However, this theory has been challenged, in particular recently by new surface
observation, helioseismic inversions, and numerical models of convective dynamos. In this article
we discuss another theoretical approach to the formation of sunspots: the negative effective
magnetic pressure instability. This is a large-scale instability, in which the total (kinetic plus
magnetic) turbulent pressure can be suppressed in the presence of a weak large-scale magnetic
field, leading to a converging downflow, which eventually concentrates the magnetic field within
it. Numerical simulations of forced stratified turbulence have been able to produce strong super-
equipartition flux concentrations, similar to sunspots at the solar surface. In this framework,
sunspots would only form close to the surface due to the instability constraints on stratification
and rotation. Additionally, we present some ideas from local helioseismology, where we plan to
use the Hankel analysis to study the pre-emergence phase of a sunspot and to constrain its deep
structure and formation mechanism.
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1. Introduction
Over the past four centuries, the study of sunspots has advanced significantly from

simple counts and drawings to detailed monitoring from space. A lot of effort has gone into
the compilation of a coherent sunspot record (Clette et al. 2014). Despite the long-term
record and the high spatial and temporal resolution nowadays available, the theoretical
understanding of the processes leading to the formation of sunspots is still limited.

One of the first theoretical descriptions of sunspot formation and evolution was pro-
vided by Parker (1955). He argues that the solar dynamo produces magnetic fields in the
form of concentrated flux tubes, which are able to rise through the convection zone to
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the surface by magnetic buoyancy. An initially horizontal flux tube is expected to break
through the surface, forming a typical bipolar sunspot pair. Originally, Parker (1955)
expected the flux tubes to be just 20Mm below the surface, but later he argued that
they should be near the overshoot layer (Parker 1975).

There has been a range of different approaches to this scenario: from thin flux tube
models (e.g. Caligari et al. 1995) to detailed simulations of the emergence of horizontal
field over the last few megameters (e.g. Rempel & Cheung 2014). Caligari et al. (1995)
studied the process of the emergence from the tachocline, concluding that a critical
magnetic field strength of ≈ 105 G in the subadiabatic layer is needed for the magnetic
buoyancy to kick in and raise the tube. They also studied some of the observed properties
of active regions, such as the tilt angle and the asymmetry of the inclination angle and
the velocity, as well as the latitudinal emergence. On the other hand, Rempel & Cheung
(2014) studied in detail the rise of a pre-injected magnetic flux tube near the surface and
the characteristics of bipolar spot formation in the photosphere. Turbulent flows tend to
fragment and disperse the injected coherent magnetic flux rope, leading to the decay of
the spot. Further examples of theoretical models of flux tube emergence can be found in
Cheung & Isobe (2014).

2. Change of paradigm
This traditional and most studied paradigm to explain the formation of sunspots is

part of a more general picture of the Sun. In this framework, which is also referred
to as the Babcock-Leighton dynamo (Babcock 1961; Leighton 1964, 1969), the poloidal
magnetic field gets sheared into a toroidal one by the differential rotation of the Sun. This
toroidal field resides at the tachocline. There, the layer can be stable enough to allow for
a magnetic field of ∼ 105 G, which it needs to survive its rise as a coherent tube through
the convection zone and to break through the surface, forming spots. Therefore, these
flux ropes of magnetic field are global features that feed the dynamo of the Sun, and
the sunspots are deeply rooted within the convection zone. One of the problems of the
stability of these tubes is convection itself. The turbulence tends to diffuse and destroy
the tubes, so they have to be strong enough to survive and rise throughout the entire
convective envelope.

We could also imagine a different framework, where the dynamo may still be of
Babcock-Leighton type, but it operates in the bulk of the convection zone and causes
most of the global features of the Sun. Sunspots form under certain favorable conditions
(dynamo strength, stratification, scale separation of the convective cells, etc) as the result
of an instability. On top of this, we could also picture a scenario where the turbulence it-
self is driving a large-scale instability and forms the magnetic field concentrations seen as
sunspots (Kleeorin et al. 1989, 1990, 1996). We argue that the negative effective magnetic
pressure instability (NEMPI) is the instability operating at this level; see Brandenburg
et al. (2016) for a recent review. These two scenarios are summarized in Table 1.

3. Negative effective magnetic pressure instability (NEMPI)
3.1. MHD simulations

In order to introduce the mechanism responsible for the formation of magnetic field
concentrations, we have to go back to the equations used to study the dynamics of the
plasma: the magnetohydrodynamics (MHD) equations. We then use simulations to solve
the relevant set of equations. One of the main problems in numerical simulations of the
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Table 1. Main characteristics of the presented paradigms on the formation of sunspots

Traditional approach Alternative approach

Dynamo type tachocline flux-transport distributed
Role of sunspots part of dynamo natural outcome
Origin of sunspots rising flux tubes turbulence & stratification
Sunspot formation depth tachocline near the surface
Turbulent convection sunspot decay sunspot formation

Sun is the inability to use realistic parameters. The solar Reynolds number, Re, related to
the amount of turbulence in the system, can span from 1010 to 1015 , requiring a numerical
resolution not yet achievable in super-computers. We, then, have to use a much smaller
value of Reynolds number and study how the system scales with increasing values of Re.

Here, we solve the MHD equations using both direct numerical simulations (DNS) and
mean-field simulations (MFS). The DNS scheme solves the full set of equations included
in the problem, for a given numerical resolution. A drawback of this approach is that it
can be difficult to capture the effects of small-scale fluctuations. This is different using
MFS, where the problem is solved for the large-scale quantities and the contribution of
small-scale quantities are parameterized in terms of large-scale quantities. This allows us
to make assumptions for the derivation of the parameterizations and consider only the
relevant terms. Therefore, comparing DNS results with known MFS physics will lead to
a better understanding of the physical system.

3.2. DNS

The full set of equations we solve within a DNS scheme is:
• Continuity equation: ∂ρ/∂t = −∇ · (ρU),
• Momentum equation: DU/Dt = − 1

ρ ∇Pgas + 1
ρ J × B + f + g + F ν ,

• Induction equation: ∂B/∂t = ∇ × (U × B − ημ0J),
where: D/Dt ≡ ∂/∂t + U · ∇ is the advective derivative, Pgas is the gas pressure, ν is
the kinematic viscosity, η is the magnetic diffusivity, B = B0 + ∇ × A is the magnetic
field, B0 = (0, B0 , 0) is a weak imposed uniform field, J = ∇ × B/μ0 is the current
density, μ0 is the vacuum permeability, F ν = ρ−1∇ · (2νρS) is the viscous force, Sij =
1
2 (∂jUi +∂iUj )− 1

3 δij∇ ·U is the traceless rate-of-strain tensor, f is the forcing function
(random, white-in-time, plane, nonpolarized waves with a certain average wavenumber
kf ), g = (0, 0,−g) is the gravitational acceleration.

We measure distance in terms of the density scale height, Hρ = c2
s /g, magnetic field

in terms of the equipartition field strength, Beq0 =
√

μ0ρ0 urms, and time in terms of the
turbulent-diffusive time, tη = (ηtk

2
1 )−1 (which is proportional to the eddy turnover time,

τt0 = (urmskf )−1 , since the turbulent magnetic diffusivity is assumed to the equal to the
turbulent viscosity: ηt = νt = urms/3kf ).

Brandenburg et al. (2011) solved these equations in a small 3D box, with a scale
separation of kf/k1 = 15, strong stratification with a density contrast of ∼ 535, an
initial magnetic field along the horizontal y-axis of B0/Beq0 = 0.05, a fluid Reynolds
number Re ≡ urms/νkf of 36, a magnetic Prandtl number PrM = ν/η of 0.5, a magnetic
Reynolds number, ReM = PrM Re = 36, and detected, for the first time, the spontaneous
concentration of magnetic field. This concentration is a consequence of the large-scale
instability, i.e., NEMPI, which is described in terms of mean-field equations.
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3.3. MFS
Mean-field equations emerge as a result of the decomposition of all quantities as av-
erages (means) and fluctuations, W = W + w. Applied to the MHD equations, this
decomposition yields:
• Continuity equation: ∂ρ/∂t = −∇ · (ρU),
• Momentum equation: ∂U/∂t + U · ∇U = − 1

ρ ∇p + g + FM + FK,
• Induction equation: ∂B/∂t = ∇ × (U × B + u × b) + η∇2B,

where overbars denotes averages, FM is the mean Lorentz force and FK is the total
(turbulent plus microscopic) viscous force, and the turbulent viscous force is determined
by Reynolds stresses.

3.3.1. From induction equation: dynamo instability
As a well-known example of mean-field theory, the mean electromotive force u × b

in the mean field induction equation is caused by turbulent effects which can result
in the generation of a large-scale magnetic field (Steenbeck et al. 1966; Moffatt 1978;
Krause & Rädler 1980). In the case of isotropic and homogeneous turbulence, the effect
of fluctuations can be parameterized as

u × b = αB − ηtJ . (3.1)

Therefore, if α �= 0, there can be a generation of a large-scale magnetic field. This effect is
thought to be responsible for generating the Sun’s large-scale magnetic field (Stix 1976;
Dikpati & Gilman 2001; Brandenburg & Subramanian 2005).

3.3.2. From momentum equation: NEMPI
For the current discussion, we are not interested in explaining the generation of a mag-

netic field, but in the study of a concentration of an existing small large-scale magnetic
field into the form of surface spots. Therefore, we use the momentum equation:

∂U

∂t
+ U · ∇U = −1

ρ
∇P gas + g + FM + FK . (3.2)

The total pressure PTot in the system is the gas pressure, Pgas , plus the mean mag-
netic pressure, B2/2μ0 , and the total (kinetic plus magnetic) turbulent pressure, pturb =
p

(0)
turb +p

(B )
turb , where the total turbulent pressure has a contribution, p

(B )
turb , which depends

on the mean magnetic field and one, p
(0)
turb , which is independent on B. We define the

effective magnetic pressure Peff = B2/2μ0 + p
(B )
turb , so that the total pressure is:

PTot = Pgas +
B2

2μ0
+ pturb ≡ P̃gas + Peff , (3.3)

where P̃gas = Pgas +p
(0)
turb . The turbulent pressure for isotropic turbulence can be written

as:

pturb =
EM

3
+

2EK

3
=

2
3
(EK + EM) − 1

3
EM . (3.4)

Therefore, if the total energy EK +EM is conserved, an increase in the turbulent mag-
netic energy, δEM > 0, suppresses the turbulent pressure, δpturb = −(1/3)δEM < 0,
resulting in a negative contribution to the total pressure. For strongly anisotropic tur-
bulence, δpturb = −δEM < 0, and the suppression of the turbulent pressure is stronger
(Rogachevskii & Kleeorin 2007; Brandenburg et al. 2016). The contribution to the to-
tal turbulent pressure, p

(B )
turb , is parameterized as p

(B )
turb = −qp(B)B2/2μ0 , so that the
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effective magnetic pressure is (Kleeorin et al. 1989, 1990, 1993; Kleeorin & Rogachevskii
1994; Rogachevskii & Kleeorin 2007):

Peff =
[
1 − qp(B)

] B2

2μ0
. (3.5)

Substituting the effective magnetic pressure of Equation (3.5) into Equation (3.3), we
obtain the following expression for the total pressure:

PTot = P̃gas +
(
1 − qp(B)

) B2

2μ0
. (3.6)

In cases where the function qp > 1, the contribution of the effective magnetic pressure to
the total pressure is negative, and the gas pressure should increase if the total pressure
is balanced sufficiently rapidly with its surroundings. Indeed, a small increase in the
magnetic field in the upper layer results in the increase of the gas pressure in this region
Therefore, there is a positive gas pressure difference between the upper and lower layer,
which drives the downflows. This eventually concentrates the vertical magnetic field
within it at the expense of turbulent energy, and the NEMPI is excited.

Effective magnetic pressure computation and parameterization:
The effective magnetic pressure relates the mean magnetic energy to the turbulent one

through the function qp . We can compute the ad-hoc form of this function by comparing
a simulation with an imposed mean magnetic field to a simulation without this field, and
extract the effect of the mean magnetic field in the effective magnetic pressure.

Kemel et al. (2012b) fitted the DNS results, and approximated the function qp(β) by:

qp(β) =
qp0

1 + β2/β2
p

=
β2




β2
p + β2 , (3.7)

where β = B2/B2
eq , and qp0 , βp , and β
 = βpq

1/2
p0 are constants. Also, Kemel et al.

(2013) established an approximation for the growth rate of the instability, in the case of
an isothermal atmosphere and β
 � β � βp :

λ

ηtk2 ≈ 3β

kf/k

kHρ
− 1. (3.8)

Studying the large-scale instability, we can infer the importance of stratification and the
scale separation at the onset of the instability. Therefore, we need three main conditions
to excite the large-scale instability:
• The gradient of effective magnetic pressure must be negative.
• Strong enough stratification (small density scale height) kHρ .
• Large enough scale separation in the system kf/k.

These conditions have already been demonstrated in the DNS of Brandenburg et al.
(2012, 2013) and their results set up a starting point for further numerical experiments
towards solar-like simulations.

3.4. Some results
To go a step further towards a solar-like model, we focus on two aspects that influence
the development of the instability present in the Sun: rotation and a basic representation
of a corona envelope.

3.4.1. Effects of rotation
We study the effects of rotation by adding the angular velocity term, −2Ω × U in

the momentum equation, such as Ω = Ω(− sin θ, 0, cos θ), where Ω is the rotation rate
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Figure 1. By at the periphery of the computational domain for DNS (left) and MFS (right)
with Co = 0.03. Figures adapted from Losada et al. (2012, 2013).

and θ is the colatitude of the Sun (θ = 0 at the poles). Therefore, we use the following
equations of motion in DNS and MFS:

DNS:
DU

Dt
= −2Ω × U − c2

s ∇ ln ρ +
1
ρ
J × B + f + g + F ν . (3.9)

MFS:
DU

Dt
= −2Ω × U − c2

s ∇ ln ρ +
1
ρ
J × B + ∇(qpB2/2μ0) + g + F νt . (3.10)

As explained in Losada et al. (2012, 2013), we set up MFS and DNS of boxes of size
L3 , and impose a weak horizontal uniform magnetic field in the y direction, B0 . The
computational domain has periodic boundary conditions in the x and y directions, while
we impose stress-free perfect conductor boundary conditions in the z directions.

We solve these equations in a small 3D box, with a scale separation of kf/k1 , a strong
stratification of a density contrast of ∼ 535, a initial magnetic field along the y-axes
of B0/Beq = 0.05, a fluid Reynolds number Re ≡ urms/νkf of 36, a magnetic Prandtl
number PrM = ν/η of 0.5, and a magnetic Reynolds number, ReM = PrM Re = 18.

In the presence of rotation, we observe the formation of magnetic field concentrations,
as seen in Figure 1. We quantify the growth rate of the large-scale instability, normalized
by the quantity λ∗0 ≡ β
urms/Hρ . In the DNS we can directly compute the value of β
 ,
whereas in the MFS it is an input parameter of the simulation. We study two different
sets of values in MFS: (i) with qp0 = 20 and βp = 0.167, motivated by the results of Kemel
et al. (2013), and (ii) with qp0 = 32 and βp = 0.058, motivated by the DNS fits. As one
of the results, Figure 2 shows the decrease of the growth rate of the instability when we
increase the Coriolis number in all these three cases. In a solar context, however, where
the Coriolis number strongly decreases towards the surface (see Figure 3), the limitation
in Coriolis number of the instability constrains the area where the instability can operate
close to the surface, where the Coriolis number is small enough. As another result, we can
see a disagreement between DNS and MFS results for values of the Coriolis number larger
than ≈ 0.1. Such values of the rotation rate enable the production of kinetic helicity in
the system, and therefore an α-effect. We see the development of a Beltrami-like magnetic
field generated by the large-scale dynamo together with the NEMPI instability. Jabbari
et al. (2014) demonstrated that an α2 mean-field dynamo is responsible for the onset of
dynamo and the presence of the instability for even larger values of the Coriolis number.
In the presence of rotation (angular velocity above a certain threshold) the system is
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Figure 2. Dependence of the growth rate of the instability on the rotation rate, for DNS (red
dashed line) and MFS with (i): qp0 = 20 and βp = 0.167 (black solid line), and (ii): qp0 = 32
and βp = 0.058 (blue dash-dotted line). Figure adapted from Losada et al. (2013).

Figure 3. Coriolis number profile in the convection zone, computed form the mixing length
model of Spruit (1974).

unstable with respect to two different instabilities: the large-scale dynamo instability
and NEMPI. In general, we expect these instabilities to couple and therefore make the
calculation of growth rate much more challenging.

3.4.2. Two-layer stratified model
Our previous models used either vertical field or perfect conductor condition at the

top boundary for the magnetic field, when we either impose a vertical or horizontal
magnetic field, respectively. These constrain the dynamics of NEMPI. One way to avoid
this problem and to reproduce solar-like conditions is to include a non-turbulent region
on top of turbulent layer. We call this layer a coronal envelope as it mimic a idealized
corona on top of the convection zone of the Sun. Because of the coronal envelope the
magnetic field evolves and changes freely at the surface (boundary between turbulent and
non-turbulent layer). This approach have been used successfully for dynamo simulation of
forced turbulence (Warnecke & Brandenburg 2010; Warnecke et al. 2011) and turbulent
convection Warnecke et al. (2012, 2013a, 2016a). The first attempt to combine this two-
layer with the study of NEMPI can be found in Warnecke et al. (2013b, 2016b).
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Figure 4. Structure formation in a two-layer model. We show the z component of the magnetic
field at the surface, normalized by the surface equipartition field strength Beq (left), and in the
zy plane, averaged over the x direction and normalized by the imposed field B0 (right). The
magnetic field lines are plotted in blue. Resolution is 1922 × 384 grid points.

Now the initially uniform y component of magnetic field is able to change orientation
at the surface, resulting in the spontaneous formation of bipolar regions, which form,
evolve and disappear at the surface. We study the effects of slow rotation in a two-
layer stratified model, using different resolutions, rotation rates and colatitudes. Figure 4
shows the formation of such bipolar regions in the case of slow rotation at the surface
(left panel), and a vertical average (right panel) at the time of the maximum. Now,
with the corona envelope, the instability is able to change the orientation of the initial
homogeneous y directed imposed field, generating a field in the vertical direction that
concentrates in the form of bipolar regions.

A good proxy to understand how the instability operates is the evolution of the mag-
netic energy spectrum shown in Figure 5. Initially, the magnetic energy is concentrated
at the forcing scale kf/k1 = 30. When the bipolar region starts forming, the energy is
transferred to a larger scale, with a maximum at k = 2, when we see the bipolar struc-
ture appear at the surface. The instability is then suppressed, and the structures decay,
transferring back the energy to smaller scales in the system.

As in previous results, we also see the suppression of the instability as we increase the
Coriolis number, but now the presence of the corona layer helps the instability survive
even at higher rotation rates.

4. Local helioseismology
Helioseismology is the only technique that allows us to study the solar interior and

infer its inner structure and flows. Furthermore, local helioseismology allows the study of
small patches of the Sun, opening the possibility to compute flows and magnetic fields.
Local helioseismology make use of different methods, including ring-diagram analysis,
time-distance helioseismology, helioseismic holography, and the Fourier-Hankel spectral
method. For a full review on local helioseismology, see Gizon & Birch (2005). However,
the physical interpretation of these techniques is problematic in the presence of strong
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Figure 5. Power spectra of the z component of the magnetic field, Ez
M (normalized by the

equipartition field strength at the surface Beq0 ), over different scales of the system (k⊥Hρ ) and
time evolution of the energy at a wavenumber k⊥ = 2. Same simulation as in Figure 4

.

magnetic fields. The variation and suppression of acoustic power in sunspots causes
anisotropies in the properties of the wave propagation, and therefore uncertainties in
the subsurface flows. Although time-distance helioseismology and ring-diagram analysis
produce qualitatively similar results (Kosovichev et al. 2011), and although some uncer-
tainties can be addressed using different algorithms and approximations, the effects of
magnetized subsurface turbulence in the methods is still not well accounted for, so the
separation of magnetic and thermal effects remains open (Kosovichev 2012). There, most
of the approximations are invalid and we still lack a reliable technique proven to repro-
duce the impact of magnetic fields on the internal traveling waves. Different studies of
local helioseismology measure the flows around and beneath sunspots, but their results
are contradictory (Jensen et al. 2001; Komm et al. 2008; Zharkov & Thompson 2008;
Zhao et al. 2010). Studies combining photospheric measurements of the observed mag-
netic field vectors and subphotospheric flows derived from time-distance helioseismology
yield similar velocity patters: inward flows in the sunspot umbra, and outward flows in
the surrounding areas. There are also some differences: the flux emergence-related surface
flows, like the separate motion of leading and following polarity, the fast rotation, or the
apparent shear, do not have their counterpart in the subphotospheric layer. Other studies
try to find subsurface signatures of the emergence of sunspots before their appearance,
for example Kosovichev et al. (2016) detected signatures of flux emergence at a depth of
62–75 Mm, 12 hours before the first bipolar magnetic structures were seen in the pho-
tosphere. Using the same active region, however, different analysis techniques still give
different results (Ilonidis et al. 2011; Braun 2012). Moreover, the attempt to reproduce
simulated MHD data from time-distance helioseismology demonstrates the difficulty to
recover horizontal flows near active regions, and even the inability to recover vertical
flows at any part of the simulation (DeGrave et al. 2014).
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Another possible approach in trying to study active regions and their emergence char-
acteristics is the analysis of the region just before the emergence of the strong magnetic
field, and the statistical analysis of several such emergences. Leka et al. (2013) compiled
a list of pre-emerging active regions and analyzed them using helioseismic holography
(Birch et al. 2013; Barnes et al. 2014). They selected around 100 active regions using
GONG and SOHO/MDI, and computed averages and statistical emergence properties,
such as flows. Statistically, they could not find large flows of more than 15m s−1 in the
top 20 Mm below the photosphere on the day prior to the visible emergence of the active
region, but could find some signatures of a downflow right before the emergence; see also
the recent studies by Birch et al. (2016) and Schunker et al. (2016).

An independent approach is to measure strengthening of the f -mode prior to active
region formation (Singh et al. 2014). It turned out that isolated active regions show a
strengthening some 1–2 days prior to magnetic flux emergence (Singh et al. 2016). Such
a slow build-up of subsurface magnetic flux is incompatible with a buoyant rise and
suggestive of an in situ process such as NEMPI.

Yet another idea is to infer the flows in sunspots and active regions by studying their
surroundings. This is possible with the Fourier-Hankel spectral method, which allows the
separation of waves into inward and outward traveling ones, while using only the region
around sunspots. This method was first proposed by Braun et al. (1987), and applied to
different active regions, pores and the quiet Sun by a number of authors (Braun et al.
1988, 1992; Bogdan et al. 1993; Braun 1995; Crouch et al. 2005; Couvidat 2013), and also
to the computation of the meridional circulation (Braun & Fan 1998; Doerr et al. 2010).
These authors agree on the absorption of the incoming waves in the sunspots regions,
which can reach up to 50% of the p−modes power and depends on the depth, frequency,
and ridge mode.

We aim to combine these two approaches, by studying pre-emergence active regions
using Hankel analysis. Although a comparison between regions with sunspots, pores and
quiet-Sun has been made in these different studies, no comprehensive study comprises the
pre-emergence phase of an active region, and there is a lack of results for high spherical
degree l. Therefore, we hope to complete the picture of Hankel analysis on sunspots by
selecting a group of active region and studying their emergence properties. This will be
subject of a future publication.

5. Conclusions
Even though sunspots and active regions are of vital importance in solar physics and

play an important role in many solar phenomena such as for example surface magnetic
fields, coronal mass ejections, and solar wind, we lack a complete theoretical understand-
ing to explain their formation and evolution. Does the deeply-rooted flux tube model
provide a complete description of sunspot formation? Can NEMPI give a possible ex-
planation for a shallow formation process? Do we have to develop a mixed model where
flux tubes emerge and concentrate via NEMPI? We still lack the means to figure out
if NEMPI is working in MHD simulations like those of Rempel & Cheung (2014). Or
do other mechanisms play an important role or even explain totally the formation of
active regions? There are a number of MHD simulations where magnetic structures of
different sizes form spontaneously, like the thermo-hydromagnetic instability proposed by
Kitchatinov & Mazur (2000), or the small-scale vortices at intersections of the intergran-
ular lanes can develop strong vortical downdrafts leading to a spontaneous magnetic flux
concentration (Kitiashvili et al. 2010), or the pore formation in the Stein & Nordlund
(2012a) simulations.
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NEMPI may well be responsible for concentrating magnetic fields in the shallow layers
of a solar-type simulation. In view of application to the Sun as a next step, it will be
important to consider more realistic modeling and include the effects of turbulent convec-
tion. It was demonstrated that the relevant NEMPI parameter qp is indeed much larger
than unity Kemel et al. (2012a), favoring the possibility of NEMPI. Turbulent convec-
tion simulations with an imposed magnetic field (Käpylä et al. 2016) yielded structures
that are strongly reminiscent of those found in realistic solar surface simulations in the
presence of full radiative transport (Stein & Nordlund 2012b). However, in many existing
convection simulations, (see e.g. Kitiashvili et al. 2010; Käpylä et al. 2016; Masada &
Sano 2016), unlike the case of forced turbulence, the scale separation between the integral
scale of the turbulence and the size of the domain is not large enough for the excitation of
NEMPI and the formation of sharp magnetic structures. Therefore, the direct detection
of negative effective magnetic pressure in turbulent convection with dynamo-generated
magnetic fields is a difficult problem. Thus, additional work is needed in order to obtain
a complete picture.

Apart from theoretical developments, new and longer high resolution observations are
needed to answer some of these questions. In particular, it is crucial to have subsurface
maps of downflows/upflows before and during the emergence of the sunspots, or a better
description of their structure deeper down, and an improved treatment of the waves
around strong magnetic fields.
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