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Abstract

Previous genetic association studies have failed to identify loci robustly associated with sepsis, and there have been no published genetic
association studies or polygenic risk score analyses of patients with septic shock, despite evidence suggesting genetic factors may be involved.
We systematically collected genotype and clinical outcome data in the context of a randomized controlled trial from patients with septic
shock to enrich the presence of disease-associated genetic variants. We performed genomewide association studies of susceptibility and
mortality in septic shock using 493 patients with septic shock and 2442 population controls, and polygenic risk score analysis to assess genetic
overlap between septic shock risk/mortality with clinically relevant traits. One variant, rs9489328, located in AL589740.1 noncoding RNA,
was significantly associated with septic shock (p= 1.05 × 10–10); however, it is likely a false-positive. We were unable to replicate variants
previously reported to be associated (p< 1.00 × 10–6 in previous scans) with susceptibility to and mortality from sepsis. Polygenic risk scores
for hematocrit and granulocyte count were negatively associated with 28-day mortality (p= 3.04 × 10–3; p= 2.29 × 10–3), and scores for
C-reactive protein levels were positively associated with susceptibility to septic shock (p= 1.44 × 10–3). Results suggest that common variants
of large effect do not influence septic shock susceptibility, mortality and resolution; however, genetic predispositions to clinically relevant traits
are significantly associated with increased susceptibility and mortality in septic individuals.
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Background

Sepsis is an abnormal host response to infection, resulting in
organ and tissue damage (Singer et al., 2016). Septic shock is the
most severe form of sepsis, with a significantly higher mortality
rate due to profound circulatory and metabolic abnormalities

(Singer et al., 2016). The annual worldwide incidence of sepsis
in adults has been estimated at 31.5 million cases per year, of which
5.3 million instances are fatal (Fleischmann et al., 2016). Sepsis
poses a high financial burden on the economy, with US in-hospital
costs for each episode averaging US$22,100 (Angus et al., 2001).

Individuals vary widely in terms of their susceptibility to sepsis
and their prognosis, and this heterogeneity is thought to be, in
part, due to host genetic factors (Sørensen et al., 1988). A genetic
basis for susceptibility to sepsis has long been suspected because
epidemiological studies found that adopted individuals had mark-
edly increased risk of mortality from infection when a biological
parent had died prematurely from infection, but no corresponding
increase risk in mortality when an adoptive parent had died from
infection (Sørensen et al., 1988). However, previous candidate gene
and genomewide association studies (GWAS) of sepsis have had
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limited success in identifying genetic loci robustly associated
with the disease and outcomes (Rautanen et al., 2015; Scherag
et al., 2016; Srinivasan et al., 2017). This is possibly due to lack
of statistical power caused by a combination of small sample
sizes and heterogeneity of both the patient population and the
phenotype (Rautanen et al., 2015; Scherag et al., 2016;
Srinivasan et al., 2017).

We designed the ADRENAL Genome-Wide Association
Study (ADRENAL-GWAS) to investigate the genetic influences
on susceptibility to, resolution of and mortality from septic shock.
We performed a GWAS on a cohort of critically ill patients who
were enrolled into a randomized controlled trial into the efficacy
of corticosteroid therapy in septic shock (ADRENAL; Venkatesh
et al., 2018). We sampled individuals suffering from septic shock,
as opposed to sepsis, on the rationale that focusing on extreme
cases will increase statistical power to detect genetic associations
as has been done successfully in the case of many other diseases
and complex traits (Barnett et al., 2013).

To improve our understanding of the genetic basis of sepsis,
we performed additional analyses with increased power to comple-
ment the knowledge gained from the GWAS. These included gene
and pathway-based analysis and evaluation of polygenic risk
scores. To our knowledge, these approaches have not been used
in the evaluation of sepsis or septic shock.

Methods

Study Participants

The ADRENAL-GWAS is a substudy within the main ADRENAL
trial (ClinicalTrials.gov number, NCT01448109) designed to
investigate the genetics and genomics of septic shock. All
ADRENAL participants who were admitted to 27 participating
hospital sites in three countries (Australia, New Zealand and the
UK) were eligible for the ADRENAL-GWAS substudy. The inclu-
sion/exclusion criteria were similar to the original ADRENAL
study and are summarized in Supplementary Methods S1
(Venkatesh et al., 2018). Blood samples from ADRENAL-
GWAS participants (N= 578) were collected at the time of
randomization, prior to administration of corticosteroids/placebo.
Blood was collected into 2× 2.5 ml EDTA, 2× 2.5 ml serum blood
collection vacuettes (Interpath; Cat. No. 455071), and 1 × 2.5 ml
PAXgene RNA Vacutainer (Becton Dickinson; Cat. No. 762165).

An unpublished genotyped cohort consisting of 3624 individ-
uals collected at the QIMR Berghofer Medical Research Institute
(QIMRB) was used as a control group in the case–control
GWAS analyses. These unselected controls were drawn from the
controls (i.e., ‘healthy’ individuals) used in studies of reproductive
health or melanoma risk factors. DNA was extracted from either
blood or saliva samples. Notably, the controls, while drawn
from an unselected cohort, were deliberately chosen as they were
genotyped using the same array, and had similar underlying
ancestries to the ADRENAL participants.

Genotyping and Quality Control

ADRENAL-GWAS genomic DNA extractions were performed on
200 μl of whole blood using the QIAsymphony SP instrument
according to the manufacturer’s protocol (QIAsymphony DSP
DNA Mini Kit, Cat. No. 937236). Genomic DNA was eluted in
100 μl of Buffer ATE and quantified using the Trinean
Dropsense 96. Samples were genotyped on the Illumina Infinium
Global Screening Array-24þ v1.0 (20005136). The arrays were

scanned on an Illumina iScan system, and the raw fluorescence
intensity data were normalized and clustered for each sample using
Illumina Genome Studio (v 2.0.3). Genotypes were called using the
standard Illumina GSA-24v1-0_A6 Cluster File.

In the QIMRB cohort, DNA was extracted from either blood
or saliva samples, and genotyped using the Illumina Infinium
Global Screening Array-24þ v1.0. Genotype data were screened
for genotyping quality (GenCall< 0.7), single-nucleotide
polymorphism (SNP) and individual call rates (<0.95), Hardy–
Weinberg Equilibrium (HWE) failure (p< 10–6), and minor allele
frequency (MAF< 0.01). As these samples were genotyped in the
context of a larger project, the data were integrated with the larger
QIMRB genotype project and the data were checked for pedigree,
sex and Mendelian errors, and for non-European ancestry.

The PLINK v1.90b3.31 software package was used to carry out a
number of standard quality control (QC) procedures (Chang et al.,
2015). A detailed breakdown of QC procedures can be found in the
Supplementary Methods S3.

Outcomes

The primary outcome was death from any cause at 90 days, and
the secondary outcomes were death at 28 days, shock resolution
and susceptibility to septic shock. For diagnostic criteria and def-
initions of these outcomes, see Supplementary Methods S1 and S2.

Statistical Power Analyses

We investigated power to detect variants at genomewide levels of
significance (α= 5 × 10–8) and also power to replicate variants
reported in previous GWAS of susceptibility to sepsis and
28-day mortality (α = .05) using the Genetic Association Study
Power Calculator (Johnson & Abecasis, 2017). The relationship
between heterozygous relative risk (RR; a measure of genetic effect
size) and statistical power is presented in the Supplementary
Methods S4. We assumed a 1% lifetime risk of septic shock, a
multiplicative model of disease risk (on the odds scale), that the
risk locus had been genotyped (r2= 1), and we matched the
GWAS sample sizes (see Supplementary Methods S4).

The susceptibility to septic shock GWAS had the most statisti-
cal power of all the GWAS, where for genomewide association
analyses (α= 5 × 10–8), we expect 80% power to detect variants
with a heterozygous RR of 1.55 and 2.52 for a risk allele frequency
of .50 and .05, respectively. For replication of previous findings
(α= .05), there is 80% power to detect variants with a heterozygous
RR of 1.22 and 1254 for a risk allele frequency of .50 and .05,
respectively. Power calculations for the other analyses are pre-
sented in Supplementary Figure S3.

Genomewide Association Analyses

We performed logistic regression analysis assuming an underlying
additive genetic model (on the log scale) as implemented in PLINK
across the genome on septic shock patients (ADRENAL-GWAS)
and healthy controls (QIMRB). The first five principal components
(PCs) from a PC analysis of the cleaned merged GWAS dataset
were used as covariates. Furthermore, we performed logistic
regression analysis, on ADRENAL-GWAS participants only
(no controls), assuming an underlying additive genetic model
using PLINK for 28-day mortality, 90-day mortality, and shock
resolution. Covariates included sex and the first five PCs.
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Look Up of Previously Reported Variants

Suggestive associations (p≤ 1 × 10–5) reported in analyses of 28-day
survival/mortality in sepsis (Rautanen et al. survivors= 1194,
nonsurvivors= 359; Scherag et al. survivors= 2803, nonsurvivors
= 667) were queried in our 28-day mortality GWAS summary
statistics (Rautanen et al., 2015; Scherag et al., 2016). Likewise,
SNPs that reached suggestive significance in a susceptibility
GWAS of premature infants (Srinivasan et al. cases= 351, controls
= 406) and two GWAS from the UK Biobank (UKBB) were also
queried in our susceptibility to septic shock GWAS summary
statistics (Sudlow et al., 2015; Srinivasan et al., 2017; Neale, 2018).
The UKBB analyses were originally performed on cohorts defined
as having ‘other septicaemia’ (Phecode_A41, cases= 1096, controls
= 360,098) and ‘septicaemia/sepsis’ (Phecode_20002_1657, cases
= 238, controls= 360,956).

Gene- and Pathway-Based Analyses

A number of gene-/pathway-based analyses were performed on the
GWAS data for each outcome to identify genes or pathways that
were enriched through combining statistical information across
many markers within a gene, or within multiple genes in a
pathway, and testing for association with the outcome. The
Complex-Traits Genetics Virtual Lab (CTG-VL) implemented
version of FastBAT was used to perform gene-based association
analyses on the summary-level results (Bakshi et al., 2016;
Cuéllar-Partida et al., 2019). Data-Driven Expression-Prioritized
Integration for Complex Traits (DEPICT v.1 beta) was used to
identify enriched genes, gene-sets/pathways and cell/tissue types
from independent lead variants (r2 = .2, MAF > 0.05, clump-kb
1000), which reached suggestive significance (p≤ 1 × 10–5; Pers
et al., 2015).

Polygenic Risk Score Analyses

We downloaded GWAS summary statistics for phenotypes with
suspected shared genetic etiology with sepsis, or requested the data
from the authors (Sudlow et al., 2015; Zheng et al., 2017; Neale,
2018). These included large-scale GWAS meta-analyses for
hematocrit, diastolic blood pressure (DBP), granulocyte count,
white blood cell count (WBC), coronary artery disease, type-2 dia-
betes (T2D), C-reactive protein levels (CRP), ‘septicaemia/sepsis’
(Phecode_20002_1657) and ‘other septicaemia’ (Phecode_A41)
(International Consortium for Blood Pressure Genome-Wide
Association Studies et al., 2011; Sudlow et al., 2015; Astle et al.,
2016; Scott et al., 2017; Ligthart et al., 2018). Polygenic risk scores
(PRS) for height were also constructed as a negative control (Yengo
et al., 2018). Independent SNP signals from each set of summary
statistics were identified using PLINK (r2 = .1, clump-kb = 1000).

Genomewide PRS for each of the above diseases/traits were
generated for the 493 septic shock cases as well as for the
2442 control individuals that passed QC. Individuals were scored
on the number of risk alleles they carried for each variant (at the
thresholds p< 5 × 108, 5 × 10–6, .01, .5, 1), weighted by regression
coefficients from the respective GWAS (Evans et al., 2013). To
investigate relationships between septic shock and the various
traits, 28-day mortality was regressed on the PRS generated for
each septic shock individual using logistic regression, with age,
sex and the first five PCs from the GWAS as covariates. Disease
status (logistic regression) was regressed against the scores
generated for the case/control cohort, with the first five PCs used
as covariates.

Results

From May 2014 through April 2017, 578 patients were enrolled
into the GWAS substudy at 27 hospital sites. The intensive care
units were in Australia (18 sites), New Zealand (4) and the UK (5).
Of the 578 patients enrolled, 300 were assigned to receive
hydrocortisone and 278 to receive placebo. A total of 493 septic
shock cases passed QC, and of the 3624 QIMRB controls,
2442 individuals passed (Supplementary Methods S3). All individ-
uals passing QC were of European descent (Supplementary
Figure S1). A breakdown of the outcomes, sample sizes and char-
acteristics in ADRENAL-GWAS cases and QIMRB controls can be
found in Table 1. Treatment had no significant effect on 90-day
mortality, 28-day mortality or shock resolution (p =.35, .62, .09)
and therefore had no confounding effect on the GWAS. GWAS
were performed for all outcomes; however, we focused the latter
analyses on 28-day mortality and susceptibility to septic shock
to replicate past GWAS of sepsis, to be consistent, and reduce
the burden of multiple testing correction.

Genomewide Association Studies

GWAS were performed for susceptibility to shock (493 cases,
2442 controls), 28-day mortality (90 nonsurvivors, 403 survivors),
90-day mortality (112 nonsurvivors, 381 survivors) and shock
resolution (34 unresolved, 459 resolved). The Manhattan plots
for each GWAS are presented in Figure 1. The T-allele of the
genotyped SNP rs9489328 was the only genetic variant to be
significantly associated with any of the outcomes. This SNP sits
within a noncoding RNA gene AL589740.1 (Supplementary
Figure S4), and was associated with decreased risk of septic shock
(p= 1.05 × 10–10; Table 2). Three genetic variants, rs11167801,
rs7698838, and rs17128291, were associated with shock resolution
at suggestive levels of significance (p< 1 × 10−6). Quantile–
quantile plots (Supplementary Figure S5) and genomic inflation
factors (Supplementary Table S2) suggest that the GWAS results
were not systematically inflated.

Replication Studies

This study failed to replicate (p< .05) any SNPs previously
associated (p≤ 1 × 10–5) with 28-day sepsis mortality/survival
and susceptibility to sepsis (Supplementary Tables S3 and S4).
SNPs that reached suggestive significance (p≤ 1 × 10–5) from
the UKBB sepsis-related phenotypes also failed to replicate in
the present septic shock GWAS (Supplementary Table S4;
Rautanen et al., 2015; Scherag et al., 2016; Srinivasan et al.,
2017; Neale, 2018).

Gene- and Pathway-Based Analyses

The top five gene associations from FastBAT analyses for each
outcome are summarized in Table 3. No genes reached the
significance threshold (p≤ 2.5 × 10–6). DEPICT did not identify
any genes, pathways, cells or tissue types to be significantly
enriched across all the GWAS at false discovery rate<5%; however,
the top five genes, pathways and tissues can be found in
Supplementary Tables S5, S6 and S7.

Polygenic Risk Score Analysis

PRS derived from GWAS summary statistics for 10 different
traits were calculated in the septic shock 28-day survivors
and nonsurvivors, as well as in all septic shock patients and
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controls (Table 4). The p-value threshold for statistical significance
after Bonferroni correction for multiple testing is 5.0 × 10–3

(10 phenotypes). There were three significantly associated PRS
in the expected direction. PRS for higher hematocrit and granulo-
cyte count were negatively associated with 28-day mortality
(p= 3.04 × 10–3 and 2.29 × 10–3). PRS for higher CRP levels
were positively associated with susceptibility to septic shock
(p= 1.44 × 10–3). For all significant phenotypes, PRS constructed
using SNPs that reached the less conservative p-value thresholds
were more predictive than PRS constructed using only SNPs that
met more conservative thresholds. There were no significant
associations with the negative control height.

Discussion

The current study presents, to our knowledge, the first report
of genetic association analyses and the use of a polygenic risk
score analytical approach in an exclusive cohort of patients
with septic shock. The robust clinical outcome data were collected
systematically in the context of a randomized controlled trial, and
the analyses focused on patient-centered outcomes. Comparable
genetic studies consist only of small cohorts of patients with
sepsis (Rautanen et al., 2015; Scherag et al., 2016; Srinivasan
et al., 2017). We attempted to increase the power of the current
study by focusing our efforts on the most severe form of sepsis,

Table 1. Characteristics of ADRENAL-GWAS patients prior to randomization and administration of corticosteroids, and QIMRB controls

Outcome Total (n)

Septic shocka 493 cases 2442 controls 2935

90-day mortality 112 nonsurvivors 381 survivors 493

28-day mortality 90 nonsurvivors 403 survivors 493

Shock resolution 459 resolved 34 unresolved 493

Dichotomous characteristics
Overall
ratio (%)

90-day nonsurvivors
ratio (%)

90-day survivors
ratio (%) p

Treatment (steroid/placebo) 265/493 (53.75%) 65/112 (58.04%) 200/381 (52.49%) 0.35

Readmission (yes/no) 108/492b (21.95%) 29/112 (25.89%) 79/380 (20.79%) 0.27

Sex (female/male) 183/493 (37.11%) 45/112 (40.18%) 138/381 (36.22%) 0.52

Use of renal replacement therapy (yes/no) 141/491 (28.72%) 55/111 (49.55%) 86/380 (22.63%) 6.85 × 10–8

Bacteremia (yes/no) 75/490 (15.31%) 10/111 (9.01%) 65/379 (17.15%) 0.05

Quantitative characteristics
Overall

mean (%)
90-day nonsurvivors

mean (SD)
90-day survivors

mean (SD) p

Age (years) 63.80 (14.72) 69.67 (12.85) 62.08 (14.78) 3.18 × 10–7

APACHE (II) score 23.28 (6.97) 26.30 (7.37) 22.39 (6.59) 1.26 × 10–6

Weight (kg) 89.72 (29.04) 87.93 (31.24) 90.25 (28.33) 0.48

Time to resolution of shock (days) 4.55 (5.12) 5.54 (5.66) 3.88 (4.89) 5.52 × 10–3

Base temperature (°C) 37.31 (1.02) 36.96 (1.04) 37.41 (0.99) 8.98 × 10–5

Base heart rate (bpm) 91.26 (20.04) 92.54 (19.37) 92.18 (20.24) 0.87

Base central venous pressure (mmHg) 12.20 (5.72) 13.43 (6.67) 11.84 (5.36) 0.06

Lowest mean arterial pressure (mmHg) 58.13 (7.87) 57.88 (9.10) 58.21 (7.47) 0.72

Lowest Pa2:F2 165.23 (86.11) 155.03 (82.37) 168.20 (86.95) 0.15

Highest arterial lactate (mg/dl) 3.39 (2.66) 4.55 (3.07) 3.06 (2.43) 6.21 × 10–6

Highest bilirubin (mg/dl) 31.49 (38.85) 45.01 (59.59) 27.51 (28.95) 3.48 × 10–3

Highest creatinine (mg/dl) 174.05 (137.94) 191.77 (140.68) 168.83 (136.68) 0.13

Lowest hemoglobin (g/l) 104.44 (22.84) 101.91 (23.75) 105.18 (22.52) 0.20

Highest white cells (cells × 109/l) 17.08 (10.69) 16.75 (9.58) 17.17 (10.99) 0.69

Lowest platelet count (× 109/l) 211.88 (121.20) 187.121 (118.98) 219.14 (120.89) 0.01

Highest international normalized ratio 1.65 (0.83) 1.93 (0.97) 1.56 (0.76) 5.95 × 10–4

Note: Reported is the ratio and percentage for dichotomous characteristics, and themean and standard deviation (SD) for quantitative traits. Scores on the Acute Physiology and Chronic Health
Evaluation (APACHE) II assess the severity of disease, ranging between 0 (low risk for death) and 71 (high risk). A Student’s t-test was used to test for differences in the mean quantitative traits
between 90-day survivors and nonsurvivors. A chi-squared test of independence was used to test for difference in dichotomous traits between 90-day survivors and nonsurvivors.
aThe susceptibility to septic shock analyses were the only analyses containing QIMRB controls.
bThere was some missing data. QIMRB, QIMR Berghofer Institute of Medical Research.
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Fig. 1. Manhattan plots for (A) susceptibility to septic shock, (B) 28-day mortality, (C) 90-day mortality and (D) resolution of shock genomewide association studies. Plots were generated using the Complex-Traits Genetics
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Table 3. FastBAT results for the outcomes (A) susceptibility to septic shock, (B) 28-day mortality, (C) 90-day mortality and (D) shock resolution

Gene
# of
SNPs p Top SNP Top SNP p Gene ontology annotations

Genomewide significant GWAS Catalog
associations

A IPO5 154 5.06 × 10–5 rs34511977 2.76 × 10–6 Protein transporter activity –

KLB 142 1.90 × 10–4 rs7685429 5.60 × 10–5 Hydrolase activity, hydrolyzing O-glycosyl
compounds, fibroblast growth factor binding

Alcohol consumption, blood urea nitrogen
levels, pulse pressure

IPO8 73 2.91 × 10–4 rs10771759 2.39 × 10–5 GTPase binding, protein import into nucleus Vital capacity, height, initial pursuit
acceleration in psychotic disorders

C9orf106 128 2.96 × 10–4 rs117016656 1.80 × 10–4 – –

CMTM7 219 3.12 × 10–4 rs6550132 4.53 × 10–4 Cytokine activity, B-1a B cell differentiation,
chemotaxis, signal transduction

IgM levels, adolescent idiopathic scoliosis

B RAB20 240 2.18 × 10–4 rs368584 2.55 × 10–7 GTPase activity, endosome Acute myeloid leukemia, hair color

MIR1909 107 3.98 × 10–4 rs35202074 6.16 × 10–5 – –

KTN1-AS1 68 5.26 × 10–4 rs10145555 8.78 × 10–5 – Putamen volume

COL4A2-AS1 228 6.15 × 10–4 rs368584 2.55 × 10–7 – –

NINJ2 339 7.15 × 10–4 rs35557779 6.21 × 10–5 Integral component of plasma membrane,
neuron cell–cell adhesion, tissue
regeneration, nervous system development

Platelet distribution width, platelet count,
plateletcrit, lymphocyte counts, granulocyte
percentage of myeloid white cells, stroke,
monocyte count, monocyte percentage of
white cells, white blood cell count

C BRSK1 161 7.64 × 10–5 rs10403600 6.49 × 10–5 Magnesium ion binding, protein kinase
activity, protein serine/threonine kinase
activity

Age at menopause, age at menarche

TMEM150B 156 2.34 × 10–4 rs10403600 6.49 × 10–5 Autophagy, regulation of autophagy Age at menopause, unipolar depression

NMUR1 79 3.29 × 10–4 rs72989550 5.08 × 10–5 Neuromedin U receptor activity,
G protein-coupled receptor activity

Height

HSPBP1 152 3.44 × 10–4 rs10403600 6.49 × 10–5 Adenyl-nucleotide exchange factor activity,
enzyme inhibitor activity, protein binding,
ubiquitin protein ligase binding

–

NINJ2 340 4.84 × 10–4 rs10849390 9.75 × 10–5 Integral component of plasma membrane,
neuron cell–cell adhesion, tissue
regeneration, nervous system development

Platelet distribution width, platelet count,
plateletcrit, lymphocyte counts, granulocyte
percentage of myeloid white cells, stroke,
monocyte count, monocyte percentage of
white cells, white blood cell count

D SS18 71 3.63 × 10–5 rs765529 3.32 × 10–6 Transcription coactivator activity, protein
binding, nuclear receptor transcription
coactivator activity

Red blood cell distribution width, mean
corpuscular hemoglobin

PSMA8 84 3.71 × 10–5 rs9304490 4.20 × 10–6 Antigen processing and presentation of
exogenous peptide antigen via HLA, MAPK
cascade, protein polyubiquitiation, stimulatory
C-type lectin receptor signalling pathway

–

SLC24A4 383 2.79 × 10–4 rs17128291 7.48 × 10–7 Calcium channel activity, symporter activity,
antiporter activity

Hair color, eye color, suntan, Alzheimer’s
disease

MIR4282 58 5.06 × 10–4 rs12664923 3.33 × 10–5 – –

NANS 82 7.37 × 10–4 rs4412474 3.04 × 10–4 CMP-N-acetylneuraminate biosynthetic
process, carbohydrate biosynthetic process

–

Note: The top five genes associated with the primary outcomes are tabulated, along with the number of single-nucleotide polymorphisms (SNPs) within the gene region, the gene-based test p-value,
themost significant SNPwithin the region, and the respective p-value from the genomewide association study (GWAS), interesting gene ontology annotations, and previous associations listedwithin
the GWAS Catalog (MacArthur et al., 2017). The FastBAT analyses were carried out using the Complex-Traits Genetics Virtual Lab (Bakshi et al., 2016; Cuéllar-Partida et al., 2019).

Table 2. Lead SNPs with p-value< 1 × 10−6 from the GWAS

GWAS phenotype SNP
Chromosome: base
pair position Variant type MAF Effect/noneffect allele Odds ratio (SE) p

Septic shock rs9489328 6:98104575 Intronic AL589740.1 0.10 T/G 0.I (0.15) a1.05 × 10–10

Shock resolution rs11167801 5:142470334 Intronic ARHGAP26 0.09 T/C 0.13 (0.39) 8.77 × 10–8

28-day mortality rs368584 13:111145073 Intronic COL4A2 0.39 G/C 2.56 (0.18) 2.55 × 10–7

Shock resolution rs7698838 4:58088682 Intergenic 0.07 C/T 0.15 (0.38) 6.11 × 10–7

Shock resolution rs17128291 14:92882826 Intronic SLC24A4 0.18 G/A 0.22 (0.30) 7.48 × 10–7

Note: Lead single-nucleotide polymorphisms (SNPs) withminor allele frequency (MAF)< 5%were removed. The MAF, odds ratio and standard error (SE) correspond to theminor allele. The hg38
human genome build was used.
aGenomewide significance.
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Table 4. PRS analysis results

GWAS phenotype p threshold N SNPs

Septic shock 28-day mortality

Direction p Direction p

C-reactive protein levels <1 267725 þ 2.23 × 10–3 – 2.78 × 10–1

<0.5 202435 þ 1.44 × 10–3 – 3.02 × 10–1

<0.01 13767 þ 2.22 × 10–2 þ 8.53 × 10–1

<5.00 × 10–6 330 þ 3.90 × 10–1 þ 1.48 × 10–1

<5.00 × 10–8 167 – 9.79 × 10–1 þ 1.16 × 10–1

Granulocyte count <1 334,324 þ 5.89 × 10–1 – 2.29 × 10–3

<0.5 244,497 þ 5.29 × 10–1 – 2.61 × 10–3

<0.01 15157 þ 8.08 × 10–1 – 1.07 × 10–1

<5.00 × 10–6 698 þ 9.16 × 10–1 – 2.31 × 10–1

<5.00 × 10–8 379 – 8.11 × 10–1 – 4.40 × 10–1

Diastolic blood pressure automated reading <1 320,701 – 7.22 × 10–2 – 7.97 × 10–1

<0.5 242,169 – 3.70 × 10–2 – 6.33 × 10–1

<0.01 21,859 – 2.69 × 10–2 þ 2.84 × 10–2

<5.00 × 10–6 806 – 2.41 × 10–2 – 9.84 × 10–1

<5.00 × 10–8 308 – 3.51 × 10–1 – 7.48 × 10–1

Hematocrit <1 334,250 – 9.12 × 10–1 – 3.04 × 10–3

<0.5 244,826 þ 9.54 × 10–1 – 4.27 × 10–3

<0.01 15,278 þ 8.05 × 10–1 – 1.28 × 10–1

<5.00 × 10–6 621 – 5.52 × 10–1 – 3.80 × 10–1

<5.00 × 10–8 306 – 9.34 × 10–1 – 3.57 × 10–1

White blood cell count <1 333,971 þ 2.76 × 10–1 – 4.20 × 10–1

<0.5 244,165 þ 2.24 × 10–1 – 4.05 × 10–1

<0.01 15,586 þ 9.86 × 10–2 – 4.91 × 10–1

<5.00 × 10–6 808 þ 6.68 × 10–1 þ 7.14 × 10–1

<5.00 × 10–8 453 þ 7.57 × 10–1 þ 8.33 × 10–1

Coronary artery disease <1 122,441 – 1.85 × 10–1 – 1.79 × 10–1

<0.5 93,427 – 1.55 × 10–1 – 2.27 × 10–1

<0.01 6784 – 3.54 × 10–1 – 3.63 × 10–1

<5.00 × 10–6 57 – 8.67 × 10–1 – 9.34 × 10–1

<5.00 × 10–8 20 – 9.69 × 10–1 – 2.28 × 10–1

Type 2 diabetes <1 341,453 – 9.66 × 10–1 – 9.83 × 10–1

<0.5 252,082 – 8.15 × 10–1 þ 9.33 × 10–1

<0.01 19,284 – 7.26 × 10–1 þ 6.10 × 10–1

<5.00 × 10–6 660 – 2.27 × 10–1 þ 4.48 × 10–1

<5.00 × 10–8 315 – 1.80 × 10–1 þ 7.77 × 10–1

Septicaemia/sepsis
(UK Biobank)

<1 321,265 þ 1.94 × 10–1 þ 2.84 × 10–1

<0.5 235,509 þ 1.71 × 10–1 þ 2.38 × 10–1

<0.01 11,267 – 9.80 × 10–1 þ 1.01 × 10–1

<5.00 × 10–6 60 þ 2.02 × 10–1 þ 5.91 × 10–1

<5.00 × 10–8 5 þ 8.76 × 10–1 – 5.15 × 10–1

Other septicaemia
(UK Biobank)

<1 321,253 þ 6.90 × 10–1 þ 5.60 × 10–1

<0.5 235,757 þ 7.10 × 10–1 þ 5.79 × 10–1

<0.01 11,346 þ 2.89 × 10–2 þ 3.42 × 10–1

<5.00 × 10–6 19 – 6.72 × 10–1 – 8.10 × 10–1

<5.00 × 10–8 3 – 3.41 × 10–1 þ 5.41 × 10–1

(Continued)
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septic shock, which may involve alleles of larger effect. In addition,
we performed a suite of gene-based, pathway-based and polygenic
risk score analyses, which have greater statistical power than single
locus tests of association.

One SNP, rs9489328, was genomewide significantly associated
with susceptibility to septic shock. The rs9489328 SNP lies
physically within an uncharacterized noncoding RNA
(AL589740.1), with no known biological functions. This variant
has not been previously significantly associated with any traits.
The SNPs that are in linkage disequilibrium with it are not asso-
ciated with the phenotype (Supplementary Table S8), hence the
lack of ‘peak’ typical of true associations. Although rs9489328
passed all QC steps, it is possible that the association reflects a
false-positive and may be a genotyping artifact or a product of
batch effects and should be validated with methods such as mini-
sequencing or Taqman. A discussion of the four SNPs (rs368584,
rs11167801, rs7698838 and rs17128291), which reached suggestive
levels of significance, can be found in the Supplementary
Discussion S1. The results from the present GWAS have not iden-
tified common variants of large effect contributing to susceptibility
to, mortality from and resolution of septic shock.

Despite being adequately powered, we failed to replicate
previous SNP associations (which were notably rare variants; see
Supplementary Tables S3 and S4) with sepsis in this study. This
could be due to variability in the phenotype definitions; although
this may be unlikely considering the variants contributing to the
sepsis phenotype would likely be enriched in a cohort of septic
shock individuals. In addition, the previous studies used controls
who had been exposed to sepsis risk factors; while this is ideal, we
consider the reduction in power we experienced due to using
population controls to be minimal, given the low incidence of
sepsis in the population (and likely in our controls) — and not
the reason we were unable to replicate previous findings. Instead,
the genetic variants prioritized in previous sepsis GWAS may be
spurious associations arising from small cohort sizes.

Gene-based analyses failed to identify any genes significantly
associated with the tested phenotypes. However, the top results
for each analysis consisted of a number of cardiovascular and
immune-related genes. Variants within KLB, NINJ2 and SS18 have
been previously associated with cardiovascular-related phenotypes
(Astle et al., 2016; Giri et al., 2019; Ikram et al., 2009; Kanai et al.,
2018; Kichaev et al., 2019). Likewise,NINJ2 andCMTM7 have been
associated with immune phenotypes (Astle et al., 2016; Jonsson

et al., 2017). Given the previous associations of variants within
these genes with cardiovascular and immune disorders, and
observed increased risk of sepsis in individuals with chronic
medical conditions, a connection with the pathophysiology of
septic shock may be biologically plausible, and may provide
possible therapeutic targets given replication and functional
follow-up (Wang et al., 2012).

This study was the first to conduct PRS analyses in a cohort of
patients with septic shock, and the results indicate that correlation
between septic shock and a number of clinically relevant
phenotypes is not only observed at the phenotypic level, as seen
in observational studies, but also reflected at the genetic level.
FutureMendelian randomization analyses in larger genetic cohorts
may help ascertain whether the PRS associations reflect a genetic
overlap or a causal relationship (Davey Smith & Ebrahim, 2003).
This may overcome confounding if the assumptions are met, and
may provide valid targets for therapeutics.

The PRS analyses found increased CRP levels were predictive
of increased susceptibility to septic shock. CRP is an acute-phase
protein synthesized predominantly by liver cells in response to
inflammatory cytokines, mainly interleukin 6, and therefore levels
rise during inflammation (Ligthart et al., 2018). One interpretation
of a significant association between PRS for CRP and septic shock
is that increased CRP levels are causally related to an increased risk
of septic shock. However, we consider this explanation unlikely to
be true because PRS from the most strongly CRP-associated SNPs
(i.e., PRS consisting of only genomewide significant variants for
CRP) were not associated with septic shock, despite previous
research showing genomewide significant SNPs explain more
variance in CRP levels than PRS, including SNPs reaching less
stringent thresholds (Ligthart et al., 2018; Evans et al., 2013).
More likely, the result could reflect a genetic overlap with potential
underlying genetic inflammatory disorders that contribute to
increased circulating CRP levels, and also increased risk of
septic shock (Muller et al., 2005; Wang et al., 2012). For example,
individuals with a genetic predisposition to increased CRP levels
(likely actually reflecting underlying genetic inflammatory
disorders which increase CRP levels) may respond to a severe
infection with a more pronounced inflammatory response, result-
ing in progression into shock.

PRS for granulocyte count were negatively associated with
28-day mortality. The direction of the association suggests a
genetic predisposition to higher granulocyte count is associated

Table 4. (Continued )

GWAS phenotype p threshold N SNPs

Septic shock 28-day mortality

Direction p Direction p

Height <1 124,453 þ 7.07 × 10–2 þ 4.90 × 10–1

<0.5 102,079 – 7.14 × 10–2 þ 4.95 × 10–1

<0.01 29,680 – 2.51 × 10–1 þ 6.43 × 10–1

<5.00 × 10–6 8442 – 7.26 × 10–1 – 8.61 × 10–1

<5.00 × 10–8 5416 – 7.87 × 10–1 þ 9.80 × 10–1

Note: Septic shock patients (ADRENAL-GWAS) and population controls (QIMRB) were scored on their genotypes at single-nucleotide polymorphisms (SNPs; weighted by the reported effect sizes)
that reached various p-value thresholds (< 5 × 10–8, 5 × 10–6, 0.01, 0.5 and 1) in nine genomewide association studies (GWAS) for traits of interest. The number of SNPs (N SNPs) included in each
analysis is tabulated. Regressions for septic shock and 28-day mortality were performed, with standardized PRS as a predictor, and the top five principal components as covariates (as well as
age and sex for 28-daymortality). The direction of the beta coefficient is noted, where a positive coefficient indicates a positive association with the tested phenotype (i.e., increased propensity
to septic shock and/or increased risk of mortality at 28 days), and vice versa for negative coefficients. Bolded p-values indicate statistically significant results after Bonferroni × correction for
multiple testing (p≤ 5 ×10−3).
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with decreased patient mortality, possibly because of a better
immune response and successful clearing of the infection, which
is supported in the literature (Bermejo-Martín et al., 2014).

PRS for decreased hematocrit levels were associated with
increased 28-day mortality. Although the primary role of red blood
cells is the transport of oxygen, they also mediate innate immunity
through binding chemokines, pathogens and nucleic acids
(Anderson et al 2018). Sepsis patients present with high hematocrit
due to capillary leak syndrome, and this could be related to an
adverse outcome (van Beest et al., 2008). However, the PRS reflect
hematocrit in ‘healthy’ individuals, and due to their immune role, a
genetic predisposition to decreased red blood cell count (and thus
lower hematocrit) could alter the host’s ability to mount an
effective immune response.

The main limitation of the current study was a lack of statistical
power, primarily due to small sample size caused by the logistical
difficulty of collecting biological samples in intensive care settings
in a timely manner from a large number of sepsis patients. In
addition, power may have been reduced due to disease hetero-
geneity and misclassification bias. As sepsis is triggered by an
environmental cue (i.e., infection), it is possible that some controls
would, in fact, have been cases had they been exposed to the
relevant environment, or may have already survived a sepsis
episode; however, this reduction in power is small given the low
incidence of sepsis. While we were underpowered to detect loci
of small effect at genomewide levels of significance, our results
show common variants of large effect (e.g., variants in the major
histocompatibility region that are known to contribute to many
immune-mediated diseases) do not contribute to susceptibility
to or mortality from septic shock (Evans et al., 2011).

Although extensive molecular studies into sepsis and septic
shock have been performed, genetic analyses have been limited,
despite longstanding evidence of a strong genetic component to
the disease. Sepsis is likely a complex trait, and hence will be influ-
enced by many genetic variants with small effect. A large meta-
analysis would be better powered to detect genetic variants with
smaller effects that likely contribute to septic shock mortality or
susceptibility, and may permit calculations using LD score regres-
sion, and place a lower bound on sepsis heritability (Bulik-Sullivan
et al., 2015).

In conclusion, our polygenic risk score analyses identified
several associations between genetic risk scores for clinically
relevant variables and septic, shock indicating shared underlying
genetic etiology with comorbid traits. This report in an exclusive
cohort of patients with established septic shock represents a key
step in understanding the genetic basis of septic shock and may
inform the debate on future therapeutic targets for the condition.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/thg.2020.60.
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