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A wide class of problems for free-surface gravity waves fall into a weakly dispersive
regime, in which wavelength is large compared to water depth, and wave phase speed
differs by a small amount from the speed c0 =

√
gh of shallow-water waves. The

resulting problem is treated naturally using Taylor series expansions of dependent
variables in the vertical coordinate, leading to a class of models that are collectively
referred to here as Boussinesq-type models. Madsen & Fuhrman (J. Fluid Mech.,
vol. 889, 2020, A38) have recently shown that certain members of this broad class of
models are subject to a high-wavenumber instability, which can grow rapidly when
the elevation of the wave trough is sufficiently depressed below the mean water
surface. This newly revealed instability may provide an explanation for the modelling
community’s frequent observations of noisy behaviour in Boussinesq-type model
calculations.
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1. Introduction

Models describing the propagation and evolution of nonlinear surface gravity waves
in the ocean are an indispensable tool for the coastal and ocean engineering and
science communities. Among these, models for a regime in which the wavelength λ is
large compared to water depth h are applicable in a wide range of settings, covering
the behaviour of swell, wind waves and infragravity waves in the nearshore ocean to
tsunami waves propagating at ocean basin scales. Waves falling in this regime h/λ� 1
are weakly dispersive, having phase speeds that differ only slightly from the long-wave
speed c0 =

√
gh.

In order to organize discussion, we write the dispersion relation for linear waves as

c2
= (ω/k)2

= ghP(kh), (1.1)

where c is phase speed, ω = 2π/T is angular frequency and k = 2π/λ is wavenumber.
For finite depths (kh=O(1)), P(kh)= tanh(kh)/kh. In the limit as kh→ 0, P(kh)→ 1
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and the appropriate model is given by the nonlinear long-wave equations, which
neglect all effects of frequency dispersion. For waves where kh is not vanishingly
small, use of power series representations of the vertical structure of dependent
variables typically leads to approximations of P(kh) in the form of rational
polynomials involving truncated series in powers of (kh)2. Models of this type
are collectively referred to here as Boussinesq-type equations (BTEs) if they
correspond to a regime where both dispersion and nonlinearity are weak and do
not appear in a combined fashion in the equations, and Serre or fully nonlinear
Boussinesq-type equations (FNBTEs) if no limitation is imposed on the size of
nonlinearity, characterized by the ratio of wave amplitude to water depth. (For more
comprehensive overviews, see e.g. Brocchini (2013) and Kirby (2016).)

The question of the stability of wave solutions is central to the analysis of both
physical waves and the underlying models leading to their description. Nonlinear
waves have a number of unstable behaviours, including long-wave or sideband
instabilities and various sub- and superharmonic instabilities leading to behaviours
such as cuspate perturbations of wave crests. These instabilities involve interactions
between components with frequencies or wavenumbers that are not drastically different
from each other, and generally involve a conservative transfer of energy between the
involved components. In contrast, the approximations embedded in BTE or FNBTE
models can lead to non-physical instabilities that are intrinsic to the model rather
than to the waves being described. The question of linear stability is well understood.
Referring to (1.1), it is clear that P < 0 would lead immediately to unstable behaviour
with ω imaginary. The possibility of this occurring can be seen by examining several
asymptotically equivalent forms

P(kh)= tanh(kh)/kh∼ 1− 1
3(kh)2

∼ 1/(1+ 1
3(kh)2), (1.2)

where each approximation is equivalent to within errors of O(kh)4. Clearly, a model
that embodies the second approximation is linearly stable, whereas a model in the first
form would be unstable for values of kh>

√
3, which is not a terribly useful range in a

highly resolved model with a large cutoff wavenumber. These instabilities are typically
short relative to the underlying wave being simulated, and impose restrictions on the
choice of BTE or FNBTE approximation to use.

2. Overview

Recently, Madsen & Fuhrman (2020, MF20) have uncovered a comparable short-
wave instability that arises from the nonlinear components of dispersive terms in
FNBTE models. The instability is present in a number of long-accepted, linearly
stable models. The mechanism is limited to the FNBTE class of models and does not
affect the weakly nonlinear, weakly dispersive BTE models. The instability, which is
concentrated in the trough region of the wave (where the surface is suppressed below
the mean water level), can lead to the rapid growth of perturbations and destroy the
underlying solution, as illustrated in the figure by the title (provided by Madsen &
Fuhrman, where black and red lines show results of a sample calculation with an
unstable model after 89 and 95 time steps).

The nonlinear instability mechanism is revealed using a perturbation approach.
An initial solution to the FNBTEs is assumed and then perturbed, and linearized
equations for the behaviour of the perturbation are isolated. Taking advantage of
extensive experience with numerical solutions of the equations, MF20 assume that
the unstable perturbation will have a short wavelength (or high kh) relative to the
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underlying long wave, and will be concentrated in the slowly varying wave trough.
The analysis is then further simplified by neglecting derivatives of the underlying
wave-induced flow in the trough region, reducing it to a steady flow with a shifted
mean water level. The resulting dispersion relation for the perturbation is affected
by a wave-current-like frequency shift, a shift in the apparent mean water depth,
and corresponding shifts in the structure of the rational polynomial P in (1.1).
The resulting changes in the structure of P reintroduce the possibility of having
instability, not of the underlying solution, but of short perturbations to the underlying
solution. MF20 analyse a number of FNBTE models, ranging from a typical O(kh)2

approximation commonly found in practical applications (Wei et al. 1995; Shi et al.
2012) to the much higher-order approximations of Madsen, Bingham & Lu (2002)
and Liu, Fang & Cheng (2018), each of which provides accurate access to water
depths extending far into the deep-water range. MF20 find that each of these models
is affected by instability in at least some range of conditions, with the minimum
kh for the onset of instability pushed to larger and larger values as model accuracy
increases. Nevertheless, a general conclusion is reached that all FNBTE models are
affected to some degree.

MF20 offer several suggestions for suppressing the instability. First, the high-order
approximations used in their own group utilize the canonical surface boundary
conditions due to Zakharov (1968), as also used in the class of high-order spectral
(HOS) models (e.g. Dommermuth & Yue 1987). Noting that HOS models, which
employ the full dispersion relation (1.1) for each spectral component, do not exhibit
comparable trough instabilities, they suggest that a correct representation of frequency
dispersion across all component frequencies could be crucial to suppressing the
instability. This correction would be manifested through a correct treatment of
the relation between component amplitudes un for horizontal velocities and wn for
vertical velocities, which, in linear theory, are related at the mean water level by
wn/un = tanh kh, but with tanh kh again truncated in different ways in each FNBTE
model. Sample calculations are mentioned in which the correct linear connection
formula is used to determine wn from un, leading to solutions that do not exhibit
instability. Alternatively, a rearrangement of reference levels for the definition of
Taylor series for the vertical structure of dependent variables in the higher-order
models also is seen to allow for a significant reduction in the extent of the unstable
parameter space.

3. Future

The instability mechanism discovered by MF20 presents a significant challenge
for the operation of accurate, energy-conserving models of Boussinesq type. Since
the lower-order models of the type introduced by Serre (1953) or Wei et al. (1995),
among others, are in extensive use in engineering and scientific practice, it will be
of interest to examine the consequences of the stability analysis across a broader
range of existing models. Following the analysis procedure presented in MF20, we
find that the model equations of Serre (1953) (see also Su & Gardner (1969)), as
well as the extension of the weakly nonlinear Boussinesq model of Peregrine (1966)
to fully nonlinear form (not shown here), do not appear to be subject to the same
trough instability as the model of Wei et al. (1995) or other models cited by Madsen
& Fuhrman (2020) in their § 7. This writer initially thought that this may be tied
to the use of depth-averaged horizontal velocity as the dependent variable and the
resulting simplification of the equation for volume conservation, but the model of
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Madsen & Schäffer (1998) is in this form and is unstable, and thus the explanation
for this result is not yet clear.

Although the connection is not yet well established, it is possible that the
instability identified by MF20 could contribute to the growth of noise seen in early
finite-difference solutions of FNBTEs, which was not well described in the literature
and was often suppressed using numerical filters. This early experience contributed
to the modelling community’s shift to a preference for finite-volume total variation
diminishing schemes around a decade ago (see e.g. Tonelli & Petti 2009; Roeber,
Cheung & Kobayashi 2010; Shi et al. 2012). These schemes apparently provide
enough artificial numerical dissipation to mask the growth of trough instabilities, and
thus allow for extremely long simulation times over domains with appreciable depth
irregularities. However, this stability comes at the cost of wave damping, which is
prohibitively large for cases where highly accurate results are needed or propagation
over long distances is involved. Methods for deriving model equations that are not
subject to potential trough instabilities will be needed if the modelling community is
to be able to return to the use of less artificially dissipative schemes.
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