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Abstract

This article examines the impact of extreme weather on dairy farm productivity in the
northeastern U.S., accounting for the effects of extreme temperatures on dairy cow produc-
tivity and on feed production—the predominant feeding system in the region. Using a
stochastic frontier production model and 2010-20 dairy farm-level data, we find that
although heat stress impacts cow productivity negatively, it increases feed production.
No discernable impacts of extreme cold temperatures were found. Additional results
indicate the presence of significant labor-augmenting productivity and that larger farms
experience larger productivity growth thanks to increasing returns to scale and allocative
efficiency.

Keywords: dairy; climate change; farms; milk; Northeast; production; productivity; weather

JEL Classifications: Q12

Introduction

Climate change is likely to continue to increase average daily temperatures and
the frequency of heat waves, which can reduce meat and milk production in animals
(Key, Sneeringer, and Marquardt 2014). The effects of extreme heat on dairy production
and the health and well-being of animals have been widely documented in the animal
science literature. Warmer temperatures can lead to increased animal heat stress and
economic losses (Mader 2003; St. Pierre, Cobanov, and Schnitkey 2003). With projected
increases in heat and precipitation spells and continued technological changes, a greater
understanding of the effects of weather and new technologies on the efficiency and
productivity of dairy farm operations is important for focusing management and public
policies on mitigating adverse weather effects and promoting adoption of input-
augmenting technologies. In addition, extreme cold temperatures have been acknowledged
as negatively affecting dairy cow production (West, Mullinix, and Bernard 2003).
Understandably, previous studies in the animal science and agricultural economics
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literature (e.g., Key and Scneeringer 2014; Mukherjee, Bravo-Ureta, and De Vries 2013)
focus on the effect of heat stress on cows. However, given that dairy farm operations
in the Northeast region, as in many other areas of the world, rely in large part on
home-grown feed, such as corn silage and hay, and that feed is by far the dominant input,
the effect of climate change via feed input is bound to also affect productivity (Perez-
Mendez, Roibas, and Wall 2019).

The dairy farm sector in the northeastern United States has undergone significant
changes over the past few decades. One of the drivers of these changes has been a desire
among many dairy producers to achieve greater efficiencies and economies of scale,
because milk prices have generally not kept pace with overall US inflation (US Bureau
of Economic Analysis 2020; US Department of Agriculture 2020). Although milk produc-
tion has generally declined in several New England states, it has increased in New York,
which remains the dominant producer in the region (USDA 2020). Even within New York,
however, much of the growth in milk production has occurred on larger farms in the
western portion of the state, while production has declined in more traditional dairy
areas, such as the Hudson Valley. More recently, in the 2010-2018 period, both the
cow inventory and milk production in New York have increased, even as the number
of producing farms has declined (USDA 2020) due to a combination of attrition primarily
among smaller farms and expansion of the remaining farms.

At the same time, in the Northeast, as in most areas of the world, people, plants, and
livestock are facing a steady increase in average temperatures due to global warming, which
could reduce agricultural output by as much as 25% (IPCC 2014). In the animal science
literature, an abundance of studies shows that milk cows are sensitive to extreme temper-
atures. Since cows are vulnerable to heat stress, the increase in average daily temperatures
and the frequency of heat waves may result in the reduction of meat and milk production
(Key, Sneeringer, and Marquardt 2014). Both daytime mean air temperatures during heat
waves and low daytime temperatures have an impact on morning and evening cow milk
output (West, Mullinix, and Bernard 2003). For New York State, the dominant dairy
producer in the Northeast, the number of days exceeding 90 degrees Fahrenheit is
predicted to increase five- to tenfold for the 2020s, 2050s, and 2080s (NSERDA 2014).!
Thus, the overall expected average temperatures are increasing due to both higher
frequency of very hot days and a lower frequency of extreme cold temperatures. As a result,
the potential effects of extreme temperatures on dairy production efficiency via cow
productivity in the Northeast remain in part dependent on the future of climate change.

This article examines the effects weather and technological change on the efficiency and
productivity of farm milk production in the northeastern United States.” This region
provides a useful case study for at least three reasons. First, farm milk production is
economically important in the Northeast. In fact, it is the leading farm sector as well
as the leading agricultural processing sector in terms of direct sales (Lopez, Laughton,
and Jelliffe 2020). Thus, the efficiency of dairy farming has profound implications
throughout the region’s economy and milk supply chain. Second, milk cows in the
Northeast have been subject to significant variations in weather and technological change,
allowing us to capture the effects of those factors on milk production and efficiency. Third,

'The northern areas of New York state, which only saw a couple of days above 90° Fahrenheit between
1971 and 2000, are bound to experience the largest increases in hot temperatures. These increases in temper-
ature will also affect cold temperatures, with a projected reduction in the number of days with temperatures
below 32° F (NSERDA 2014).

In our sample, farms are located in six states: CT, MA, ME, NH, NY, and VT.
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as in many other regions, home-grown feed production is an integral part of dairy cow
feeding in the Northeast, and climate change is bound to affect feed production.

The contributions of this article are as follows. First, it updates estimates of the technical
efficiency and productivity growth of dairy farms in the northeastern United States, which
are rather dated (Tauer and Kelbase 1987; Ahmad, Bravo-Ureta, and Mukherjee 1996).
Second, we contribute to the growing literature on the effects of weather on the efficiency
of dairy farms by considering the effects of extreme cold temperatures as well as the effects of
heat on feed production.® To this end, we utilize an alternative measure of heat stress not
used in previous dairy studies that use Temperature Humidity Index (THI) to capture heat
stress. Third, we allow for input-saving technologies, rather than just Hick-neutral technical
changes and, thus, for possible effects of labor-saving and other input-saving or augmenting
technologies and their role in explaining changes in productivity growth in the dairy sector
of the Northeast.

Using proprietary farm-level data from six northeastern states between 2010 and 2020,
we apply a stochastic frontier (SF) translog production model using alternative measures of
weather and find that farmers in this region are generally more technically efficient than
suggested in previous studies and that extreme weather impairs technical efficiency consid-
erably more than suggested by previous studies with older data sets or that are national in
scope. We also find a benign effect of heat on feed production, which is consistent with
Perez-Mendez, Roibas, and Wall (2019) for dairy production and on the effects of climate
change on crops in colder areas (Jagermeyr, Miiller, Ruane et al. 2021), such as the
Northeast. Additionally, we find that dairy farms in this region exhibit significant
increasing returns to scale and labor-augmenting technological changes, which support
the tendency of the sector to become more consolidated and less labor-intensive.

Data
Production data

Our production data consist of proprietary farm-level milk production and financial data
extracted from the annual Northeast Dairy Farm Summary (DES) by the agricultural
lender Farm Credit East, and it comprises 3,691 observations from dairy farms in the
northeastern states from 2010 to 2020. Although the report is not a statistically random
sample of the Northeast dairy industry, the farms are stripped of their names
and randomly identified for the data analysis to preserve confidentiality.? Because of
confidentiality concerns, the locations of the farms are only identified at the county level.
The DFS has been produced for several years in a relatively consistent fashion, providing a

3We focus on the Northeast rather than weather effects in other US regions (c.f., Mukherjee, Bravo-Ureta,
and De Vries (2013) for Georgia and Florida, and Qi, Bravo-Ureta, and Cabrera (2015) for Wisconsin) or
other regions of the world (c.f., Perez-Mendez, Roibas, and Wall (2019) for Asturias, Spain).

“The farms that participate each year in the DFS individually opt-in voluntarily to participate in the
survey. Thus, the sample is nonrandom, Responses are likely skewed toward larger and more profitable
dairy farms than the typical dairy farm in the region. Given our sample of convenience, we are unable
to test whether dairy production has shifted from hot or cold areas to other areas in the region as, for
example, in Texas (Russell, 2018) over the last four decades. There is no evidence of relocation of production
within the Northeast. There is some very limited anecdotal evidence of relocation of farmers (not farms)
outside the region due to business considerations rather than weather.


https://doi.org/10.1017/age.2022.2

https://doi.org/10.1017/age.2022.2 Published online by Cambridge University Press

206 Rigoberto A. Lopez et al.

valuable source of cross-sectional data. The data consist of balance sheet and income
statement items as well as production information for each farm.’

Output is measured by a farm’s total milk production. Inputs are divided into four
categories: cows, machinery, labor, and feed. We treat cows, machinery and equipment,
labor, and materials as variable inputs. Following De Loecker and Warzynski’s (2012)
treatment of capital inputs, we treat cows as separable from other inputs and machinery
as a non-separable input in the short run. Thus, our empirical model does not consider the
possibility of substituting cows for machinery, labor, or feed in the short run.

For labor, the data set combines both hired labor and family labor and considers them
as a single input. Small farms rely heavily on family labor, and total labor expenses are
captured by the sum of hired labor expenses and family living expenses. Note that a
part-time worker is considered half of a full-time worker equivalent. A feed quantity index
is computed by adding up purchased feed plus crop production expenses and dividing the
result by the NASS feed price index (price paid by farmers). Feed is by far the largest
component of material inputs used by dairy farms in the Northeast. A trend variable
(yearly trend starting from 1 in 2010 to 11 in 2020) is used to capture technical
change. This trend variable is interacted with labor, feed, and machinery to capture
any input-augmenting changes in technology, with a particular focus on the nature of
labor-augmenting technical change.

Weather data

We collected weather information from 46 stations matching the counties where the farms
in the sample are located.® Several measures of weather variables are considered. Following
previous work, the THI is particularly useful in estimating the environmental conditions
that induce heat stress (Chase 2006). To capture potential heat stress, we measure THI at
the state level. More specifically, following Chase (2006), THI at time ¢ in a given location is
computed as follows:

THI, = dbt, + (0.36 x dew,) + 41.2, (1)

where dbt is the dry bulb temperature in degrees centigrade and dew is the dew point
temperature in degrees centigrade at time £” We utilize the number of days that the THI
exceeds 72 at least once, which is the stress threshold for dairy cows (Chase 2006).
The advantage of the latter is that it captures the number of heat spells in a single variable
while making it expedient to simulate optimal weather as the absence of heat spells.
Although most previous economic studies have not focused on extreme cold weather,
we consider the possibility that extreme cold temperatures may affect technical efficiency
and, therefore, include the average heating degree days (HDDs) at the state level (National
Weather Service 2020). Extreme cold temperatures will result in high HDDs, requiring
additional energy for heat, and cows will need to consume additional calories to keep

5Because of confidentiality requirements and the risk of disclosure, we did not have access to the location
of farms other than the county where they operate. Nor did we have access to farmer characteristics, only to
financial records regarding milk production and inputs. However, given the location of weather stations, we
believe that county location is adequate for our purposes.

SWeather information was measured every 15 to 30 min in the weather stations. We aggregated this
information to daily and then to an annual basis for the measures in question.

"The dew point temperature in Celsius is measured by (100-RH)/5, where RH is the relative humidity in
percentage. The dry bulb temperature and relative humidity are collected hourly at the meteorological
station closest to the milk farm production area for each state in the sample. The data are then aggregated
to the yearly level to match the farm survey.
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themselves warm. In addition, cold weather requires increased management effort in terms
of providing adequate shelter, water, health watch, and foot traction (University of
Minnesota Extension 2019).

Finally, we also utilize alternative measures of extreme temperatures following the
climate change measures used by NSERDA (2014) for New York State in all 46 weather
stations used in the sample. For extreme heat, we use the number of days with maximum
temperatures exceeding 90° Fahrenheit during a given year. For extreme cold, we use the
number of days with minimum temperatures below 32° Fahrenheit.

Input prices
Regarding the prices of inputs used for the computation of allocative efficiency effects of
weather changes, the price of feed used was proxied by a price index for feed published by
USDA NASS (2020), the same one used to deflate purchase and crop feed expenses to
compute the quantity of feed. For labor, we use the wage rate obtained by dividing labor
expenses by the number of full-time worker equivalents, where family labor is valued at the
opportunity cost of hiring workers. As in previous studies, we treat the number of cows as
an input. The quantity of machinery is treated as a capital input, given its multi-year life
span. Accordingly, we define the annual price of machinery based on the concept of the
user cost of capital, that is, by adding interest for the opportunity cost of money and a
depreciation rate for the annual loss of value of the capital stocks.® We then deflate
machinery and equipment expenses by the user cost of capital.

The summary statistics of the variables in the sample are presented in Table 1.°
The list of the 46 stations that supplied the weather data is found in Appendix Al,
and the distribution of the observations across years is presented in Table A2.

Empirical model

Following the specification of a SF model, as in Battese and Coelli (1995), to the
variables assembled above, we propose the following model to estimate the effects weather
on milk output:

qit = o; + ijxijt + ij BixXijeXine + th Viexije Te + Ve Tr + vie — tiy, (2)

where gy, is log of milk production by farm i in year ¢, x;; denotes the log of the amount of
input j utilized by farm i in year ¢, T, denotes a time trend to capture technological changes,
v;; is a random symmetric disturbance accounting for noise assumed to be independently,
identically distributed with a mean of zero and variance 02, and u;, is an asymmetric error
term that accounts for systematic deviations from the frontier due to weather shocks and
unobservable factors such as management.

8The interest rate used is the annual rate charged for borrowing money to purchase farm livestock or
agricultural equipment (Federal Reserve Bank of Kansas 2020). The productive life span of cows is estimated
at 5 years, based on the BEA and BLS average estimates. The life span of farm equipment is estimated at
13.5 years, averaged across the BEA and the BLS estimates (US Department of Labor 1997). We assume
linear depreciation and use the inverse of the life spans as the depreciation rate (0.074) applied to the price
of capital. Finally, the user cost, or annual price of cows and capital, is computed as their annual per unit user
cost of capital times their values.

We do not separate out the potential indirect effects of extreme weather via inputs. Perez-Mendez,
Roibas, and Wall (2019) account for the impact of weather on production of alfalfa and conclude that milk
productivity is higher under warm weather due to increases in forage production.
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Table 1. Summary statistics

Variable Units Mean Std. dev. Min. Max.
Output (q) Milk (cwt) 98,972 141,530 2,962 1,613,028
Inputs (X)
Cow Number 402 534 29 6,008
Labor Worker equiv. 8 10 1 100
Feed Index 6,432 9,629 46 110,326
Machinery Index 14,183 15,832 484 164,761
Technology (T) Year index 5.7 2.8 1 11

Weather (W)

Days THI > 72 Number 21.94 7.04 2 51
Heating Degree Days Number 567 243 0 948
Days Temp. > 90F Number 4.4 6 0 32
Days Temp < 32F Number 30.4 24 0 90
Precipitation Inches 37.4 8.13 9.69 72.86

Following Greene (2005) and Battese and Coelli (1995), we use maximum likelihood to
estimate equation (2) under five alternative weather measures, using the frontier command
in Stata 16. We assume that the deterministic deviation from the frontier due to weather
variables is separable from purely stochastic deviations. Following the best practices for SF
estimation, we estimate the deterministic component to the frontier, in the same fashion as
O’Donnell (2016), by adding the variables directly into the so-called environmental vari-
ables, thus leaving the deterministic variables outside the one-sided stochastic error. This
reduces the possibility of biased estimates when the stochastic term includes determinants
of the deviations (Wang and Schmidt 2002). Following Coelli et al. (2005), we treat
weather as an environmental variable that affects deviations from the production frontier.
For the sake of simplicity and without loss of generality, let weather be denoted by a single
variable W. Thus, u;=p W+ ¢; where € is a one-sided stochastic component, such as
management, that affects production. We then rewrite (2) as:

qie = & + Zj Bixijr + ij BiXijeXixr + th Viexkiig Te + vi T —p Wi +vie — &, (3)

where the random inefficiency term e follows a truncated half-normal distribution
&ir ~ NT (i, 02).1° This is the standard form in which THI is entered in previous studies
as a measure of heat stress. However, the expression in (3) assumes that the effect of
weather is independent of its effects on inputs. In our case, we need to consider the effects
of weather on cows as well as feed production. To consider the first, it is reasonable to
assume that weather is shared across farms in the same location, but that its effects on

OWhile v;, has distribution properties identical to errors with zero mean, as in the classical linear model,
&;r. has a nonzero mean as frontier deviations are zero or, more likely, greater than zero, resulting in a trun-
cated half-normal distribution. Other distribution assumptions include half-normal models (Aigner, Lovell,
and Schmidt 1977), exponential, and gamma distributions (Coelli et al. 2005)
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milk output is proportional to the number of cows. Let x;;; denote (the log of) the number
of cows in the ith farm at time t and rewrite (3) as:

qit = o; + Z]- Bixiie + ij BixXijxike + th Yixip Ty + viTe — p Wiy + vy — €.
4)

To further characterize dairy farm operations in the region, let ¢; = gf’t be the output elas-
ticity with respect to the ith input. The degree of returns to scale is given by e =Y _ e;, where
e > 1 denotes increasing returns to scale, which in turn denotes the expected case that
output expands more than proportionally to an increase in all inputs. In the short run,
when intermediate capital inputs such as cows and equipment remain fixed, the short-
run returns to scale can be indicated as the sum of the elasticities for labor and feed,
and this is expected to be less than 1.

As weather is also likely to affect feed production, the indirect effect of weather on feed
must be considered. To this end, (the log of) feed is simply modeled as a function of
weather and other factors and is assumed to be given by x:

Koy = g T oy Wy + Zf o Zg + €, (5)

where ¢, are the unobservable factors with distribution &,~N(0, oﬁz), and Z are other
factors that affect feed production. Considering the effects through cows and feed, then,
the total elasticity of milk output with respect to a percent change in a weather variable is
the result of the direct effect through cow productivity and the indirect effect through feed
production given by:

dqudWy Wi, = p (Wixii) + @1090%4 Wiy = p (Wirxyie) + g Wiy, (6)

where the percent change in milk output given a 1% change in W is obtained by the sum of
the direct effect through cow productivity (first term) plus the indirect effect through feed
production. Note that the last term is proportional to feed elasticity of output. We estimate
equation (6) for different weather variables but focus on the number of days with
THI > 72 and days with temperatures >90F.

Following Coelli et al. (2005), we utilize the results of model 5 in Table 3 to estimate
technical efficiency scores and total factor productivity growth (TFPG). We decompose
TFPG into three sources: technical changes (TCs), scale changes (SCs), and technical
efficiency changes (TECs). The TC contribution is computed as the average of the partial
derivatives of the output with respect to T. SC contribution is the geometric mean
of two scale efficiency changes, composed of both the scale factor (SF;;) and partial elas

ticities of production (e;) multiplied by the input share, where e; = Z]] —1¢i and
SF; = 1 — le;. Once operational, TFPG1 =TC + SC + TEC for each farm for which
we have observations for two consecutive periods.

We also estimate a measure of productivity growth that includes allocative efficiency
changes (AECs). Following Kumbhakar, Wang, and Horncastle (2015), we calculate devi-
ations of input prices from the value of their marginal products in the allocation of inputs
or departures of the marginal rate of technical substitution from the ratio of input prices.
Thus, deviations from cost minimization input allocations denote allocative inefficiency in
an analogous way, as Farrell (1957) originally defined it. Once operational, we define
TFPG, considering AECs, as TFPG2 = TFPG1 + AEC.

We utilize the predicted values from the feed equation as instrumental variables for the
translog equation as well as to capture impacts of climate on feed production. We utilize
model 3 in Table 2 and model 5 in Table 3 for the derived measures of weather impacts,
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Table 2. Effect of heat on feed

Dep. variable:
InFeed Indep. variables
Days THI > 72 0.005*** 0.004***
(0.001) (0.001)
Days Temp.>90F 0.004*** 0.003*
(0.001) (0.001)
Herd size 100-299 0.151*** 0.152*** 0.150***
(0.013) (0.013) (0.013)
Herd size 300-699 0.301*** 0.300%** 0.301***
(0.015) (0.015) (0.015)
Herd size >700 0.368*** 0.371*** 0.366***
(0.016) (0.016) (0.016)
Precipitation 0.001 0.0001 0.001
(0.001) (0.001) (0.001)
Year dummy Yes Yes Yes
Constant 0.002 0.104 0.007
(0.063) (0.060) (0.063)
N 3,691 3,691 3,691
R? 0.272 0.267 0.273

Note: Standard errors are written in parentheses. *, **, and *** denote the significance levels of 10%, 5%, and 1%,
respectively.

technical efficiency scores, and productivity growth. We use maximum likelihood to esti-
mate equation (3) under alternative weather measures, using the frontier command in
Stata 16. The econometric results and weather impacts, along with technical efficiency
and productivity growth effects, are presented in the section below.

Results and discussion

For the computation of the elasticities of output with respect to weather on milk produc-
tion, we focus on heat stress, but we also compute the elasticities for other weather vari-
ables, that is, on the number of days with THI > 72, as in previous work on climate and
dairy production, and, alternatively, on the number days when temperatures exceeded 90F,
as in the NSERDA (2014) study.!!

'We also conducted robustness checks with annual averages of THI during the warmer months
(May-September). The results were no different but were, however, awkward to interpret since the data
were annual, averaging out warmer (or more humid) days with colder ones during this period.
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Table 3. Stochastic production frontier parameter estimates for northeastern dairy farms

Model specification

Variables (1) () (3) (4) (5)
InCow 0.761*** 0.761*** 0.978*** 0.976*** 0.975***
(0.011) (0.011) (0.009) (0.009) (0.009)
InLabor 0.073 0.097* 0.125*** 0.157*** 0.139***
(0.053) (0.053) (0.034) (0.034) (0.034)
InFeed 0.231*** 0.221*** 0.635** 0.439* 0.565**
(0.041) (0.041) (0.257) (0.264) (0.256)
InMachinery 0.205*** 0.208*** 0.092*** 0.095*** 0.095***
(0.033) (0.033) (0.016) (0.016) (0.016)
InLabor_Feed 0.028*** 0.029*** 0.070** 0.086** 0.070**
(0.005) (0.005) (0.033) (0.034) (0.033)
InLabor_Machinery —0.022*** —0.026*** —0.006 —0.009** —0.007*
(0.007) (0.007) (0.004) (0.004) (0.004)
InMachinery_Feed —0.012*** —0.012** —0.084** —0.072** —0.083**
(0.005) (0.005) (0.032) (0.033) (0.032)
Time —0.020 —0.017 —0.033** —0.030* —0.032**
(0.014) (0.014) (0.016) (0.016) (0.016)
InLabor_Time —0.010*** —0.009*** —0.010*** —0.011*** —0.011***
(0.002) (0.002) (0.002) (0.002) (0.002)
InFeed_Time 0.002 0.002* 0.014 0.023** 0.023**
(0.001) (0.001) (0.009) (0.010) (0.010)
InMachinery_Time 0.003* 0.002 0.006*** 0.005** 0.005**
(0.002) (0.002) (0.002) (0.002) (0.002)
THI Days > 72 —0.0002
(0.0003)
Precipitation —0.002***
(0.0003)
Heating Degree Days 0.000001
(0.000001)
InCow_THI Days >72 —0.0001 0.00002
(0.0001) (0.00007)
InCow_HDD —0.000000*
(0.000000)
(Continued)
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Table 3. (Continued)

Model specification

Variables (1) (2) (3) (4) (5)
InCow_Precipitation —0.0002*** —0.0002*** —0.0002***
(0.0001) (0.0001) (0.0001)
InCow_Days>90F —0.0003*** —0.0003***
(0.0001) (0.0001)
InCow_Days<32F 0.0002 0.00002
(0.00001) (0.0002)
Constant 3.785*** 3.845*** 4.742*** 4.732%** 4.731%**
(0.272) (0.271) (0.121) (0.121) (0.121)
In(o?) —4.700*** —4.706*** —4.810*** —4.820*** —4.814***
(0.068) (0.068) (0.068) (0.068) (0.068)
In(0?) —3.613*** —3.628*** —3.140*** —3.136"** —3.141***
(0.075) (0.075) (0.051) (0.050) (0.051)
a2 0.095 0.095 0.090 0.090 0.090
(0.003) (0.003) (0.003) (0.003) (0.003)
a2 0.164 0.163 0.208 0.208 0.208
(0.006) (0.006) (0.005) (0.005) (0.005)
ot + a2 0.036 0.036 0.051 0.052 0.051
(0.002) (0.002) (0.002) (0.002) (0.002)
A 1.722 1.714 2.305 2321 2.308
(0.009) (0.009) (0.008) (0.008) (0.008)
N 3,691 3,691 3,691 3,691 3,691
AIC —4,236.6 —4,267.6 —3,467.7 —3,475.1 —3,473.7
BIC —4,149.6 —4,162 -3,362.1 —3,369.4 -3,361.8

Note: Standard errors are written in parentheses. *, **, and *** denote the significance levels of 10%, 5%, and 1%,
respectively.

Climate effects on feed

Table 2 presents the results for three alternative models of the effect of heat stress on feed
using THI-based and 90F-based measures. For control, we use farm-size categories to
proxy the feed requirements based on the number of cows. We avoid using the actual
number of cows because of the spurious correlation with the cow input in the translog
model. We also utilize time fixed effects and precipitation. We estimated three models:
(1) THI-based, (2) 90F-based, and (3) a composite model with both THI72 and 90F days.
An F-test of comparison of model 3 (unrestricted) to models 1 and 2 indicates that model 3
is significantly better in explaining feed at the 0.1% level. In addition, model 1 (THI-based)
is preferred to model 2 (90F-based) at the 0.1% level. In other words, THI does a better job
of explaining feed than extreme temperatures when days exceed 90F. However, both
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measures significantly indicate that an increase in heat measure results in a larger amount
of feed. This confirms a beneficial effect of heat, as found by Perez-Mendez, Roibas, and
Wall (2019) for dairy production in Asturias, Spain. We also confirm the positive effect of
heat on crop production in cold and northern areas reported by Jagermeyr, Miiller, Ruane
et al. (2021). Thus, given that home-grown production is the predominant system of feed
production in the Northeast, the results indicate that climate change may result in some
beneficial impacts on dairy farmers.

Effects of climate change on milk output

The estimated parameters of the translog production function under various weather spec-
ifications are presented in Table 3. We estimate five alternative models: (1) no weather
variables; (2) THI72 days without feed effects; (3) THI72 days with feed IV; (4) 90F days
with feed IV; and (5) a composite model with THI72 and 90F days.!? The IVs for models
(3)-(5) correspond to models (1)-(3) in Table 2. Model 2 includes the number of days with
THI > 72 during the year, and thus it is analogous to the way THI has been used in
previous studies of climate change and dairy production in that the impact on feed is
not recognized. In models (3)-(5), we interact THI72 and 90F days with the log of cows
to acknowledge that the impact depends on herd size and that one size of impact does not
fit all dairy operations.

Although THI is significant in the feed equation, it is not statistically significant in all
versions of the milk production equations, confirming the finding of Perez-Mendez,
Roibas, and Wall (2019). Model 4 includes the number of days exceeding 90F temperature,
and, in fact, this variable is significant in both the feed and the translog equations.
Extremely hot days have a positive effect on feed and a negative effect on cow milk produc-
tivity. Thus, at least for cold areas like the northeastern United States, the results do not
support using THI to measure the negative effect of heat stress on cows. Instead, the results
favor the use of the NSERDA measure of extreme heat to capture future climate change,
that is, temperatures exceeding 90F.

The results in Table 3 also fail to support the hypothesis that cold temperatures have a
discernable impact on cow productivity. Despite studies on the negative effects of extreme
cold on dairy cows, dairy cows are cold weather animals, and these effects are not picked
up on an annual basis in our results. Finally, precipitation also results in lower cow produc-
tivity, which is consistent with previous studies. To gain further insight, we estimated
output elasticities with respect to weather variables, as noted in equation (6). We utilize
model 5 of Table 3 for this purpose. The results are presented in Table 4 and indicate that
while a 1% increase in extreme heat days has a negative (—0.0045%) effect on milk output
due to lower cow productivity (stemming almost entirely from 90F days), there is also a
(0.0069%) increase in feed input, resulting in a rather small but statistically significant
increase in milk output of 0.0024%. That is, hot temperatures from climate change can
have a benign effect on dairy production systems, such as those in the Northeast, that rely
on home-grown crops. The results in Table 4 also indicate that the percent increases in
cold temperature have a rather small effect on milk output. On the other hand, precipita-
tion has a negative effect on milk output as measured by an elasticity of —.0494, basically
equivalent to the mean elasticity for heat stress on direct cow production.

The above results contrast with the very modest effects of extreme heat (THI) on cow
productivity estimated by Key, Sneeringer, and Marquardt (2014), who, using a THI-based

12Based on the Akaike Information Criterion and the Bayesian Information Criterion tests (AIC and BIC
in Table 3), model 5 is preferred to models 1-3 at the 95% confidence level.
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Table 4. Estimated input and weather elasticities of output

Input elasticity Obs Mean Std. dev. Min. Max.

Input elasticities

Cow 3,691 0.9654 0.0024 0.9519 0.9726
Labor 3,691 0.0467 0.0255 —0.0156 0.0967
Feed 3,691 0.0625 0.0756 —0.2183 0.3447
Machinery 3,691 0.0776 0.0202 0.0282 0.1278
Returns to scale 3,691 1.1521 0.0661 0.8795 14311

Weather elasticities

Heat stress:

Through feed 3,691 0.0069 0 0.0069 0.0069
Through cows 3,691 —0.0045 0.0086 —0.0548 0.0043
Net heat elasticity: 3,691 0.0024 0.0086 —0.0480 0.0111
Cold temperatures: 3,691 0.0036 0.0030 0 0.0128
Precipitation: 3,691 —0.0494 0.0144 —0.1160 —0.0130

measure and a national sample, concluded that heat stress effects on technical efficiency
are under 1% for the three northeastern states that constitute their Northeast region. In
addition, we conclude that cold weather temperatures do not have a discernable effect but
also suggest consideration of the potential effects on feed production and alternative meas-
ures to THI > 72 to measure heat stress.

Technology results

From the results in Table 3, we compute the output elasticities with respect to inputs and
present the results in Table 4. Their sum indicates that farmers in the Northeast experience
significant returns to scale, estimated at 1.16 at mean values, which is statistically signifi-
cant at the 0.01% level. That is, if all inputs are doubled, milk output more than doubles.
This characterization of technology supports the ongoing consolidation in the region’s
dairy farm sector.

Another result of interest is that technical change (time) interacted with labor has a
negative sign and is practically unchanged across model specifications, indicating
labor-saving technical change. Technology is evolving in ways that save farm labor,
although machinery and equipment did not produce any measurable interaction with
technology in the time span of our sample. It is also interesting to note the increasing
importance of feed as a dominant non-cow input in dairy production, as indicated by
the interactions of the log of feed and time, which are statistically significant at the
5% level.

Based on the results for model 5 in Table 3, we computed technical efficiency scores.
The average score of technical efficiency across all farms is estimated at approximately 0.86
out of a maximum of 1.0 for firms to be on the frontier, with a minimum of 0.49 and a
maximum of approximately 0.98. In other words, the average northeastern dairy farmer
obtained 86% of potential output using their capital, labor, and materials, a loss of about
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Table 5. Mean total factor productivity growth by year

Farms TC SC TEC AEC TFPG1 TFPG2
2011 28 0.58 0.02 —0.96 341 —-3.60 3.05
2012 406 0.54 0.04 —0.31 1.76 0.28 2.04
2013 396 1.22 0.21 0.25 -1.95 1.68 —-0.27
2014 285 1.33 0.59 —-1.87 —2.67 0.04 —2.62
2015 275 1.15 0.11 0.60 1.29 1.87 3.16
2016 272 1.05 0.23 0.85 1.37 2.13 3.50
2017 248 117 0.28 —0.80 —4.80 0.65 —4.16
2018 212 1.01 0.22 -1.59 1.99 —0.36 1.63
2019 215 0.98 0.38 0.01 1.52 1.37 2.89
2020 168 1.20 0.91 —0.89 -2.33 1.22 -1.11
Averages:
Year-based 2,505 1.02 0.30 —0.47 —0.04 0.53 0.81
Farm-based 2,505 1.04 0.29 —0.35 -0.33 0.98 0.65

Notes: The TC = technical change; SC = scale efficiency change; TEC= technical efficiency change; AEC= allocative
efficiency change; TFPG1=TC + SC + TEC and TFPG2 =TFPG1 + AEC. The farm-based averages are the weighed
averaged based on the number of farms in the full sample while the year-averages are the simple averages across
the means for each year.

14% from the ideal output obtained for the same set of inputs.'* As compared to previous
studies on technical efficiency, dairy farms in the Northeast reach a higher level than in the
past, 69% for New York dairy farms (Tauer and Belbase 1987), 85% for Pennsylvania dairy
farms (Wang 2008), and 82% for New England dairy farms (Ahmad, Bravo-Ureta, and
Mukherjee 1996).

Productivity growth results

The results for the decomposition of productivity growth changes between 2010 and 2020
are presented in Table 5. Note that these measures were computed at the farm level and
thus include observations only for those farm records that were observed in consecutive
years. Table 5 indicates that much of the productivity growth came from changes in tech-
nology, with average small negative effects of changes in scale and technical change over
the whole sample. Technical change increased productivity by an average just over 1% per
year (1.04% in the farm-weighted average), making technical change the largest contrib-
utor to productivity growth. Changes in technical efficiency and allocative efficiency
contributed negatively to productivity growth. Overall, based on the 2011-2020 average
using the number of farms as weights, TFPG increase at a rate of approximately 1%

BAlthough the summary results in Table 5 suggest a wide range in technical efficiency, our model and
data prevent us from further uncovering the sources of those relatively large deviations. We suspect that
differences in management would be a main explanation for some of those deviations. We lack the appro-
priate explanatory variables on individual farms and farmers to capture management, such as education and
years of experience, which were omitted due to confidentiality restrictions on the data.
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Table 6. Total factor productivity growth by herd size

N Mean Std. dev. Min. Max.
<100 cows

TC 682 1.09 0.46 —0.38 2.37
SC ......................... o o o e
............. TEC o o o o
............. AEC i e e o
............. TFPGl o o o e
TFPG 2 0.63 14.15 —85.40 78.15

100-299 cows
TC 861 1.19 0.47 —0.51 2.42
.............. S C - o - o
TEC ,,,,,,,,,,, s e e o
AEC ........... - - - i
TFPGl 0.99 4.12 —18.95 16.80
TFPG 2 0.27 13.49 —93.85 81.27

300-699 cows
TC 534 1.04 0.45 —0.17 2.35
.............. 5 C o o e o
TEC ........... o o e o
AEC ........... o o S i
TFPGl 1.66 4.02 -11.81 3441
TFPG 2 0.65 10.50 —59.16 41.55

>700 cows

TC 428 0.69 0.34 —-0.30 1.73
Ne N 1.01 3.14 —2.88 44.50
TEC ........... e o o o
AEC N —0.24 11.36 —81.45 95.10
TFPGl 1.67 5.26 —27.81 66.77
TFPG 2 143 11.47 —73.36 95.27

Notes: TC = technical change; SC = scale efficiency change; TEC= technical efficiency change; AEC= allocative efficiency
change; TFPG1 =TC + SC + TEC; TFPG2 = TFPG1 + AEC.

(TFPG1 = 0.98) and when allocative efficiency effects are included to obtain TFPG2, the
average productivity drops to 0.65.

As shown in Table 6, when the productivity growth results are broken down by size
categories based on the number of farms, it is interesting to note that smaller farms
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(<100 cows) are the only ones to exhibit negative effects of scale efficiency, although they
exhibit the second highest technical change effects among the four size groups. In contrast,
larger farms (>700 cows) exhibit the highest scale effects but the lowest effects from tech-
nological change. Overall, considering technology, scale, and technical efficiency changes,
results show that the largest farms (>700 cows) exhibit the highest productivity growth
rates per year (TFPG1 = 1.62). Farms with less than 300 cows exhibit either the lowest
TFPG (<100 cows with TFPG1 =0.01) or the lowest TFPG when allocative efficiency
effects are considering (100-299 cows with TFPG2 = 0.27). This group also exhibits
the highest productivity growth rates when AECs are taking into account. This suggest
that that small- to medium-size operations are more likely to struggle to catch up in
productivity with larger operations and also to allocate inputs in a manner consistent with
cost minimization. This provides an opening for policy and managerial support to support
small- to mid-size dairy farms to enhance their productivity growth to overcome scale
disadvantages as well as better achieve allocative efficiency.

Conclusion

Adverse weather effects, which may be exacerbated by climate change, can significantly
affect the productivity of dairy farms in the Northeast. Previous work focusing on weather
effects in the northeastern dairy farm sector has focused on heat stress in cows, side-
stepping effects on feed production, and is either dated and/or has utilized aggregate data.
In this article, we ascertain the effect of heat stress as well as cold temperatures on milk
productivity, accounting for effects on feed production and labor-augmenting technology.
The empirical framework involves the use of a SF production function applied to farm-
level data between 2010 and 2020.

In general, the empirical findings are consistent with previous studies reporting that
heat stress reduces efficiency and in terms of the production function estimates.
However, we do not find support for using THI as a measure to capture heat stress effects
on cows in cold areas such as the Northeast but do find that it captures effects on home-
grown feed production. We find heat stress, as measured by the number of days exceeding
90F, to have a detrimental effect on cow productivity but that heat stress, measured either
by THI > 72 or 90F days, has a beneficial effect on feed production and an overall net
positive effect on milk production. We also fail to find a discernable effect of cold temper-
atures on milk production. From a technological standpoint, we also find evidence of
significant returns to scale, labor-augmenting technical change, and a rather modest level
of productivity growth of approximately 1%, on average. In general, we find technical effi-
ciency scores that are higher than those estimated in previous studies.

From a productivity standpoint, this paper offers some useful insights. The results
confirm the presence of significant increasing returns to scale. Productivity growth rates
across herd sizes reveal that scale efficiency is the greatest advantage of larger operations
and the most disadvantage of smaller ones, even though smaller operations experience
comparable or effects of technical changes on productivity rates than other groups.
On average, the sector experience approximately a 1% TFPG per year mostly due to tech-
nical change, secondly due to scale efficiency, and with negative contributions of technical
and AECs over the period. Another interesting finding is that the sector is experiencing
labor-augmenting technical change, which is leading to a less labor-intensive production
technology.

This paper has limitations due, in part, to data availability. Although we used a
farm-level confidential data set, we did not have access to individual farm characteristics
(e.g., precise location) or characteristics of the operators (e.g., age, experience, etc.) that
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may explain large variations in technical efficiency and productivity measures that
remained unobserved. For instance, efficiency effects varied quite substantially (0.53 to
0.98) in the sample. Although one can rightly attribute this to variations in management,
we do not have any individual farm data to measure this effect. Another data-related issue
is the measurement of weather converted to annual data to match the paucity of the farm
records at the county level. Obviously, weather varies substantially within a year, and a
more granular measure of farm records and weather would fine-tune the weather effects.
A longer time series would obviously provide a better assessment of long-term effects of
temperature and climate change, as these changes are gradual. However, these limitations
provide opportunities to expand the methods of this paper to other regions or farm sectors
where climate change and weather also have the potential to significantly affect the
productivity of future farm operations.

Data availability statement. The farm-level data utilized under a confidentiality agreement between Farm
Credit East and the researchers, and it is not available to third parties. Note that Farm Credit East collects
these data from farmers under a pledge of confidentiality. However, the computer codes and the weather
data are available from the authors upon request.

Funding statement. This work was supported by USDA National Institute of Food and Agriculture, Hatch
project accession number 1020636, and the Richard DelFavero Fund for Agricultural and Resource
Economics at the University of Connecticut.

Competing interests. The authors have no conflict of interests regarding the research reported here.

References

Ahmad, M., B.E. Bravo-Ureta, and D. Mukherjee. 1996. “Technical efficiency measures for dairy farms
using panel data: A comparison of alternative model specifications.” Journal of Productivity Analysis
7 (4): 399-415.

Aigner, D.J., C.A.K. Lovell, and P. Schmidt. 1977. “Formulation and estimation of stochastic frontier
production function models.” Journal of Econometrics 6 (1): 21-37.

Battese, G. E., and T.J. Coelli. 1995. “A model for technical inefficiency effects in a stochastic Frontier
production function for panel data.” Empirical Economics 20 (2): 325-332.

Chase, L.E. 2006. “Climate change impacts on dairy cattle.” In: Climate Change and Agriculture: Promoting
Practical and Profitable Responses, Proceedings. Cornell University (pp. 17-23).

Coelli, T.J., D.S. Rao, C.J. O’'Donnell, and G.E. Battesse. 2005. An Introduction to Efficiency and
Productivity Analysis. New York: Springer.

De Loecker, J., and F. Warzynski. 2012. “Markups and firm-level export status.” American Economic
Review 102 (6): 2437-2471.

Farrell, M.J. 1957. “The measurement of productive efficiency.” Journal of the Royal Statistical Society
120 (3): 253-290.

Federal Reserve Bank of Kansas City. 2020. Agricultural Finance Databook. Kansas City, MO. Available at
https://www.kansascityfed.org/agriculture/agfinance-updates/

Greene, W. 2005. “Reconsidering heterogeneity in panel data estimators of the stochastic frontier model.”
Journal of Econometrics 126 (2): 269-303.

IPCC (Intergovernmental Panel on Climate Change). 2014. Fifth Assessment Report. Cambridge, United
Kingdom and New York, USA, IPCC.

Jagermeyr, J., C. Miiller, A.C. Ruane, et al. 2021. Climate impacts on global agriculture emerge earlier in
new generation of climate and crop models. Nature Food (November 2021), https://doi.org/10.1038/
543016-021-00400-y

Key, N., and S. Sneeringer. 2014. “Potential effects of climate change on the productivity of U.S. dairies.”
American Journal of Agricultural Economics 96 (4): 1136-1156.

Key, N, S. Sneeringer, and D. Marquardt. 2014. Climate Change, Heat Stress, and U.S. Dairy Production.
USDA. Economic Research Report No. 175.


https://www.kansascityfed.org/agriculture/agfinance-updates/
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.1017/age.2022.2

https://doi.org/10.1017/age.2022.2 Published online by Cambridge University Press

Agricultural and Resource Economics Review 219

Kumbhakar, S.C., H.J. Wang, and A.P. Horncastle. 2015. A Practitioner’s Guide to Stochastic Frontier
Analysis Using Stata. New York: Cambridge University Press.

Lopez, R.A., C. Laughton, and J. Jelliffe. 2020. Economic Impacts of Agriculture in the Northeastern U.S.:
Update 2017. A Report for Farm Credit East. September 15.

Mader, T.L. 2003. “Environmental Stress in Confined Beef Cattle.” Journal of Animal Science 81:
E110-E119.

Mukherjee, D., B.E. Bravo-Ureta, and A. De Vries. 2013. “Dairy productivity and climatic conditions:
Econometric evidence from South-eastern United States.” Australian Journal of Agricultural and
Resource Economics 57: 123-140.

National Weather Service. 2020. Degree Days Statistics. Climate Prediction Center. Available at https://
www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/

New York State Energy Research and Development Authority (NSERDA). 2014. Climate Change in New
York State. Updating the 2011 ClimAID Climate Risk Information Supplement to NYSERDA Report 11-18.
Available at https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Environmental/ClimAID/
2014-ClimAid-Report.pdf

O’Donnell, C.J. 2016. “Using information about technologies, markets and firm behavior to decompose
a proper productivity index.” Journal of Econometrics 190 (2): 328-340.

Perez-Mendez, J.A., D. Roibas, and A. Wall. 2019. “The influence of weather conditions on dairy produc-
tion.” Agricultural Economics 50 (2): 165-175.

Qi, L., B.E. Bravo-Ureta, and V.E. Cabrera. 2015. “From cold to hot: Climatic effects and productivity in
Wisconsin dairy farms.” Journal of Dairy Science, 98 (2): 8664-8677.

Russell, A. 2018. “Texas Dairy Production Has Shifted from the Northeast to the Panhandle, but Why?”
Texas A&M Today, February 6, 2018.

St. Pierre, N.R., B. Cobanov, and G. Schnitkey. 2003. “Economic losses from heat stress by US livestock
industries.” Journal of Animal Science, 86, E2-E77.

Tauer, L.W., and K.P. Belbase. 1987. “Technical efficiency of New York dairy farms.” Northeastern Journal
of Agricultural and Resource Economics 16(1): 10-16. https://doi.org/10.1017/5S0899367X00000313

University of Minnesota Extension. 2019. Managing Dairy Cattle in Cold Weather. March 15. Available at
https://extension.umn.edu/dairy-news/managing-dairy-cattle-cold-weather

U.S. Bureau of Economic Analysis. (2020, April 27). Personal Consumption Expenditures (Implicit Price
Deflator). https://fred.stlouisfed.org/series/ DPCERD3A086NBEA

U.S. Department of Agriculture. 2020. USDA NASS Quick Stats. Available at https://quickstats.nass.usda.
gov/

U.S. Department of Agriculture, National Agricultural Statistics Service. 2019. 2017 Census of
Agriculture. Available at https://www.nass.usda.gov/Publications/ AgCensus/2017/index.php.

U.S. Department of Labor. 1997. BLS Handbook of Methods. Bureau of Labor Statistics, Bulletin 2490.

West, J.W., B.G. Mullinix, and J.K. Bernard. 2003. “Effects of hot, humid weather on milk temperature,
dry matter intake, and milk yield of lactating dairy cows.” Journal of Dairy Science 86: 232-242.

Wang, Q. “A Technical Efficiency Analysis of Pennsylvania Dairy Farms.” Paper presented at the 2001
Annual Meeting of the American Agricultural Economics Association (New Name 2008: Agricultural
and Applied Economics Association), Chicago, IL, August 2001.

Wang, H.J., and P. Schmidt. 2002. “One-step and two-step estimation of the effects of exogenous variables
on technical efficiency levels.” Journal of Productivity Analysis 18 (2): 129-144.


https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/
https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Environmental/ClimAID/2014-ClimAid-Report.pdf
https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Environmental/ClimAID/2014-ClimAid-Report.pdf
https://doi.org/10.1017/S0899367X00000313
https://extension.umn.edu/dairy-news/managing-dairy-cattle-cold-weather
https://fred.stlouisfed.org/series/DPCERD3A086NBEA
https://quickstats.nass.usda.gov/
https://quickstats.nass.usda.gov/
https://www.nass.usda.gov/Publications/AgCensus/2017/index.php
https://doi.org/10.1017/age.2022.2

https://doi.org/10.1017/age.2022.2 Published online by Cambridge University Press

220

Rigoberto A. Lopez et al.

Data Appendix

Table Al. List of weather stations used in the sample

No. State County, station No. State County, station

1 CT New London, Groton 24 NY Orange, Montgomery
2 Litchfield, Bradley 25 Erie, Buffalo
3 Windham, Willimantic 2 Albany, Albany

4 MA Berkshire, Pittsfield 27 Chemung, Elmira
5 Franklin, Orange 28 Warren, Glens Falls
6 Bristol, Taunton 29 Dutchess, Poughkeepsie
7 Essex, Lawrence 30 Monroe, Rochester

8 ME Aroostook, Presque Isle 31 Onondaga, Syracuse
9 Kennebec, Augusta 32 Sullivan, Monticello
10 Penobscot, Bangor 33 Allegany, Wellsville
ll s o 34 Oswego, Fulton
12 Piscataquis, Greenville 35 VNSRS, (P VeI
13 Androscoggin, Auburn 36 Cortland, Plattsburgh

14 NH Rockingham, Portsmouth 37 Clinton, Plattsburgh
15 Hillsborough, Manchester 38 Livingston, Dansville
16 Merrimack, Concord 39 St. Lawrence, Massena
17 Grafton, Plymouth 40 Franklin, Saranac Lake
18 Cheshire, Keene 41 Tompkins, Ithaca

19 NY Cattaraugus, Olean 42 Jefferson, Watertown
20 Chautauqua, Jamestown 43 Rome, Rome
21 Niagara, Niagara Falls 44 Washington, Barre
22 Broome, Binghamton 45 VT Franklin, Sheldon

23 Schenectady, Schenectady 46 Chittenden, Burlington
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Table A2. Mean values of observations over years

Year
Variable 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Number of farms 36 504 497 494 365 368 339 318 302 264 204
Output, cwt 118,713 74211 77,295 73,226 81,099 91,641 102,539 120,163 121,229 151366 177,304
Inputs
Cow, Number 525 320 328 308 340 373 402 472 480 588 685
Labor, Worker equiv. 10 7 7 7 8 8 9 10 10 11 13
Feed, Index 8,239 4,946 4,949 4,851 5,537 6,116 6,201 7,910 7,825 9,319 11,685
Machinery, Index 18,417 12,278 11,851 11,689 13,497 13,739 14,607 16,369 15,221 17,749 21,635
Weather
Days > 90F 8 2 6 4 2 4 4 3 8 3 11
Days < 32F 46 28 21 43 45 18 15 37 33 44 19
Heating Degree Days 635 577 517 602 610 581 566 543 578 535 534
Days THI > 72 21 22 21 23 20 21 24 19 25 23 22
Precipitation 38 47 34 38 37 32 32 39 38 40 31
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