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Does near drowning in ice water prevent anoxic
induced brain injury?
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Abstract

Cold water near-drowning is often thought to be neuroprotective in individuals with anoxia of a longer duration
than that usually required to produce irreversible neurologic damage. There is a paucity of data in adults with cold
water near-drowning that assess neuropsychological outcomes. Information regarding long-term effects of near
cold water near-drowning on neuropathology, neuropsychological and neurobehavioral outcomes are uncommon.
This paper provides an introduction to two cases of cold water near-drowning reported in this issue of JINS by
Sameulson and colleagues and provides background information for interpretation of the findings of these cases in
the context of outcomes following anoxia. (JINS, 2008, 14, 656–659.)
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INTRODUCTION

The incidence of cardiac arrest with anoxia and cerebral
ischemia occurs in more than 400,000 cases per year in
the United States, of which more than 80% of these patients
are likely to have poor neurological outcomes (Geocadin
et al., 2006; Zheng et al., 2001). Recent improvements in
emergency and critical care medicine have resulted in
approximately 200,000 cardiac resuscitations per year of
which over 70,000 patients survive but constitute only 1%
of those admitted to brain injury rehabilitation centers
(Bachman & Katz, 1997). Anoxia and ischemia can occur
because of cardiac or respiratory arrest, open heart sur-
gery, attempted hanging, complications of anesthesia, and
near drowning.

Some brain regions are more vulnerable to the effects of
anoxia0ischemia, particularly structures at the end of the
vascular supply, with high metabolic rates (Brierley &
Graham, 1984), and0or proximity to structures that con-
tain excitatory amino acids such as glutamate (Martin et al.,
1994; Siesjo et al., 1989). Vulnerable brain regions include

the neocortex, hippocampus, basal ganglia, cerebellum, pri-
mary visual cortex, frontal regions, and thalamus (Chalela
et al., 2001). Anoxic brain injury results in focal and dif-
fuse neuropathologic lesions and atrophy (Bachevalier &
Meunier, 1996; Caine & Watson, 2000; Gale et al., 1999;
Hopkins et al., 1995b) including lesions in the hippocam-
pus (Manns et al., 2003a; Manns et al., 2003b), basal gan-
glia, cerebellum (Mascalchi et al., 1996), subcortical and
periventricular white matter lesions (Parkinson et al., 2002)
and atrophy of the corpus callosum (Porter et al., 2002).
Generalized brain volume loss leading to ventricular enlarge-
ment and sulcal widening (Caine & Watson, 2000) and
hippocampal atrophy are also common (Hopkins et al.,
1995b; Press et al., 1989). A review of anoxic brain injury
(N5 90) found that 44% of individuals had cortical edema
or atrophy, 33% had cerebellar lesions, 22% had basal
ganglia lesions, 21% had hippocampal atrophy, and 3%
had thalamic lesions (Caine & Watson, 2000).

Neurological and Neuropsychological
Sequelae

Poor neurological outcomes after brain injury include death,
coma, vegetative state, severe neurologic disability (Jennett
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& Bond, 1975), cognitive sequelae, and development of
new psychiatric disorders (Bachevalier & Meunier, 1996;
Caine & Watson, 2000). Neuropsychological deficits after
anoxia or ischemia are heterogeneous and include agnosia
(Farah, 1990), impaired memory (Hopkins et al., 2004;
Manns et al., 2003a; Zola-Morgan et al., 1986), executive
dysfunction (Hopkins et al., 1995a; Lezak, 1995), impaired
visual-spatial skills (Barat et al., 1989), generalized cogni-
tive impairments (Wilson, 1996), and motor disturbances
(Lishman, 1998). Psychological and behavioral changes fol-
lowing anoxic brain injury often include euphoria, irritabil-
ity, emotional volatility, depression, and anxiety (Bahrke &
Schukitt-Hale, 1993; Li et al., 2000).

Mechanisms of Brain Injury

Anoxia or ischemia causes a pathophysiological cascade
that leads to neuronal damage and death (for reviews of the
mechanisms see Biagas, 1999; Johnston et al., 2002). Mech-
anisms of anoxic induced neuronal injury include: (1)
decreased ATP production without decreasing ATP utiliza-
tion, resulting in energy depletion, ionic pump failure, K1
outflow, and inflow of Ca21 (Lutz & Nilsson, 1994); (2)
lactic acidosis caused by anaerobic metabolism (Siesjo,
1981); (3) excitotoxic damage caused by excessive gluta-
mate release leading to increased neuronal firing, calcium
influx, and neuronal death (Johnston et al., 2002); (4)
increased calcium influx and intracellular accumulation of
calcium due to ionic pump failure (Schurr et al., 1990); (5)
the formation of oxygen radicals during reperfusion or reox-
ygenation (Biagas, 1999); (6) nitric oxide synthase leads to
impaired neurotransmission, protein synthesis, and mem-
brane peroxidation (Biagas, 1999); and (7) anoxia or isch-
emia also results in neuronal necrosis and0or apoptosis or
programmed cell death (Beilharz et al., 1995; Steller, 1995).

Therapeutic Hypothermia

Recent research has generated considerable hope for better
recovery following anoxia and ischemia using a variety of
treatments. One such treatment is therapeutic hypothermia,
which has shown improved neurological outcomes in 1 out
of every 6 patients after cardiac arrest and cardiopulmonary
resuscitation (Bernard et al., 2002; The Hypothermia after
Cardiac Arrest Study Group, 2002). In principle a reduction
in brain metabolic demands lead to decreased oxygen
requirements and therefore reduced vulnerability to the neu-
ral effects of anoxia0ischemia. Animal models show that
hypothermia inhibits multiple steps in the reperfusion phase
of anoxic injury, including ATP consumption (Erecinska
et al., 2003), reduced neuronal depolarization (Sick et al.,
1999), decreased extra cellular glutamate concentrations
(Busto et al., 1989), and decreased free radical production
(Globus et al., 1995). A meta-analysis of 3 randomized con-
trolled clinical trails in humans evaluated therapeutic hypo-
thermia compared to normothermia found that therapeutic

hypothermia was associated with good neurologic out-
comes [relative risk of 1.68 (95% CI 1.29–2.07)] (Holzer
et al., 2005). The data mentioned earlier raise questions as
to what if any role accidental hypothermia caused by cold-
water immersion may play in preventing or reducing neuro-
psychological and psychiatric sequelae following near
drowning.

Cold Water Near-Drowning

Cold water near-drowning is often believed to be neuropro-
tective in individuals with anoxia of a longer duration than
that usually required to produce irreversible neurologic dam-
age (Chochinov et al., 1998). Such neuroprotection is attrib-
uted to low core body temperatures, which reduce cerebral
metabolic oxygen requirements and the mammalian dive
reflex, which is believed to enhance the delivery of limited
available oxygen stores to the brain (Chochinov et al., 1998).
Most studies to date that assess outcome following cold
water near-drowning have been conducted in children. A
review of near-drowning and ice-water submersion in pedi-
atric patients (13 less than 19 years of age) found 15 patients
had a good outcome and 2 patients had a “fair to good
outcome”, but outcome was not defined and neuropsycho-
logical tests were not administered to these patients
(Orlowski, 1987). There are few cases of near-drowning
with cold-water submersion with poor outcomes reported
in the literature (Orlowski, 1987). Orlowski suggests that
cases with poor outcome are probably not reported whereas
cases with good outcome are more commonly reported,
resulting in a bias of good outcomes in the literature
(Orlowski, 1987). One case of note, is that of R.D. who at
2.5 years of age was submerged in frigid water for 66 min-
utes with reportedly “good neurologic recovery” (Bolte et al.,
1988). However, a neuropsychological evaluation 13 years
later in this same individual found broad neurodevelopmen-
tal compromise, impaired memory, and executive function,
despite a normal brain imaging (Hughes et al., 2002).

There is a paucity of data in adults with cold water near-
drowning that assess outcome and only one study assessed
neuropsychological function (Huckabee et al., 1996). The
two cases of cold water near-drowning reported in this issue
of JINS by Samuelson and colleagues assessed short term
(a few days to months) and long-term (1.5 to 3.5 years)
neuropsychological outcomes. Both cases had neuropsycho-
logical impairments that persisted over time. The neuropsy-
chological findings of these two individuals with anoxic
brain injury following cold water near-drowning are similar
to those reported after anoxia from other etiologies (Bache-
valier & Meunier, 1996; Caine & Watson, 2000; Hopkins
et al., 2004; Manns et al., 2003a; Zola-Morgan et al., 1986).
Further, these two individuals had symptoms of depression
and behavioral changes. The rate of mood disorders after
anoxic brain injury varies from 24% to 60% of cases, which
is significantly higher than the prevalence rate in the general
population (2% to 9% major depression and 3% generalized
anxiety), and the 12% rate observed in medical populations.
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Case 1 had a normal brain MRI scan 1.5 years after the
accident, a finding that is similar to that reported by Orlowski
(1987). However, brain imaging findings in near-drowning
survivors are heterogeneous with abnormalities ranging from
hemorrhageic infarctions to global atrophy (Fitch et al.,
1985). Similarly, brain MRI findings in anoxic patients who
were not near-drowning accidents include lesions in gray
(e.g., basal ganglia, hippocampus, etc) and white matter,
and global and focal atrophy (Bachevalier & Meunier, 1996;
Caine & Watson, 2000; Hopkins et al., 2004; Manns et al.,
2003a; Zola-Morgan et al., 1986). Whereas braining imag-
ing was normal by radiologic report in Case 1, quantitative
neuroimaging was not carried out (Bachevalier & Meunier,
1996; Caine & Watson, 2000; Gale et al., 1999; Hopkins
et al., 1995b). Nonspecific brain damage may result in gen-
eral volume reduction manifested by reduced gyral volume,
increased sulcal space, passive increase in ventricular vol-
ume (i.e., hydrocephalus ex vacuo), increase in whole brain
cerebral spinal fluid (CSF; Graham et al., 2002), and struc-
tural atrophy (e.g. hippocampus, basal ganglia, etc.). These
changes may not be apparent visually but can be readily
documented using quantitative MR analyses (Bigler, 2001).
Thus, quantitative neuroimaging may detect important neuro-
pathological changes in these cases that otherwise may not
be detected.

The accidental hypothermia in these two cases likely con-
tributed to preservation of life, but was not entirely neuro-
protective, because both individuals had long-term
neuropsychological and behavioral changes. The neuropsy-
chological and neurobehavioral changes are similar to that
observed after anoxia because of other etiologies. It is unclear
if the accidental hypothermia reduced the extent and sever-
ity of the neuropsycholgoical and behavioral changes in
these two cases, but it is certainly possible given the long
duration of anoxia experienced by these two individuals.
Research on the long-term effects of anoxia with and with-
out cold water near-drowning on neuropathology, neuropsy-
chological, and neurobehavioral outcomes is needed to better
elucidate the effects of and possible benefits of accidental
hypothermia.
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