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Abstract

In this paper we prove existence and qualitative properties of solutions for a nonlinear elliptic system
arising from the coupling of the nonlinear Schrödinger equation with the Poisson equation. We use a
contraction map approach together with estimates of the Bessel potential used to rewrite the system in an
integral form.
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1. Introduction

We are concerned with existence and qualitative properties of solutions for the system{
−∆u + Vu + ωK(x)ϕu = a(x)|u|p−1u + f (x) in Rn,
−∆ϕ = K(x)u2 in Rn,

(1.1)

where p > n/(n − 2), p ≥ 2, n ≥ 3, the potential V ≥ 0 is a constant, ω ∈ R and K, a, f
are given functions in some appropriate Lebesgue space. Throughout this paper, the
weight functions K and a satisfy the following assumptions:

(H1) K ∈ Lq(Rn) for q = n(p − 1)/(2p − 4) (q =∞ if p = 2), K(x) ≥ 0 for almost every
x ∈ Rn and K . 0;

(H2) a ∈ L∞(Rn) and V = 1.

Equations similar to (1.1) have been considered in [8, 12, 25, 26], where the authors
studied the Thomas–Fermi–von Weizsäcker model in quantum mechanics theory. In
this model p = 5/3 and up is replaced by −up. If one drops the nonlinear term up,
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then problem (1.1) is the Schrödinger–Poisson equation (also called the Schrödinger–
Maxwell equation), which has been studied in connection with semiconductor theory;
see [6, 7, 27, 28] and references therein. Taking n = 3, K ≡ 1, a ≡ 1 and f ≡ 0, system
(1.1) reduces to {

−∆u + Vu + ωϕu = |u|p−1u in R3,
−∆ϕ = u2 in R3.

(1.2)

Recent works dealing with (1.2) have addressed existence and nonexistence of
solutions, multiplicity of solutions, ground states, radially and nonradially symmetric
solutions, the semiclassical limit and concentration of solutions; see [1–3, 5, 13, 15–
18, 24, 30–32, 34, 36]. In [15], there is proved the existence of a nontrivial radial
solution of (1.2) when 3 < p < 5 and V is a positive constant. The same result was
established in [17] for 3 ≤ p < 5. In [16], by using a Pohozaev-type identity, D’Aprile
and Mugnai proved that (1.2) has no nontrivial H1-solution for p ≤ 1 or p ≥ 6. This
result was completed in [31], where Ruiz showed that if p ≤ 2, then the problem (1.2)
does not admit any nontrivial solution in H1 × D1,2 and, if 2 < p < 5, there exists a
nontrivial radial solution for (1.2). To the best of our knowledge, the first result on
the existence of H1 × D1,2 ground state solutions to the problem (1.2) was obtained
by Azzollini and Pomponio in [5] when 2 < p < 5 and V is a positive constant. The
nonconstant-potential case was also treated in [5] for 3 < p < 5 and V being a function
bounded from above. In [2], Azzollini dealt with the case V = 0 by means of the
concentration–compactness principle and proved existence of a nonradial solution in
H1 × D1,2 by considering a nonlinearity of Berestycki–Lions type in place of |u|p−1u.
The nonhomogeneous case, that is, f . 0, has been treated in [9, 14, 33] and existence
of multiple radially symmetric solutions for problem (1.1) was obtained. If K = 1,
a = 1 and n = 3, problem (1.1) can be regarded as a perturbation problem of the
homogeneous one: {

−∆u + u + ωϕu = |u|p−1u in R3,
−∆ϕ = u2 in R3.

(1.3)

Candela and Salvatore [9] proved that if p ≥ 5 and u ∈ H1(R3) ∩ Lq(R3) is a solution
of (1.3) for some q > 1, then u = ϕ = 0. Thus, it is natural to wonder about existence of
nontrivial solutions for the perturbation problem (1.1) in a Lq-framework. System (1.1)
is different from commonly studied elliptic problems due to its nonlocal nonlinearity

ωK(x)ϕu = ωK(x)
[ cn

|x|n−2 ∗ (K(x)u2)
]
u,

where cn is a positive constant. Nonlocal nonlinearities arise naturally in a wide
variety of physical phenomena and their mathematical analysis is at the crossroads
of a number of mathematical approaches; see for example [10] for minimization and
flow-gradient techniques combined with probability ideas. Models like (1.1) have
been treated in the light of variational methods, mainly by a suitable critical point
theory as observed in [29]. Unlike this, we will use a nonvariational approach based
on contraction arguments and scaling invariance. This general strategy has already
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been used in [19–22] to treat elliptic equations with nonlinearities depending on local
operators and with singular anisotropic potentials in suitable spaces; namely, weighted
singular L∞(Rn, |x|k dx), anisotropic Lebesgue and pseudo-measure spaces. We show
existence of a solution (u, ϕ) ∈ Lr0 (Rn) × Lr0 (Rn) for p in the range n/(n − 2) < p <∞
(with p ≥ 2), which covers critical and supercritical cases for variational approaches.
We use the Bessel potential to state the integral formulation of (1.1), where r0 =

n(p − 1)/2 is the unique exponent such that the norm of Lr0 × Lr0 is invariant by
the scaling (u, ϕ)→ (uλ, ϕλ) := λ2/p−1(u(λx), ϕ(λx)) defined in Section 2. In fact, we
also show that |∇u| ∈ Lr0 (Rn) and then u is also a W1,r0 -weak solution for (1.1). The
existence of solutions for (1.1) in the general setting of the present paper, as well as
their properties we proceed to describe, have not been addressed before. The solutions
are unique in a suitable ball of Lr0 and depend continuously on the given data K and
f (see Theorem 3.1). Also, we show qualitative properties of the obtained solutions
like positivity, radial symmetry and parity, depending on the data K, a, f . For instance,
solutions are even when K(x), a(x), f (x) are also even functions, and they are positive
if K(x), a(x), f (x) are nonnegative functions, f . 0 and ω < 0. We refer the reader
to [29] for further positivity results for (1.1) in the case ω < 0. Finally, we remark
that the proofs performed here work well for arbitrary V ≥ 0 (including V = 0) and
the hypothesis V = 1 above is prescribed only for the sake of simplicity. Also, our
approach can be used to study the nonlinear Klein–Gordon equations coupled with
Maxwell equations{

−∆u + [m2 − (ω + ϕ)2]u = a(x)|u|p−1u + f in R3,
−∆ϕ + (ω + ϕ)u2 = 0 in R3,

which have been the object of study of many authors; see [4, 9, 11] and their references.
This paper is organized as follows. In the next section, we state and prove our

existence result for (1.1). The continuous dependence of solutions with respect to
given data is analyzed in Section 3. In the last section, we deal with symmetry and
positivity properties of solutions.

2. Scaling and existence result

In this section, we are concerned with the existence of solutions for problem (1.1).
From now on we assume that ω , 0 and for simplicity take V = 1 in (1.1). Before
stating our results, we perform a scaling analysis in order to find the right space setting
to investigate existence of solutions for (1.1). For that matter, just for a moment, we
assume that Kλ(x) = λαK(λx) for some α ≥ 0. Let the pair (u, ϕ) be a classical solution
for (1.1). We look for the values of k and l so that the rescaled pair (uλ, ϕλ), defined by

uλ(x) = λku(λx) and ϕλ(x) = λlϕ(λx), λ > 0,

is also a solution for (1.1) with V = 0. Inserting uλ(x) and ϕλ(x) into (1.1) with f ≡ 0,

−λl+2∆ϕ(λx) = λ2k+αK(λx)(u(λx))2
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for all λ > 0 and x ∈ Rn. Since (u, ϕ) is a solution,

l + 2 = α + 2k. (2.1)

Taking into account that

−λk+2∆u(λx) + λkVu(λx) + ωλk+l+αK(λx)u(λx)ϕ(λx) = λkp|u(λx)|p−1u(λx)

and ignoring the linear term,

k + l + α = k + 2 = kp. (2.2)

It follows from relations (2.1)–(2.2) that

k = l =
2

p − 1
and α =

2p − 4
p − 1

. (2.3)

Motivated by this informal analysis, we define the scaling map

(u, ϕ)→ (uλ, ϕλ) (2.4)

with k = l given in (2.3). Notice that in fact (uλ, ϕλ) is a solution of (1.1) for V = 0
whenever (u, ϕ) is, and then (2.4) works like an intrinsic scaling of (1.1) inherited from
this latest case. For brevity, we simply call (2.4) the scaling map of (1.1). We shall
study existence of solutions in Lebesgue spaces, whose norms are invariant by (2.4).
Indeed, looking for invariant norms, the map (2.4) indicates the correct index in order
to perform a contraction argument for (1.1). Set r0 and r1 by

r0 =
n
k

=
n(p − 1)

2
and r1 =

n
k + 1

=
n(p − 1)

p + 1
. (2.5)

The index r0 is the unique one that makes the Lr0 × Lr0 -norm scaling invariant. Also,
the norm ‖∇(·)‖r1 is invariant by (2.4) and it will be useful to reach regularity of
solutions. Let G1(x − y) > 0 be the Bessel kernel associated to the operatorL = −∆ + I.
We recall that the Bessel kernel Gα, α > 0, is defined by the Fourier transform

Ĝα(ξ) = (1 + |ξ|2)−α for all ξ ∈ Rn. (2.6)

The system (1.1) is formally equivalent to the following system of integral equations:

u(x) =

∫
Rn

G1(x − y)(a|u|p−1u − ωKuϕ + f )(y) dy, (2.7)

ϕ(x) =
1

(n − 2)ωn

∫
Rn

1
|x − y|n−2 (Ku2)(y) dy, (2.8)

where ωn = σ(Sn−1) stands for the area of Sn−1 = {x ∈ Rn : |x| = 1}. We rewrite the
integral system (2.7)–(2.8) in the functional form{

u = B1(u) − ωB2(u, ϕ) + F( f ),
ϕ = B3(u), (2.9)
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where

F( f )(x) =

∫
Rn

G1(x − y) f (y) dy, (2.10)

B1(u)(x) =

∫
Rn

G1(x − y)(a|u|p−1u)(y) dy, (2.11)

B2(u, ϕ)(x) =

∫
Rn

G1(x − y)(Kuϕ)(y) dy, (2.12)

B3(u)(x) =
1

(n − 2)ωn

∫
Rn

1
|x − y|n−2 (Ku2)(y) dy. (2.13)

Now we are ready to state our existence result.

Theorem 2.1. Let p > n/(n − 2), p ≥ 2, and let r0, r1 be as in (2.5). Suppose that
f ∈ Lθ(Rn) and K ∈ Lq(Rn), where

θ =
n

k + 2
=

n(p − 1)
2p

and q =
n
α

=
n(p − 1)
2p − 4

(q =∞ if p = 2).

(A) There exists ε > 0 such that if ‖ f ‖θ ≤ ε/2C1, then the integral system (2.9) has a
unique solution

(u, ϕ) ∈ Lr0 (Rn) × Lr0 (Rn)

satisfying ‖u‖r0 ≤ ε and ‖ϕ‖r0 ≤ ε, where C1 is as in Lemma 2.3.
(B) Moreover, the pair (u, ϕ) is a solution in the sense of distributions and satisfies

|∇u| ∈ Lr1 (Rn) and |∇ϕ| ∈ Lr1 (Rn).

In what follows, we establish some technical lemmas that will be needed in the
proof of the main theorems. First, we recall the Hardy–Littlewood–Sobolev inequality
in Lr spaces (see for example [23, Theorem 6.1.3, page 415]).

Lemma 2.2 (Hardy–Littlewood–Sobolev). Let r and z be such that 1 < r < z < ∞,
1/z = 1/r − β/n, where 0 < β < n. Then there exists C = C(r, β) such that

‖|x|−(n−β) ∗ f ‖z ≤ C‖ f ‖r

for all f ∈ Lr(Rn).

Before proceeding, we recall that (see Stein [35]) there exists C > 0 such that

0 ≤ G1(x) ≤ C|x|2−n for all x ∈ Rn, (2.14)
|∇G1(x)| ≤ C|x|1−n for all x ∈ Rn. (2.15)

As a consequence of the Hardy–Littlewood–Sobolev inequality, our first task is to
establish some useful estimates in our functional setting.
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Lemma 2.3. Under the hypotheses of Theorem 2.1, consider the operator defined by

H(h)(x) =

∫
Rn

1
|x − y|n−2 h(y) dy and H̃(h)(x) =

∫
Rn

1
|x − y|n−1 h(y) dy. (2.16)

Then there exist constants M1,M2 > 0 (independent of h) such that

‖H(h)‖r0 ≤ M1‖h‖θ, (2.17)
‖H̃(h)‖r1 , ‖∇H(h)‖r1 ≤ M2‖h‖θ. (2.18)

Furthermore, if m is a multi-index and 1 < t1 < b1 < ∞ with 1/b1 = 1/t1 − 2/n, then
there exists a constant M3 > 0 (independent of h and m) such that

‖∇mH(h)‖b1 ≤ M3‖∇
mh‖t1 . (2.19)

Proof. In view of (2.5), we have that 1/r0 = 1/θ − 2/n. According to Lemma 2.2 with
z = r0, r = θ and β = 2,

‖H(h)‖r0 =

∥∥∥∥∥ 1
|x|n−2 ∗ h

∥∥∥∥∥
r0

≤ C‖h‖θ,

which yields estimate lemma 2.3. To prove lemma 2.3, first we observe that

∇H(h)(x) =

∫
Rn
∇x

( 1
|x − y|n−2

)
h(y) dy

and ∣∣∣∣∣∇x

( 1
|x − y|n−2

)∣∣∣∣∣ ≤ C
|x − y|n−1 .

Taking into account the fact that
1
r1

=
k
n

+
1
n

=
k + 2

n
−

1
n

=
1
θ
−

1
n
,

Lemma 2.2 with z = r1, r = θ and β = 1 yields

‖∇H(h)‖r1 ≤ C
∥∥∥∥∥∫
Rn

1
|x − y|n−1 |h(y)| dy

∥∥∥∥∥
r1

≤ C‖h‖θ,

which is the estimate (2.18). Since H(h) is a convolution, we can compute the weak
derivative ∇mH(h) as

∇mH(h)(x) =

∫
Rn

1
|x − y|n−2 (∇mh)(y) dy.

In view of the hypothesis 1/b1 = 1/t1 − 2/n, Lemma 2.2 with z = b1, r = t1 and β = 2
yields

‖∇mH(h)‖b1 =

∥∥∥∥∥∫
Rn

1
|x − y|n−2 (∇mh)(y) dy

∥∥∥∥∥
b1

≤ M3‖∇
mh‖t1 ,

and the estimate (2.19) follows. �
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Remark 2.4. Invoking (2.14)–(2.15), we conclude that there exists a constant C > 0
such that

|∇mF( f )(x)| ≤ CH(|∇m f |)(x) and |∇F( f )(x)| ≤ CH̃(| f |)(x) (2.20)

for all x ∈ Rn and m ∈ N. Thus, by Lemma 2.3, we obtain C1,C2 > 0 (independent
of f ) such that

‖F( f )‖r0 ≤ C1‖ f ‖θ, (2.21)
‖∇F( f )‖r1 ≤ C2‖ f ‖θ. (2.22)

Furthermore, if m is a multi-index and 1/b1 = 1/t1 − 2/n, then there exists a constant
C3 > 0 (independent of f ) such that

‖∇mF( f )‖b1 ≤ C3‖∇
m f ‖t1 .

In the next three lemmas we estimate the nonlinear operators in (2.11)–(2.13).

Lemma 2.5 (Estimate of B1). Under the hypotheses of Theorem 2.1, there are positive
constants L1,K1 such that

‖B1(u) − B1(v)‖r0 ≤ L1‖u − v‖r0 (‖u‖p−1
r0 + ‖v‖p−1

r0 ), (2.23)

‖∇[B1(u) − B1(v)]‖r1 ≤ K1‖u − v‖r0 (‖u‖p−1
r0 + ‖v‖p−1

r0 ) (2.24)

for all u, v ∈ Lr0 (Rn).

Proof. We first observe that B1(u) − B1(v) = F(au|u|p−1 − av|v|p−1). Invoking the
pointwise estimate

|s|s|p−1 − t|t|p−1| ≤ p|s − t|(|s|p−1 + |t|p−1) for all s, t ∈ R, (2.25)

and using the Hölder inequality with

1
θ

=
k + 2

n
=

1
r0

+
p − 1

r0
,

we infer from (2.21) that

‖B1(u) − B1(v)‖r0 ≤ C1 p‖a‖∞‖ |u − v|(|u|p−1 + |v|p−1)‖θ

≤ L1‖u − v‖r0 (‖u‖p−1
r0 + ‖v‖p−1

r0 ),

which proves estimate (2.23). To prove (2.24), first we observe that

∇B1(u)(x) =

∫
Rn
∇x(G1(x − y))(a|u|p−1u)(y) dy.

Then we can invoke (2.15) and (2.20) to derive that

|∇B1(u)(x) − ∇B1(v)(x)| = |∇F[(a|u|p−1u − a|v|p−1v)](x)|

≤ C‖a‖∞H̃[| |u|p−1u − |v|p−1v|](x).

Using estimates (2.25) and (2.18), we easily conclude that estimate (2.24) holds. �
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Lemma 2.6 (Estimate of B2). Under the hypotheses of Theorem 2.1, there are positive
constants L2,K2 such that

‖B2(u, ϕ)‖r0 ≤ L2‖u‖r0‖ϕ‖r0 , (2.26)

‖∇B2(u, ϕ)‖r1 ≤ K2‖u‖r0‖ϕ‖r0 (2.27)

for all u, ϕ ∈ Lr0 (Rn).

Proof. Clearly, we have B2(u, ϕ) = F(Kuϕ). Using inequality (2.21) and the Hölder
inequality with 1/θ = n/α = 1/r0 + 1/r0 + 1/q, we conclude that

‖B2(u, ϕ)‖r0 ≤ C1‖Kuϕ‖θ ≤ C1‖K‖q‖u‖r0‖ϕ‖r0 ,

which is the required inequality with L2 = C1‖K‖q. To prove (2.27), we observe that
∇B2(u, ϕ) = ∇F(Kuϕ). Therefore, we can use (2.22) to obtain

‖∇B2(u, ϕ)‖r1 = ‖∇F(Kuϕ)‖r1 ≤ C2‖Kuϕ‖θ,

and the result follows by the Hölder inequality. �

Lemma 2.7 (Estimate of B3). Under the hypotheses of Theorem 2.1, there are constants
L3,K3 > 0 such that

‖B3(u) − B3(v)‖r0 ≤ L3‖u − v‖r0 (‖u‖r0 + ‖v‖r0 ), (2.28)

‖∇[B3(u) − B3(v)]‖r1 ≤ K3‖u − v‖r0 (‖u‖r0 + ‖v‖r0 ) (2.29)

for all u, v ∈ Lr0 (Rn).

Proof. Clearly, B3(u) − B3(ϕ) = H(K(u2 − v2)). Since

1
θ

=
n
α

=
1
r0

+
1
r0

+
1
q
,

using inequality (2.17) together with the Hölder inequality we conclude that

‖B3(u) − B3(v)‖r0 ≤ M1‖K(u2 − v2)‖θ
≤ M1‖K‖q‖u − v‖r0 (‖u‖r0 + ‖v‖r0 ),

which gives the desired inequality with L3 = M1‖K‖q. To prove (2.29), in view
of (2.18),

‖∇[B3(u) − B3(v)]‖r1 = ‖∇H(K(u2 − v2))‖r1

≤ M2‖K(u2 − v2)‖θ,

and the result follows by the Hölder inequality. �
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Now we are ready to present the proof of Theorem 2.1.

2.1. Proof of Theorem 2.1. Part A. Notice that the system (2.9) can be rewritten as
follows:

u = B1(u) − ωB2(u, B3(u)) + F( f ). (2.30)

Consider the map T : Lr0 (Rn)→ Lr0 (Rn) defined by

T (u) = B1(u) − ωB2(u, B3(u)) + F( f ).

In view of the previous estimates, the map T is well defined. Furthermore, if ‖ f ‖θ ≤
ε/2C1 and ‖u‖r0 ≤ ε,

‖T (u)‖r0 ≤ ‖B1(u)‖r0 + |ω| ‖B2(u, B3(u))‖r0 + ‖F( f )‖r0

≤ L1‖u‖
p
r0 + L2|ω| ‖u‖r0‖B3(u)‖r0 + C1‖ f ‖θ

≤ L1ε
p + L2L3|ω| ‖u‖r0‖u‖

2
r0

+
ε

2
≤ L1ε

p + L2L3|ω|ε
3 +

ε

2
< ε,

provided that
2L1ε

p−1 + 2L2L3|ω|ε
2 < 1. (2.31)

Thus, if Bε = {u ∈ Lr0 : ‖u‖r0 ≤ ε}, then we conclude that T (Bε) ⊂ Bε for ε > 0 as
in (2.31). We claim that indeed T : Bε → Bε is a contraction. Taking u, v ∈ Bε and
using estimates (2.23), (2.26) and (2.28),

‖T (u) − T (v)‖r0

≤ ‖B1(u) − B1(v)‖r0 + |ω| ‖B2(u, B3(u)) − B2(v, B3(v))‖r0

≤ ‖B1(u) − B1(v)‖r0 + |ω| ‖B2(u − v, B3(u))‖r0 + |ω| ‖B2(v, B3(u) − B3(v))‖r0 .
(2.32)

Now observe that

‖B2(u − v, B3(u))‖r0 ≤ L2‖u − v‖r0‖B3(u)‖r0

≤ L2L3‖u − v‖r0‖u‖
2
r0

≤ L2L3ε
2‖u − v‖r0 (2.33)

and

‖B2(v, B3(u) − B3(v))‖r0 ≤ L2‖v‖r0‖B3(u) − B3(v)‖r0

≤ L2L3‖v‖r0‖u − v‖r0 (‖u‖r0 + ‖v‖r0 )

≤ 2L2L3ε
2‖u − v‖r0 . (2.34)

It follows from estimates (2.23), (2.32), (2.33) and (2.34) that

‖T (u) − T (v)‖r0 ≤ [2L1ε
p−1 + |ω|(3L2L3)ε2]‖u − v‖r0 .
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Choosing ε > 0 sufficiently small in such a way that 2L1ε
p−1 + |ω|(3L2L3)ε2 < 1, our

claim is proved. For each ε > 0 fixed, the ball Bε = {u ∈ Lr0 : ‖u‖r0 ≤ ε} endowed with
the metric Z(u, v) = ‖u − v‖r0 is complete. Hence, T has a fixed point in Bε, which is
the unique solution u for (2.30) satisfying ‖u‖r0 ≤ ε. Now, going back to the second
equation in (2.9) and reducing ε > 0 if necessary,

‖ϕ‖r0 = ‖B3(u)‖r0 ≤ L3‖u‖2r0
≤ (L3ε)ε ≤ ε,

which concludes the proof of Part A.

Part B. Since f ∈ Lθ(Rn) and (u, ϕ) ∈ Lr0 (Rn) × Lr0 (Rn) satisfies (2.9), it follows from
(2.29) with ϕ = 0 that

‖∇ϕ‖r1 = ‖∇B3(u)‖2r1
≤ K3‖u‖2r0

<∞.

On the other hand, by (2.9) and the estimates (2.24) and (2.29),

‖∇u‖r1 ≤ ‖∇F(Kuϕ)‖r1 + ‖∇F( f )‖r1

≤ C1‖Kuϕ‖θ + C1‖ f ‖θ
≤ C1‖K‖q‖u‖r0‖ϕ‖r0 + C1‖ f ‖θ <∞,

and this concludes the proof. �

3. Continuous dependence

In this section, we show the continuous dependence of solutions for the given data.

Theorem 3.1. Under the assumptions of Theorem 2.1, let u and ũ be solutions as in
Part A of Theorem 2.1 corresponding to ( f ,K, ε) and ( f̃ , K̃, ε̃), respectively. Then

‖u − ũ‖r0 ≤
C1[|ω|ε2(1 + M1ε̃‖K̃‖q) + 1]

1 − ψ(ε, ε̃)
(‖K − K̃‖q + ‖ f − f̃ ‖θ), (3.1)

provided that

ψ(ε, ε̃) = C1[(εp−1 + ε̃p−1)‖a‖∞ + ε‖K̃‖q + ε̃(ε + ε̃)M1|ω|‖K̃‖2q] < 1. (3.2)

In particular, the data-solution map ( f ,K)→ (u, ϕ) is continuous.

Proof. We have that ‖(u, ϕ)‖r0 ≤ ε and ‖(ũ, ϕ̃)‖r0 ≤ ε̃ with

u = B1(u) − ωF(Kuϕ) + F( f )

and
ũ = B1(ũ) − ωF(K̃ũϕ̃) + F( f̃ ).

Subtracting the last two inequalities,

‖u − ũ‖r0 ≤ ‖a‖∞C1‖u − ũ‖r0 (‖u‖p−1 + ‖ũ‖p−1
r0 )

+ |ω| ‖F(Kuϕ − K̃ũϕ̃)‖r0 + C1‖ f − f̃ ‖θ. (3.3)
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Since
Kuϕ − K̃ũϕ̃ = (K − K̃)uϕ + K̃(u − ũ)ϕ + K̃ũ(ϕ − ϕ̃)

and 1/θ = n/α = 1/r0 + 1/r0 + 1/q, one can use the Hölder inequality together with
Lemma 2.2 to infer that

‖F(Kuϕ − K̃ũϕ̃)‖r0

≤ C1(‖K − K̃‖q‖u‖r0‖ϕ‖r0 + ‖K̃‖q‖u − ũ‖r0‖ϕ‖r0 + ‖K̃‖q‖ũ‖r0‖ϕ − ϕ̃‖r0 )

≤ C1(ε2‖K − K̃‖q + ε‖K̃‖q‖u − ũ‖r0 + ε̃‖K̃‖q‖ϕ − ϕ̃‖r0 ). (3.4)

On the other hand, using again the Hölder inequality together with Lemma 2.2,

‖ϕ − ϕ̃‖r0 = ‖H((K − K̃)u2 + K̃(u2 − ũ2))‖r0

≤ M1[(‖K − K̃‖q‖u‖2r0
+ ‖K̃‖q‖u − ũ‖r0 (‖u‖r0 + ‖ũ‖r0 ))]

≤ M1(ε2‖K − K̃‖q + (ε + ε̃)‖K̃‖q‖u − ũ‖r0 ). (3.5)

From estimates (3.3), (3.4) and (3.5),

‖u − ũ‖r0 ≤ C1|ω|ε
2(1 + M1ε̃‖K̃‖q)‖K − K̃‖q + C1‖ f − f̃ ‖θ

+ C1[(εp−1 + ε̃p−1)‖a‖∞ + ε‖K̃‖q + ε̃(ε + ε̃)M1|ω| ‖K̃‖2q]‖u − ũ‖r0

≤ C1|ω|ε
2(1 + M1ε̃‖K̃‖q)‖K − K̃‖q + C1‖ f − f̃ ‖θ + ψ(ε, ε̃)‖u − ũ‖r0 ,

which, together with (3.2), gives (3.1).
The last assertion in the statement follows at once from (3.1) and (3.5). �

4. Qualitative properties
In this section, we deal with symmetry and positivity properties of the solution

depending on K, a, f .

Theorem 4.1. Assume the hypotheses of Theorem 2.1. Then we have the following
statements.

(A) (Radial symmetry) If K(x), a(x), f (x) are radial, then the solution (u, ϕ) is radial.
(B) (Parity) If K(x), a(x), f (x) are even functions, then u and ϕ are even functions. If

K(x), a(x) are even functions and f (x) is odd, then u is odd and ϕ is even.
(C) (Positivity) Let f . 0 be nonnegative. The solution (u, ϕ) is positive, that is, ϕ > 0

and u > 0, when a(x),K(x) are nonnegative functions and ω < 0.

Proof. Part A. Recall that f is radial if and only if f (x) = f (Ax) for every orthogonal
transformation A. Denoting fA(x) = f (Ax), for each such A,

F( f )(A(x)) =

∫
Rn

G1(A(x) − y) f (y) dy

=

∫
Rn

G1(A(x − A−1(y))) f (y) dy

=

∫
Rn

G1(x − A−1(y)) f (y) dy,
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because G1 is radially symmetric (see (2.6)). The change of variables A−1(y) = z yields

F( f )(A(x)) =

∫
Rn

G1(x − z)[ f (A(z))] dz

=

∫
Rn

G1(x − z) f (z) dz = F( f )(x).

Therefore, F( f ) is radial whenever f is radial. Similarly, if h is radial, then H(h) is
also, where the operator H(·) is defined in (2.16). Rewriting (2.7)–(2.8) as

u = F(a|u|p−1u) − ωF(Kuϕ) + F( f ) and ϕ =
1

(n − 2)ωn
H(Ku2), (4.1)

one can see that the pair (uA, ϕA) is also a solution for (4.1). In view of Lp-norms
being invariant by the operator f → fA, it follows that ‖(uA, ϕA)‖Lr0×Lr0 = ‖(u, ϕ)‖Lr0×Lr0 .
So, for each rotation A, (u, ϕ) = (uA, ϕA) because solutions are unique in the ball
‖(u, ϕ)‖Lr0×Lr0 ≤ ε.

Part B. Let (u, ϕ) be the solution of (4.1) and denote (ũ, ϕ̃) = (u(−x), ϕ(−x)). Let f be
even, that is, f (z) = f (−z). Then, since G1 is even (see (2.6)),

F( f )(−x) =

∫
Rn

G1(−x − z)[ f (z)] dz

=

∫
Rn

G1(x − z) f (−z) dz = F( f )(x),

which implies that F( f ) is also even. Similarly, H(h) is even provided that h is also.
So, we can check that (ũ, ϕ̃) also verifies (4.1) and ‖(ũ, ϕ̃)‖Lr0×Lr0 = ‖(u, ϕ)‖Lr0×Lr0 ≤ ε.
Again, by uniqueness, we obtain (u, ϕ) = (ũ, ϕ̃), as required.

The second part of the statement follows similarly by considering (ũ, ϕ̃) =

(−u(−x), ϕ(−x)) and f odd instead of (ũ, ϕ̃) = (u(−x), ϕ(−x)) and f even, respectively.

Part C. From the fixed point argument in the proof of Theorem 2.1(A), we deduce that
the solution (u, ϕ) can be obtained as the limit in Lr0 × Lr0 of the Picard interaction

uk+1 = B1(uk) − ωB2(uk, ϕk) + F( f ) and ϕk = B3(uk), k ∈ N,

where u1 = F( f ). We have that f (x) > 0 in a positive measure set Q. In view of (2.10),
it follows that u1 > 0 almost everywhere in Rn, because the Bessel kernel G1(x − y)
is positive. By an induction argument, one can see that uk and ϕk are positive if
a,K ≥ 0 and ω < 0. Since (uk, ϕk)→ (uk, ϕk) in Lr0 × Lr0 , it follows that u ≥ 0 almost
everywhere in Rn. Returning to the integral equation (2.30),

u = B1(u) − ωF(KuB3(u)) + u1 ≥ 0 + 0 + u1 > 0 almost everywhere in Rn.

Since ϕ = B3(u), we also get that ϕ > 0 almost everywhere in Rn. This concludes the
proof. �
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