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Abstract

Objective: To produce prediction equations for basal metabolic rate (BMR) derived
from weight and height covering the age range from birth to old age.
Design: Cross-sectional data on BMR, sex, age, weight, height, ethnicity and
measurement technique from the Oxford Brookes BMR database.
Setting: Worldwide.
Subjects: Data for 13 910 men, women and children from 174 papers published
between 1914 and 2001.
Results: Absolute and proportional regression models were developed for each sex,
showing a steep rise in predicted BMR with age until 15 years, more pronounced in
males than females, then a gradual fall through adulthood. Predicted BMR increased
by 6% and 1.4%, respectively, per standard deviation increase in weight and height.
Predicted BMR in Caucasians was 4% higher than in non-Caucasians, though the
effect size was sensitive to the inclusion or exclusion of data from certain influential
publications. The effect of measurement technique on BMR, closed-circuit versus
open-circuit, was small, near 1%.
Conclusions: It is possible to develop prediction equations that avoid splitting the data
into arbitrary age groups. Heterogeneity between publications is greater than might
be expected by chance, probably due to undocumented differences in technique.
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Introduction

The Oxford Brookes database consists of 13 910

measurements of basal metabolic rate (BMR) in men,

women and children assembled from 174 papers

published between 1914 and 2001. The database

includes information on the ethnicity, sex, age, weight

and height of each subject, plus the year of the paper’s

publication and a flag distinguishing between BMR

measured by open-circuit and closed-circuit calorimetry.

The purpose of this analysis is to produce a set of

prediction equations for BMR, which can be applied to

individuals worldwide.

The age range of the subjects in the database is 0–106

years. Previously published equations have applied to

particular age groups, e.g. females age 3–10 or males age

30–60. But this leads to discontinuities at the boundaries

between age groups, so that for example a girl aged 2.99

has a materially different predicted BMR than for an

otherwise similar girl aged 3.01. In addition, splitting the

data into age groups reduces the sample size and makes

individual research papers, focusing on particular ages,

more influential than they would otherwise be.

The philosophy of the analysis here is to derive

‘seamless’ sex-specific equations which cover infancy to

old age while avoiding discontinuities between age

groups, and which also make use of the entire dataset.

Statistical methods

Seamless analysis

The main implication of this ‘seamless’ approach is that

the analysis should combine data for children and adults,

which has not previously been done. It poses a

significant technical problem in that BMR, plus the two

important covariates of body size and shape, weight and

height, change rapidly with age during childhood, but

are relatively insensitive to age once adulthood is

reached.

The approach used here is to first standardise all three

measurements – BMR, weight and height – for age, and

then to relate age-standardised BMR to age-standardised

weight and age-standardised height. It is then straightfor-

ward to quantify the effects of ethnicity and measurement

technique across the lifespan.

The process of standardising weight and height for age

in childhood is well understood, and many growth

references exist which allow their conversion to reference

centiles and Z-scores. Converting a measurement to a

Z-score involves subtracting a mean value for the

individual’s age and sex, and dividing by an age-sex-

specific standard deviation (SD):

Z-score ¼
Measurement2Mean for age and sex

SD for age and sex
ð1Þ
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The reference used here is the British 1990 reference1,

though it needs to be emphasised that any other reference

could be used, and the conclusions reached would be

broadly the same. The advantages of the British reference

are that it is soundly statistically based, using the LMS

(lambda, mu, sigma) method2, and it is available in

computerised form. The LMS method uses the coefficient

of variation (CV ¼ SD/mean) of the measurement rather

than the SD, and extends the Z-score calculation to include

a skewness adjustment, but the principle is the same.

To ensure a unified treatment across the lifespan, adult

weight and height need to be converted to Z-scores as

well. The British reference extends only to age 23, so for

simplicity adult weight and height Z-scores are calculated

here assuming an adult age of 20 years. Again this

assumption is not critical, as a later stage of the analysis

provides a further opportunity for age adjustment during

adulthood.

No references exist to convert BMR to Z-scores, and in

any case the current analysis is intended to provide such a

reference. For Z-scores to be calculated, reference values

for the mean and SD of BMR need to be derived, consisting

of smooth curves by sex plotted against age.

The mean curve rises steeply during childhood,

reflecting the concurrent increase in body size, it peaks

at some age in early adulthood, and subsequently stays

fairly flat, possibly with a slight falling trend. This form of

curve is difficult to estimate using conventional regression

analysis, as it combines a steeply rising early region with

an essentially flat later region, and a fairly abrupt joining

point. It can be estimated using a cubic smoothing spline

curve (which is the basis of the LMS method that was used

for the British 1990 weight and height references), or it can

be made by ‘gluing together’ a polynomial curve for

childhood and a polynomial curve for adulthood. Both

approaches are used here.

In the same way a smooth curve can be derived for the

SD of BMR versus age. Like the mean, the SD depends

strongly on age, being far less in young children (when

mean BMR is relatively small) than say in young adults

where mean BMR is at a maximum. If this age dependence

of the SD is ignored the regression analysis focuses only

on the data where the variability is greatest, i.e. in

adulthood, and it broadly ignores the childhood data. To

avoid this two approaches are possible: (1) weighted

regression analysis to take the varying SD into account, or

(2) unweighted regression analysis assuming that the SD is

proportional to the mean, so that the ratio of the two, i.e.

the CV, remains constant. This is explained further below.

The LMS method

The BMR data were first analysed using the LMS method2.

This analysis ignored height, weight and the other factors,

and was purely to explore age changes in the distribution

of BMR. The LMSmethod derives the mean and SD of BMR

by age, after choosing a suitable power transformation to

make the data closer to normally distributed. The three

quantities – mean, proportional SD (or CV), and power

transform – are summarised as smooth curves plotted

against age.

The preliminary analysis led to three conclusions:

. The best power transformation was somewhere

between a log transform and no transform, so either

could be used;

. The shape of the mean curve was too complex to model

adequately with a cubic smoothing spline, with a steep

rise up to age 17 then a gradual fall through adulthood.

But the partially smoothed curve was useful for

assessing the fit of the regression models developed

later;

. The CV was fairly constant across the age range,

between 12% and 16%. This means that the SD of BMR is

about one-seventh (14%) of mean BMR at all ages.

Absolute and proportional effects

The usual regression model developed to predict BMR

assumes absolute effects. To show what this means, take

the regression coefficient of BMR on weight Z-score. This

coefficient is the change in BMR associated with a unit

change in weight Z-score (i.e. one weight SD) – it

represents an absolute effect on BMR and is in units of

MJ day21 per weight SD.

But BMR can also be modelled assuming proportional

effects. The coefficient of weight Z-score then reflects the

proportional change in BMR, measured say in percentage

units, per weight SD.

For an adult population the two forms of regression

model give similar results, but with a mixed adult-child

population the absolute and proportional models can be

very different. Consider the regression coefficient of

weight Z-score: with the absolute model it is the average

difference in BMR between individuals whose weights

differ by 1 SD. But this depends on age, as BMR is

relatively small in childhood and the effect of weight

Z-score must be similarly small. In crude terms the weight

effect is likely to change with age in line with mean BMR.

But the absolute model assumes erroneously that the

effect is constant with age.

By contrast the regression coefficient ofweightZ-score in

the proportional model is less affected by age. It measures

the mean percentage difference in BMR between individ-

uals differing by 1 weight SD. This is broadly independent

of mean BMR, and so is not directly related to age. The

proportional effect may well be fairly constant, e.g. a

regression coefficient of 6% indicating that an increase of 1

weight SD corresponds to a 6% increase in BMR at all ages.

The way to carry out these two analyses is as follows: the

absolute approach uses BMR as the dependent variable

( y ¼ BMR), while the proportional approach uses 100 times

the natural logarithm of BMR as dependent variable
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ðy ¼ 100 loge BMRÞ. This latter transformation converts the

regression coefficients to percentage effects on BMR3, and

the SD of 100 loge BMR is essentially the same as the CV of

BMR (in % units). Both approaches are investigated here.

Constant coefficient of variation

The LMS method analysis shows that the CV can be

assumed constant across the age range, and this greatly

simplifies the subsequent analysis. For the absolute

analysis where weighted regression is used, the more

variable points are down weighted compared to the less

variable points. It can be shown that to mimic a constant

CV, the regression of BMR requires each BMR to be

weighted inversely as the square of the subject’s expected

BMR derived from the regression equation. This ensures

that for young children, where expected BMR for age is

small, the weighting is large, whereas for adults, with a

large expected BMR, the weighting is relatively small. The

end result is that all subjects, irrespective of their age, have

an equal impact on the analysis in the sense that the

weighted residuals are equally variable at all ages.

By contrast the proportional analysis minimises the SD

of 100 log BMR which is also the CVof BMR. So in this case

unweighted regression is appropriate.

To summarise, the analyses are multiple regressions of

BMR on age, weight Z-score, height Z-score, ethnicity and

measurement technique. Within this there are two specific

analyses: (1) absolute, the weighted regression of BMR (in

units of MJ day21) and (2) proportional, the unweighted

regression of 100 log BMR (in percentage units).

Modelling age

The trends in age through childhood and adulthood are

modelled as two separate fractional polynomial curves

(described below) which are ‘joined together’ at age 15.

This age emerges from two separate analyses. The LMS

analyses used to obtain smooth estimates of mean BMR

versus age show that peak BMR occurs in both sexes at age

17. There is a sharp discontinuity in the curve at this age,

rising steeply beforehand and falling slightly afterwards,

particularly in males. Subsequently in the regression

analysis this age is optimised, and a slightly better fit is

obtained with age 15 than 17.

To include both child and adult curves in the model,

interaction terms of age with a dummy variable called

‘adult’ are included, where ‘adult’ is 1 for age 15 þ and 0

for age , 15. So for each age term themain effect applies to

children and adults, while the interaction with ‘adult’

applies only to adults. The interaction term is set to 0 at age

15 by defining it as follows:

adult £ f ðageÞ2 f ð15Þ
� �

ð2Þ

where f (.) indicates a fractional polynomial function in

age. This ensures that the main effect and interaction join

smoothly at the transitional age of 15. A dummy variable

‘child’ is also used, where child ¼ 1 2 adult. Interactions

of child with functions of age are calculated in the same

way as for adult (Equation 2), and allow the child section

of the curve to vary in shape independently of the adult

section.

Fractional polynomials of age are the usual integer

powers of age (i.e. age and age2) plus extra fractional and

inverse terms such as
p
age, log age and 1/age. Combined

in the model they provide a rich family of curves, which

have better properties than conventional polynomials

(e.g. cubic or quartic curves) which tend to fit poorly at the

extremes of age. The advantage of fractional polynomials

interacting with adult is that a complex curve shape can be

fitted for the child region along with a simpler curve in

adulthood.

To handle fractional and/or inverse powers which

require age . 0, an offset of 0.1 is added to age, chosen by

inspection to optimise the fit. The regressions for males

involve an interaction of age6 or age8 with child, i.e.

applying only to the child section of the curve. These high

powers of age are necessary to model the sharp rise in

BMR leading up to age 15.

Modelling weight and height

The simplest model includes weight and height as Z-scores

based on theBritish 1990 reference. In the absolute analysis

the regression coefficient forweight depends on age, being

small at birth, increasing through childhood and stabilising

in adulthood. This pattern is modelled seamlessly by

including interactions of weight Z-score with fractional

polynomials of age and their adult interactions. This leads

to second order interaction terms in the model, e.g. weight

Z-score by age by adult. The net effect is that the coefficient

of weight Z-score changes smoothly with age, in the same

way that mean BMR itself does.

The analysis assumes a linear additive relationship

betweenBMR,weightZ-score andheightZ-score. Thismay

fail in either of twoways – the relationship is curvilinear not

linear, and the weight and height effects may interact with

each other. The first effect is tested for by including squared

terms in the model for weight Z-score and height Z-score,

and the second by adding the product of weight Z-score

and height Z-score. If they are not significant then the

assumptions of linearity and additivity are justified.

Ethnicity

Ethnicity is important in the prediction of BMR. Several

ethnic groups are represented in the database, with up to

23 distinct categories coded, but for most the sample size is

small. In addition there has been some controversy within

the largest ethnic group, Caucasians, since a large number

come from a few Italian pre-World War II papers, and their

results appear to be anomalous. So ‘ethnicity’ actually

covers two separate concerns, differences between racial
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groups and a potential imbalance in the data due to one

racial group.

The approach taken here is to identify just two ethnic

groups, white Caucasians (who make up 69% of the total)

and everyone else. It would be entirely possible to

subdivide the groups further, but the uncertainties within

the Caucasian group make this of limited value, at least

initially. The variable ‘Caucasian’ is a binary dummy

variable taking the value 1 for Caucasian subjects and 0 for

non-Caucasians. Its regression coefficient corresponds to a

constant increment in absolute or percentage BMR at all

ages. Interactions of ‘Caucasian’ with age are also used to

explore age-specific changes in the effect of ethnicity on

BMR.

Measurement technique

Many different techniques have been used to measure

BMR, but for simplicity they are coded in the database as

either open-circuit or closed-circuit calorimetry. To test for

differences attributable to the measurement technique a

dummy variable ‘Closed’, taking the value 1 for closed-

circuit and 0 for open-circuit, is included in all the models.

This assumes the same absolute or percentage effect at all

ages.

The multiple regression model

Absolute effect model

For the absolute effect model, the fractional polynomials

in age and their various interactions can be represented as

follows:

BMR ¼ f ðageÞ þWeightZ £ gðageÞ þ HeightZ £ hðageÞ

þCaucasian £ jðageÞ þ Closed £ k ðageÞ

ð3Þ

where f (age), g (age), h (age), j (age) and k (age) are

smooth curves. The curve f (age) is mean predicted BMR

plotted against age, for an individual of mean weight and

height for age (i.e. Z-score ¼ 0), ethnic non-Caucasian

measured by open-circuit. The other curves, which

represent age-specific regression coefficients for each

independent variable, are simpler in form and in the

simplest case are the same at all ages.

The absolute regression is weighted so that the variance

for an individual is proportional to the square of their

predicted BMR. This requires some iteration: the

regression analysis is initially unweighted, and

the predicted BMRs from the model are used to calculate

the weights for each subject and the model is revised using

weighted regression. The new predicted BMRs are used to

update the weights and revise the model a second time.

Repeating this process two to three times leads to a stable

model where each subject’s sample weight is equal to his

or her squared predicted BMR. The residual ‘SD’ from this

model is the residual CV, due to the weighted analysis.

Proportional effect model

The proportional effect model is similar except for the

dependent variable:

100logBMR¼f ðageÞþWeightZ£gðageÞþHeightZ£hðageÞ

þCaucasian£jðageÞþClosed£kðageÞ

ð4Þ

Here f (age) needs back-transforming to exp( f (age)/100)

to give predicted BMR by age. The other terms have similar

meanings to their counterparts in Equation 3, except that

they now represent proportional not absolute effects on

BMR, i.e. the percentage change in BMR associated with a

unit change in each variable.

Unlike the absolute model, this regression analysis is

unweighted. But like the absolute model the residual SD

(RSD) is the residual CV, and the CVs for the two models

can be compared directly.

Model building

The process of developing the regression model, in

particular the fractional polynomial f (age), is sequential.

Firstly weight and height Z-scores are included in the

model, plus age raised to some power and the interaction

of this age term with ‘adult’. The power of the age term is

varied to identify the optimum value, as judged by the

minimum residual CV.

The process of varying the age power, and indeed

optimising other variables in the model like the transi-

tional age of 15, uses what is known as a ‘Slider’ variable in

the statistical software package Data Desk version 6.1

(Data Description Inc, Cornell, USA). This is a scale on

which the value of a variable is changed by dragging the

cursor from side to side, and the value (i.e. the power

transformation here) corresponds to the position of the

cursor. The regression model is continuously refitted as

the power changes, so that the power is estimated on a

continuous rather than a discrete scale.

The first age term fitted to the model focuses on

childhood, where the age trend is most marked, and the

inclusion of the interaction allows the adult section of the

curve to vary relatively independently. For example as an

extreme case, the adult interaction coefficient could be

exactly equal and opposite to the child (main effect)

coefficient, so that the effect in adulthood of the two terms

combined would exactly cancel out.

Once the optimal childhood power transformation has

been found, it is rounded to a suitable number (i.e. an

integer in the range 2 2 to þ 8, or ^ 0.5). The power of

the interaction term is optimised in the same way, and

retained in the model if it is sufficiently significant.

The process is then repeated as many times as

necessary, optimising the power of a new age term and

then the corresponding interaction in the expanded

model, and retaining them if significant. Once the new

term ceases to be significant the process stops.
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This same process is then used to build up the fractional

polynomial g(age) representing the weight Z-score

coefficient, except that now each age term and interaction

are multiplied by weight Z-score. This turns out to be

more important for the absolute than the proportional

analysis.

Similar processes are used for height Z-score and

ethnicity. The regression coefficient for measurement

technique proves to be too small for age trends to be fitted

and is assumed constant across age.

Model testing

The size of the database, with BMRs for over 5000 females

and 8000 males, means that the regression model has

considerable power to detect significant factors. Signifi-

cance by itself is unhelpful due to the large sample size,

because a variable may be highly significant and yet

explain only a minute fraction of the variability in BMR.

For this reason variables are included in the model only if

their t-statistic exceeds 3 or 4, corresponding to a

significance level P , 0.0001. In most cases the t-statistics

are considerably larger than this.

Once the model has been fitted, each subject’s BMR can

be expressed as a standardised residual similar to the

Equation 1:

BMR2 predictedBMR

RSD £ BMR
ð5Þ

where the predicted value comes from the model and the

RSD is actually the residual CV. This equation takes slightly

different forms for the absolute and proportional models

due to the differing dependent variables.

Several regression diagnostics are used to test the model’s

validity. The diagnostics are applied to the standardised

residuals, to take into account the weighted analysis where

appropriate. The distribution of the standardised residuals

is tested with a probability plot, the standardised residuals

are plotted against their expected values (which identifies

extreme outliers), and the leverage is tested with a

probability plot to identify unduly influential points.

Methodological differences between publications

The structure of the BMR database is hierarchical,

consisting of a series of publications each of which

provides data for a group of subjects. One way to analyse

such data is with a multilevel model, which estimates

separate error variance terms for each level of the

hierarchy, i.e. publications at the upper level and subjects

within publications at the lower level. The differences

between publications, after adjusting for the covariates in

the model, are summarised as a random effect, i.e. the

variance of mean BMR across publications. Instead a

simpler approach has been used here, fixed effects rather

than random effects, where a separate mean is fitted for

each publication.

The regression models described so far ignore

heterogeneity between publications, and an important

part of testing the model fit is to seek outliers among

them. For this the mean standardised residual for each

publication is calculated. Assuming no heterogeneity this

is distributed with mean 0 and approximate variance

1/n, where n is the number of subjects from the

publication. The mean for each publication can be

plotted against n, allowing outlying publications to be

identified where the mean exceeds ^3/
p

n (i.e. outside

the 99.8% confidence interval). Outliers, where the mean

BMR is systematically larger or smaller than for other

publications, indicate important biases due to some

aspect of the methodology.

Outlying publications can be handled in either of two

ways: their data can be excluded from the analysis, or a

dummy variable identifying cases from the publication can

be added to the model to adjust for the non-zero mean.

The first approach wastes data and may introduce other

biases, while the second removes the between-publication

bias while retaining within-publication information. The

latter approach is used here.

The models described so far can be extended by fitting

fixed effects for each publication, in addition to the other

covariates. This has the effect of adjusting out all

differences between publications. As a result the model

cannot test for the effect of closed-circuit calorimetry as it

is confounded with publication – each publication uses

one particular technique, so once the differences between

publications have been adjusted out there is no within-

publication information on which to base a closed-circuit

effect. But all the other terms in the model, for age, weight,

height and ethnicity, can still be estimated, and the

differences in coefficients with and without the publi-

cation adjustment provide insight to the robustness of the

regression equation.

The ‘zero age’ problem

More than 96% of subjects in the database have age

recorded to a whole year, including most children and

many infants. There are 293 infants with age coded as 0,

yet many of them are clearly too large to be neonates. Due

to the rapid growth rate in infancy some have

pathologically large Z-scores, over 15 for height and

over 12 for weight. These data are clearly very influential,

so all the models have been developed while testing for

the effect of including or excluding them. The conclusion

is that they are too influential to include, so all points with

age coded as precisely 0 have been excluded. However

the 89 points with a decimal age between 0 and 1 are

retained.

Of the 1598 children aged 1–10 years only 11 have non-

integral ages, so biases in the Z-scores arise here as well.

But as the growth rate is slower the biases are smaller and

have been ignored in the analysis.
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Results

Age trends

Figure 1 shows smoothed age trends in BMR from infancy

to old age, by sex. They are cubic spline curves fitted by

the LMS method ignoring all covariates except age. Both

curves start with a low value in infancy and rise steeply to

peak at age 17, and then decline steadily to old age. The

age trend in childhood is more complex for boys than

girls, with a steeper rise during puberty.

Absolute regression model

Males

Table 1 gives the weighted regression model for males of

BMR on age, weight Z-score, height Z-score, ethnic

Caucasian and closed-circuit. It involves 8390 measure-

ments on subjects from 0.03 to 101 years, weighted

inversely as the square of each subject’s predicted BMR.

The model explains 92% of the variance in BMR and the

residual CV is 0.102 or 10.2%.

The fitted trends for age and weight Z-score each

involve four terms, while there is a single coefficient for

height Z-score. Figure 2 shows the three age trends

( f (age), g (age) and h (age) in Equation 3), with the latter

two multiplied by 10 for clarity.

The upper curve in Fig. 2 shows predicted BMR as a

function of age, for a subject of average weight and height,

ethnically non-Caucasian and measured by open-circuit.

The age trend in predicted BMR is clearly similar in shape,

particularly during childhood, to the unadjusted curve in

Fig. 1. This is achieved by including a term in age8 for the

child part of the regression model, which rises almost

vertically just before the ‘adult’ age of 15.

The weight coefficient also changes appreciably with

age, being smallest in infancy and largest in early adult life

(Fig. 2, middle curve). In broad terms it follows the shape

of the predicted BMR. The meaning of the weight

coefficient is as follows: at age 15 for example it takes

the value 0.5 (remembering to divide by 10 in Fig. 2) – this

means that a change of 1 SD in weight at age 15 predicts a

change of 0.5MJ day21 in BMR. At birth the coefficient is

far smaller at 10.040, and similar to the height coefficient of

0.043 (Table 1 and Fig. 2, lower curve). This means that a 1

SD change in weight or length in infancy predicts a change

of 0.04MJ day21 in BMR.

Table 1 also shows that on average BMR is 0.39MJday21

larger inCaucasians thannon-Caucasians, and0.12MJday21

larger measured by closed-circuit than by open-circuit

calorimetry.

Biases between publications are discussed more fully

with the proportional model, but to give a flavour here the

mean BMR for publication 205 (n ¼ 571 subjects) is

0.45MJ day21 greater than predicted by the model, while

for publication 155 (n ¼ 130) it is 0.80MJ day21 less than

predicted. Both these biases are very highly significant.

Females

Table 2 gives the weighted regression model for females of

BMR on age, weight Z-score, height Z-score, ethnicity and

measurement technique. It involves 5191 measurements

on subjects from 0.03 to 106 years. The model explains

94.6% of the variance in BMR and the residual CV is 0.102

or 10.2%, the same as for males.

The model is simpler than for males because the age

trend (Fig. 1) is less complex. There are three terms each

for age and weight Z-score, and they are shown plotted

against age in Fig. 3. Predicted BMR by age (upper curve)

is for a subject of average weight and height, ethnically

non-Caucasian and measured by open-circuit. It again

shows the rise in childhood and slower fall in adulthood,

as in Fig. 1.

The weight coefficient (Fig. 3, middle curve) changes

with age in much the same way as predicted BMR, with its

largest value at age 15, about 0.4MJ day21 per SD of

weight. In infancy the weight coefficient is negative and

smaller than the height (or rather length) coefficient of

0.064MJ day21 (Table 2 and Fig. 3, lower curve).

The difference in predicted BMR between ethnic

Caucasians and non-Caucasians is 0.2MJ day21, rather

smaller than for males, while the effect of measurement

technique is very small and marginally significant,

0.04MJ day21.

To summarise so far, the regression models for the two

sexes explain a large part of the variation in BMR, and the

values of the coefficients appear reasonable with the
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Fig. 1 Mean BMR (MJday21) by age in males (left) and females (right). Cubic spline curves unadjusted for body size or other factors
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exception of weight Z-score, which changes with age in a

complex way that appears to be related to mean BMR.

The reason why the weight Z-score coefficient is so age-

dependent is this: it predicts the impact on BMR of a 1 SD

change in weight at each age, and the SD of weight itself

varies with age. At birth the SD is about 0.5 kg while in

adults it is around 12 kg, some 24 times bigger. So on this

basis the regression coefficient ought to be 24 times larger

in adulthood than in infancy, and this is broadly what Figs

2 and 3 show.

But it is a complicated concept and would be better

avoided. The problem lies in the way the regression model

is formulated, predicting BMR in absolute units. It does not

work well for weight, and it is also less than ideal for

ethnicity or measurement technique. Both these variables

ought to have a smaller effect in childhood than in

adulthood, yet the model constrains the two effects to be

the same. It would be better if instead the model predicted

proportional change in BMR, on which basis childhood

and adulthood are more likely to be comparable.

This leads to the proportional analysis, where the effect

of weight Z-score is measured in percentage terms, which

is effectively independent of size and hence age.

Proportional regression model

Males

Table 3 gives the regression model for 100 log BMR in

males. It explains 83% of the variance and the residual CV

is 10.0%, i.e. slightly better than the absolute model. All the

regression coefficients can be viewed as the percentage

effect on BMR, for example the weight Z-score coefficient

of 6.4 means that the effect of a 1 SD change in weight is a

6.4% change in BMR. This is over seven times larger than

the corresponding coefficient for height Z-score (0.9%).

There is no evidence that either of the coefficients varies

with age.

The age trend in predicted BMR is shown in Fig. 4,

adjusted to mean weight and height, ethnic non-Caucasian

and open-circuit. This is obtained by anti-logging the

predicted log BMR. The trend is similar to that seen in

Figs 1 and 2. Figure 4 also emphasises that the weight and
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Fig. 2 Males, absolute model: predicted BMR by age (top curve,
MJday21), coefficient of weight Z-score as function of age ( £ 10,
middle curve), and coefficient of height Z-score ( £ 10, bottom
line)
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Fig. 3 Females, absolute model: predicted BMR by age
(top curve, MJday21), coefficient of weight Z-score as function of
age ( £ 10, middle curve), and coefficient of height Z-score ( £ 10,
bottom line)

Table 2 Females: weighted regression analysis of BMR (depen-
dent variable; MJ day21) on age, weight Z-score, height Z-score,
ethnicity and measurement technique. The regression coefficient
for weight Z-score depends on age – see text for details

Variable Coefficient SE of coefficient t ratio Prob

Constant 0.66 0.038 17.1 ,0.0001
Age 1.3 0.010 121 ,0.0001
Adult £ Age 21.4 0.014 297.5 ,0.0001
1/Age 20.12 0.0070 216.6 ,0.0001
Weight Z-score 20.043 0.012 23.6 0.0004
Wtz £ Age 0.11 0.0038 27.8 ,0.0001
Wtz £ Adult £ Age 20.14 0.0061 222.2 ,0.0001
Height Z-score 0.064 0.0068 9.4 ,0.0001
Ethnic Caucasian 0.20 0.017 11.8 ,0.0001
Closed-circuit 0.035 0.015 2.4 0.02

Abbrevations: RSD – residual SD.
R 2 (adjusted) ¼ 94.6%, RSD ¼ 0.1016 with 5191 2 10 ¼ 5181 degrees of
freedom.

Table 1 Males: weighted regression analysis of BMR (dependent
variable; MJday21) on age, weight Z-score, height Z-score, ethni-
city and measurement technique. The regression coefficient for
weight Z-score depends on age – see text for details

Variable Coefficient
SE of

coefficient t ratio Prob

Constant 0.73 0.050 14.6 , 0.0001
Age 1.2 0.035 72.8 ,0.0001
Adult £ Age 21.4 0.033 278.6 ,0.0001
1/Age 20.17 0.040 217.9 ,0.0001
Child £ Age8 0.051 £ 1028 0.0013 £ 1028 45.3 ,0.0001
Weight Z-score 0.040 0.016 2.6 0.3
Wtz £ Age 0.032 0.0014 22.8 ,0.0001
Wtz £ Adult £ Age20.029 0.0013 222.4 ,0.0001
Wtz £ Adult/Age 6.1 0.64 9.2 ,0.0001
Height Z-score 0.043 0.0073 5.8 ,0.0001
Ethnic Caucasian 0.39 0.036 22.4 ,0.0001
Closed-circuit 0.12 0.014 8.2 ,0.0001

Abbrevations: RSD – residual standard deviation.
R 2 (adjusted) ¼ 91.8%,RSD ¼ 0.1018 with 8390 2 12 ¼ 8378 degrees of
freedom.
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height coefficients (in % units) do not change with age, in

contrast to those for the absolute model in Fig. 2.

The ethnic effect in Table 3 is similar to that in Table 1,

with BMR in Caucasians 7% greater than in non-

Caucasians, while closed-circuit is 3% greater than open-

circuit. Both terms are more significant than for the

absolute model in Table 1 as judged by their t ratios.

But the interpretation of the ethnicity effect is

problematic, as it is very sensitive to the inclusion or

exclusion of certain studies. The Caucasian ethnicity

coefficient of þ7.3% reduces to þ6.5% if the two most

influential outlying publications 203 (n ¼ 589) and 205

(n ¼ 571) are adjusted for, where the mean BMRs are,

respectively, 4.2% and 5.1% greater than predicted. Two

other clear outliers, publications 155 (n ¼ 130) and 38

(n ¼ 125), are 15% and 13% less than predicted, and their

further adjustment reduces the Caucasian effect to þ5.9%.

Adjusting for these four publications also halves the

closed-circuit effect, from 2.9% to 1.5%.

Figure 5 (left) shows the mean standardised residuals

for each publication, plotted against their sample size.

The narrow central region denotes 3 standard errors above

and below zero, i.e. the 99.8% confidence interval. The

most influential publications are those with the largest

samples. Publication 205 is the top point to the right, and

203 is just below it to its right, both with sample sizes

exceeding 500. Publications 155 and 38 are below the

central region with sample sizes around 125.

Figure 5 also shows the effect of adjusting for these four

publications (right). Their standardised residuals become

zero by definition, so that they shift up or down

accordingly. The other publications are slightly affected

by the refitted model, so their points shift marginally as

well.

Because their mean standardised residuals are forced to

zero, and because all their subjects are uniform in ethnicity

and measurement technique, the adjusted publications no

longer have any influence on the Caucasian or closed-

circuit coefficients.

A further analysis adjusts for all the publications using

fixed effects, see Table 4. The publications term (not

shown) is highly significant (F ¼ 22.1 on 131 and 8251

degrees of freedom), and its inclusion reduces the residual

CV to 8.7%.

The coefficients are rather different with and without

the publication adjustment, particularly, Caucasian ethni-

city which falls from 7.3% to 4.5%. The latter figure

represents the effect comparing groups within each

publication, and as such it should be robust to

methodological differences between studies, but its
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Fig. 4 Males, proportional model: predicted BMR by age (curve,
MJ day21), coefficient of weight Z-score (upper line, %) and coeffi-
cient of height Z-score (lower line, %)

Table 5 Females: regression analysis of dependent variable; 100
log BMR (%) on age, weight Z-score, height Z-score, ethnicity
and measurement technique

Variable Coefficient SE of coefficient t ratio Prob

Constant 60.7 0.93 65.0 ,0.0001
Log age 39.7 0.34 115.0 ,0.0001
Adult £ Age 277.1 0.96 280.4 ,0.0001
Weight Z-score 6.2 0.14 44.5 ,0.0001
Height Z-score 1.6 0.15 10.8 ,0.0001
Ethnic Caucasian 4.3 0.35 12.1 ,0.0001
Closed-circuit 1.2 0.31 3.9 0.0001

Abbrevations: RSD – residual SD.
R 2 (adjusted) ¼ 79.2%,RSD ¼ 10.32 with 5191 2 7 ¼ 5184 degrees of
freedom.

Table 4 Males: comparison of regression coefficients of 100 log
BMR (%) without (left) and with (right) adjustment for publications

Publications
unadjusted

Publications
adjusted

Variable Coefficient t ratio Coefficient t ratio

Constant 84.5 70.9 89.2 53.8
Age 215.8 219.9 210.7 210.6
Log age 50.4 61.0 42.9 38.1
Child £ Age6 2.29 £ 1026 52.1 2.27 £ 1026 26.6
Adult £ Log Age 211.7 27.0 220.4 29.3
Weight Z-score 6.4 53.7 6.0 52.5
Height Z-score 0.86 6.8 1.3 10.5
Ethnic Caucasian 7.3 25.3 4.5 6.4
Closed-circuit 2.9 11.3 0 –

Table 3 Males: regression analysis of dependent variable; 100
log BMR (%) on age, weight Z-score, height Z-score, ethnicity
and measurement technique. See text for details

Variable Coefficient
SE of
coefficient t ratio Prob

Constant 84.5 1.2 70.9 ,0.0001
Age 215.8 0.79 219.9 ,0.0001
Log age 50.4 0.83 61.0 ,0.0001
Child £ Age6 2.29 £ 1026 0.044 £ 1026 52.1 ,0.0001
Adult £ Log Age 211.7 1.7 27.0 ,0.0001
Weight Z-score 6.4 0.12 53.7 ,0.0001
Height Z-score 0.86 0.13 6.8 ,0.0001
Ethnic Caucasian 7.3 0.29 25.3 ,0.0001
Closed-circuit 2.9 0.26 11.3 ,0.0001

Abbrevations: RSD – residual SD.
R 2 (adjusted) ¼ 82.9%,RSD ¼ 9.99 with 8390 2 9 ¼ 8381 degrees of
freedom.
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much reduced t ratio reflects the loss of between-

publication information.

Females

Table 5 gives the proportional regression model for 100

log BMR in females. It explains 79% of the variance and the

residual CV is 10.3%, slightly larger than the absolute

model (10.2%). The age effect is relatively simple with just

two terms, while the weight and height effects are constant

over age.

The age trend in predicted BMR is shown in Fig. 6,

adjusted to mean weight and height, ethnic non-Caucasian

and open-circuit. The trend is similar to that seen in Figs 1

and 3. The weight coefficient of 6.2% is similar to those for

males in Table 4 and Fig. 4, while the height coefficient of

1.7% is rather larger.

The effect of ethnicity, with Caucasians 4.3% greater

than non-Caucasians, is similar to that for males in Table 4

with the publication adjustment (4.5%). By contrast the

closed-circuit effect is much smaller than for males, 1.2%

versus 2.9%. Table 6 shows the effect of adjusting for

publication differences. The effect is highly significant

(F ¼ 16.7 on 131 and 5072 degrees of freedom), and it

reduces the residual CV to 8.9%. The age, weight and

height trends are virtually unaffected and the ethnic effect

is slightly reduced. The similarity of the unadjusted and

adjusted results suggests that biases due to individual

publications are smaller and less important for females

than males.

Discussion

The analysis described here is intended to use the data as

efficiently as possible. It defines the age trend in BMR from

infancy to old age as a single regression function, with

parsimonious adjustments for weight and height. Adjust-

ments for ethnicity and measurement technique are also

included, but they are less convincing due to their

confounding with the publications providing the data.

Of the two models considered, with absolute and

proportional effects, the proportional model describes the

age trends by sex using fewer terms than the absolute

model, the weight and height Z-score coefficients are

constant across age, and the ethnic and technique effects

are more realistic operating on a percentage than an

absolute basis. For all these reasons the percentage model

is recommended as the model of choice.

The major factors in the analysis are age and weight

for age. Height for age is also consistently positive at all

ages, which together with weight for age provides an
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Fig. 5 Males, proportional model: mean standardised residuals for each publication plotted against their sample size. The heavy curves
indicate ^3 standard errors, so points outside the central funnel region are highly significantly biased. In the left graph all publications are
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Fig. 6 Females, proportional model: predicted BMR by age
(curve, MJday21), coefficient of weight Z-score (upper line, %)
and coefficient of height Z-score (lower line, %)

Table 6 Females: comparison of regression of 100 log BMR (%)
on covariates without (left) and with (right) adjustment for
publications

Publications
unadjusted

Publications
adjusted

Variable Coefficient t ratio Coefficient t ratio

Constant 60.7 65.0 62.4 41.8
Log Age 39.7 115.0 39.5 73.7
Adult £ Age 277.1 280.4 276.8 258.4
Weight Z-score 6.2 44.5 6.0 45.1
Height Z-score 1.6 10.8 1.5 10.2
Ethnic Caucasian 4.3 12.1 3.7 5.0
Closed-circuit 1.2 3.9 0 –
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adjustment for weight for height analogous to the body

mass index (BMI). This is needed in the analysis

because greater weight for height implies greater

adiposity, relatively less lean (active) mass and hence

a lower BMR. So weight has a strong and direct effect

on BMR, representing body size, while weight for

height has a smaller inverse effect reflecting adiposity.

Weight for height is effectively weight less height, and

combining the two adjustments gives a positive weight

effect and a positive (i.e. inverse negative) height effect.

The positive height coefficient confirms that BMR is

reduced in high weight for height subjects after

adjusting for weight. It also means incidentally that

further BMI adjustment is unnecessary.

Note though that weight for height is only an imperfect

proxy for adiposity – individuals of a given weight and

height can vary considerably in terms of body fat. This may

explain some of the substantial heterogeneity seen

between studies despite adjusting for age, sex, weight,

height, ethnicity and measurement technique. Of course

there may be other unmeasured inter-study technical

differences, but it is possible that the heterogeneity also

reflects residual differences in body composition. Mean

percent body fat is likely to differ between studies, and a

higher body fat for a given sex, age, weight and height

implies a lower BMR. In the absence of information on

body fat, potentially large biases could exist between

studies.

How large might this bias be – what is the relationship

between D (delta) body fat and DBMR? BMR increases by

1.4% per SD of height (from Tables 4 and 6), and the SD of

height in adults is 4%1. Height is in the model as a form of

BMI, and a 1% change in height corresponds to a 22%

change in BMI (as height is squared). So 1.4% DBMR

corresponds to 4% D height or 28% DBMI, or conversely

1% DBMI equates to 20.18% DBMR.

From Deurenberg et al.4 a 1% change in body fat

corresponds to 1.2 times DBMI in adults. Taking mean BMI

as 25, a unit change in BMI corresponds to a 1 in 25 or 4%

change in BMI. Relating body fat and BMR through BMI

gives:

1%Dbody fat ) 1:2 £ 4% ¼ 4:8%DBMI ) 4:8 £20:18%

¼ 20:9%DBMR:

So in broad terms a 1% rise in body fat corresponds to a 1%

fall in BMR. This puts into perspective the publication

biases described earlier, þ4% for the two largest studies

and 214% for two smaller studies. It is unlikely that the

studies could be that biased in terms of % body fat, i.e. 4–

14% adjusted for age, weight and height. So on balance

body composition differences are unlikely to explain the

outliers, and technical factors are a more likely

explanation.

The coefficients for ethnicity and measurement tech-

nique are very sensitive to the inclusion or exclusion of the

influential datasets. There have been proposals to exclude

some of the data to avoid biases of this sort, but excluding

data is an inefficient way to address the problem. The

approach used here is to identify publications which are

particularly influential and then to remove their between-

publication influence, by shifting their data up or down to

match the mean, while retaining their within-publication

information. This is particularly important for the males,

where adjusting for four publications reduces the

Caucasian ethnicity effect from 7.3% to 5.9%. Adjusting

for all publications reduces it further to 4.5% (Table 4). For

comparison the effect in females is between 3.7% and 4.3%

(Table 6). Taken together, the results suggest that BMR in

Caucasians is some 4% greater than in non-Caucasians of

the same sex, age and body build.

Closed-circuit estimates of BMR in males appear to be

2.9% higher than open-circuit estimates (Table 3). But

this, like ethnicity, is greatly affected by the few

influential publications, and adjusting for the four main

ones reduces the difference to 1.4%. Unfortunately it is

not possible to adjust for all publications as was done

with ethnicity, since each publication consistently used

either one method or the other, so there is no within-

publication information. The closed-circuit effect in

females is smaller at 1.2%, and the evidence from Table

6 that the female publications are relatively unbiased

suggests that the true effect is close to 1%. Whether or

not an effect of this size is worth including in the

model is open to doubt.

All things considered, the best prediction equations to

use are probably the publications-adjusted proportional

models in Table 4 (males) and Table 6 (females). The

coefficients for weight, height and Caucasian are very

similar in the two sexes (6%, 1.4% and 4%, respectively),

while the closed-circuit effect is constrained to zero. The

equations would be straightforward to implement in a

spreadsheet, e.g. Microsoft Excel, for which software

already exists to convert weight and height to Z-scores

with the British 1990 reference5.

In conclusion, parsimonious regression equations to

predict BMR in terms of weight and height are provided

for both sexes from birth through childhood and

adulthood. A proportional model structure fits the data

better than an absolute model structure. The equations

include adjustments for Caucasian versus non-Caucasian

ethnicity and for closed versus open-circuit calorimetry,

but the coefficients, particularly for males, are sensitive to

the presence or absence of certain influential studies in the

analysis.
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